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It is shown that the supersymmetric quantum mechanics has an octonionic gener-
alization. The generalization is based on the inclusion of quaternions into octo-
nions. The elements from the coset octonions/quaternions are unobservables be-
cause they cannot be considered as quantum operators as a consequence of their
nonassociative properties. The idea that the octonionic generalization of the super-
symmetric quantum mechanics describes an observable particle formed with unob-
servable “particles” is presented. © 2008 American Institute of Physics.
�DOI: 10.1063/1.2907868�

I. INTRODUCTION

Nonassociative algebras may be surely called beautiful mathematical entities. Nevertheless,
they have never been systematically utilized in physics in any fundamental fashion, although some
attempts have been made toward this goal. However, it is still possible that nonassociative alge-
bras may play some essential future role in the ultimate theory, which is yet to be discovered.

Octonions are one example of a nonassociative algebra. The octonions are the largest normed
algebra after the algebras of real numbers, complex numbers, and quaternions.1 Since their dis-
covery in 1844–1845 by Graves and Cayley, there have been various attempts to find appropriate
uses for octonions in physics �see reviews in Refs. 2 and 3�.

In this paper, we would like to show that the supersymmetric quantum mechanics has an
octonionic generalization. The generalization is based on the inclusion of quaternions H into
octonions O ,H�O. The elements from the coset O /H can be considered as unobservables because
they cannot be considered as quantum operators as a consequence of their nonassociative proper-
ties.

The paper is organized as follows in Secs. II and III, the introduction to the split octonion
algebra and supersymmetric quantum mechanics is given. In Sec. IV, we present an octonionic
generalization of supersymmetric quantum mechanics. In Sec. V, we show that the elements from
the coset O /H can be considered as unobservables. In Sec. VI, we consider the possible applica-
tions of the octonionic generalization of supersymmetric quantum mechanics. In Sec. VII, we
present comments and conclusions.

II. THE SPLIT OCTONION ALGEBRA

In this section, we follow Ref. 4. A composition algebra is defined as an algebra A with
identity and with a nondegenerate quadratic form Q defined over it such that Q permits the
composition

Q�xy� = Q�x�Q�y�, x,y � A . �1�

According to the Hurwitz theorem, only four different composition algebras exist over the real or
complex number fields. These are the real numbers R of dimension 1, complex numbers C of
dimension 2, quaternions H of dimension 4, and octonions O of dimension 8. Of these algebras,
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the quaternions H are not commutative and the octonions O are neither commutative nor associa-
tive. A composition algebra is said to be a division algebra if the quadratic form Q has the
following property:

if Q�x� = 0 implies that x = 0. �2�

Otherwise, the algebra is called split.
A basis for the real octonion O will contain eight elements including the identity

1,eA, A = 1, . . . ,7, where eA
2 = − 1. �3�

The elements eA satisfy the following multiplication table:

eAeB = aABCeC − �AB, �4�

where aABC is totally antisymmetric and

aABC = + 1 for ABC = 123,516,624,435,471,673,572. �5�

For the split octonion algebra, we choose the following basis:

ui = 1
2 �ei + �ei+3�, u

i
* =

1

2
�ei − �ei+3�, i = 1,2,3;

u0 = 1
2 �1 + �e7�, u0

* = 1
2 �1 − �e7� . �6�

These basis elements satisfy the multiplication table

uiuj = �ijkuk
*, u

i
*u

j
* = �ijkuk, i, j,k = 1,2,3 �7�

uiuj
* = − �iju0, u

i
*uj = − �iju0

*, �8�

uiu0 = 0, uiu0
* = ui, u

i
*u0 = u

i
*, u

i
*u0

* = 0, �9�

u0ui = ui, u0
*ui = 0, u0u

i
* = 0, u0

*u
i
* = u

i
*, �10�

u0
2 = u0, u0

*2
= u0

*, u0u0
* = u0

*u0 = 0. �11�

The split octonion algebra contains divisors of zero and hence is not a division algebra.
The algebra of real octonions O can be represented as

O = H + e7H , �12�

where H denotes the quaternions, spanned by �1,e1 ,e2 ,e3�; then, basis �6� can be represented as

ui =
ei

2
�1 − �e7�, u

i
* =

ei

2
�1 + �e7�, i = 1,2,3;

u0 =
1

2
�1 + �e7�, u0

* =
1

2
�1 − �e7� . �13�

A realization of the split octonion algebra is via the Zorn vector matrices
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�a x

y b
� , �14�

where a ,b are real numbers and x ,y are 3-vectors, with the product defined as

�a x

y b
��c u

v d
� = � ac + x · v au + dx − y � v

cy + bv + x � u bd + y · u
� . �15�

Here, �·� and ��� denote the usual scalar and vector products.
If the basis vectors of the three-dimensional Euclidean space are ei , i=1,2 ,3 with ei�e j

=�ijkek and ei ·e j =�ij, then we can rewrite the split octonions as matrices

u0
* = �1 0

0 0
�, u

i
* = �0 − ei

0 0
� , �16�

u0 = �0 0

0 1
�, ui = �0 0

ei 0
� . �17�

The split �and real� octonions are alternative algebras, i.e., for any octonions a ,b,

�aa�b = a�ab�, a�bb� = �ab�b, �ab�a = a�ba� . �18�

III. SUPERSYMMETRIC QUANTUM MECHANICS

In this section, we follow Ref. 5. A one-dimensional quantum mechanical Hamiltonian

Ĥ = �Ĥ− 0

0 Ĥ+

� �19�

is said to be supersymmetric6,7 if the corresponding potentials V��x� are related according to

V� =
U�2

8
�

U�

4
. �20�

The demonstration that Ĥ is supersymmetric hinges on the existence of the generators of super-

symmetry Q , Q̄, which, together with Ĥ, satisfy the commutation and anticommutation relations

�Q,Ĥ� = �Q̄,Ĥ� = 0, �21�

�Q̄,Q̄� = �Q,Q� = 0, �22�

�Q̄,Q� = 2Ĥ . �23�

Here,

Q = �p̂ − �
U�

2
��+, �24�

Q̄ = �p̂ + �
U�

2
��−, �25�

where ı2=−1, p̂=−ı�� /�x� and �� are the 2�2 matrices
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�− = �0 0

1 0
� , �26�

�+ = �0 1

0 0
� . �27�

Because of the relations ��− ,�+�=1 and ��+ ,�−�=�z, it is easily verified that Eqs. �21�–�23� are
satisfied and that

Ĥ =
1

2
�QQ̄ + Q̄Q� =

1

2
�p̂2 +

U�2

4
�I +

U�

4
�z, �28�

where I is the identity matrix and �z is the Pauli matrix.

IV. THE NONASSOCIATIVE GENERALIZATION OF SUPERSYMMETRIC QUANTUM
MECHANICS

In this section, we would like to show that the supersymmetric quantum mechanics has an
octonionic generalization. It is easy to show that �−, �+, and �z can be identified with the split
octonions

�− → u1, �+ → − u1
*, �z → u0

* − u0. �29�

It suggests to consider the following generalizations of supersymmetric operators Q , Q̄ �24� and
�25�:

Q = 	
i=1

3

�− p̂i + �V,i�ui
* = 	

i=1

3

Diui
*, �30�

Q̄ = 	
i=1

3

�p̂i + �V,i�ui = 	
i=1

3

D̄iui. �31�

For constructing the Hamiltonian, we need to introduce quadratic operators in Q:

QQ̄ = 
 p̂2 + 	
j=1

3

�V,j�2 + 	
j=1

3

V,j j�u0
*, �32�

Q̄Q = 
 p̂2 + 	
j=1

3

�V,j�2 − 	
j=1

3

V,j j�u0. �33�

Here, p̂i=−ı�� /�xi�, V,i= ��V /�xi�, and 	 j=1
3 V,j j =	 j=1

3 �2V /�xj
2=�V. The Hamiltonian is

Ĥ =
1

2
�Q̄,Q� = �Ĥ+ 0

0 Ĥ−

� =
1

2
 p̂2 + 	
j=1

3

�V,j�2� +
1

2
�− �e7�	

j=1

3

V,j j , �34�

where −ıe7=u
0
*−u0, Ĥ+= 1

2 �p̂2+	 j=1
3 �V,j�2�+ 1

2	 j=1
3 V,j j, and Ĥ−= 1

2 �p̂2+	 j=1
3 �V,j�2�− 1

2	 j=1
3 V,j j. In-

stead of commutation/anticommutation relationships �21�–�23�, we have

�Q̄,Q̄� = �Q,Q� = 0 because of Q2 = Q̄2 = 0, �35�
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�Q,Ĥ� = Q�Q̄Q� − �QQ̄�Q = 	
i,j=1

3

V,ijD jui
* − Q	

j=1

3

V,j j , �36�

�Q̄,Ĥ� = Q̄�QQ̄� − �Q̄Q�Q̄ = 	
i,j=1

3

V,ijD̄ jui − Q̄	
j=1

3

V,j j , �37�

�QQ̄,Ĥ� = �Q̄Q,Ĥ� = 0. �38�

Commutations �36� and �37� show that the operators Q , Q̄ , Ĥ do not constitute a closed algebra

because of the appearance of the 	i,j=1
3 V,ijD̄ jui and 	i,j=1

3 V,ijD̄ jui
* terms.

Now, we can write the Schrödinger equation with Hamiltonian �34�, which is similar to �28�:

Ĥ	 = �Ĥ+ 0

0 Ĥ−

��
1


2
� = E�
1


2
� . �39�

Here, the multiplication rule on the left hand side is defined via definition �41� and the Zorn
multiplication rule �15�.

The next question is the interpretation of Eq. �39�. The problem here is that Hamiltonian �34�
has the nonassociative number e7, and consequently, such eigenmatrix equations do not always
have solutions. It is not clear that the Zorn multiplication rule �15� may give us a correct formu-
lation of the eigenvalue problem for any spit octonions. In our case, we can avoid these problems
in the following way. The operator −ıe7 has the following Zorn matrix representation:

− �e7 = �1 0

0 − 1
� , �40�

which is similar to Pauli matrix �z. Let us introduce the following notation for a wave function 	:

	 = �
1

�2
� = �
1 0

�2 0
� . �41�

In the same way, we introduce the notation for a Hermitian-conjugated wave function 	†:

	† = �
1
* �2

*� = �
1
* �2

*

0 0
� . �42�

The scalar product of the wave functions � and 	 can be defined as

�†	 = ��1
* �2

*��
1

�2
� = ��1

* �2
*

0 0
��
1 0

�2 0
� = ��1

*
1 + �2
* · �2 0

0 0
� = �1

*
1 + �2
* · �2. �43�

One can see that

− �e7�
1

�2
� = �1 0

0 − 1
��
1

�2
� = � 
1

− �2
� . �44�

Now we can discuss the problem of the observability of operators Q , Q̄ and so on. Let us
remind that a physical quantity P is observable if the eigenvalue problem for the corresponding

operator P̂ has the sense

P̂	 = P	 . �45�

However, relation �44� is not always satisfied for other split octonions, for example,
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ui�
1

�2
� = �0 0

ei 0
��
1

�2
� = � 0 − �ei � �2�


1ei 0
� , �46�

and the last matrix cannot be presented as

�a

b
� = �a 0

b 0
� .

The same is true for

��1 �2�u
i
* = ��1 �2

0 0
��0 − ei

0 0
� = � 0 − �1ei

− ��2 � ei� 0
� , �47�

and the last matrix cannot be presented as

�a,b� = �a b

0 0
� .

One can say that Zorn matrices �41� and �42� do not form a subalgebra of octonions. It means that

for operator ui, the eigenvalue problem does not have any sense. Consequently, the operators Q , Q̄

are unobservables. The operators QQ̄ , Q̄Q , Ĥ are observables. It confirms the idea presented in
Ref. 8 that, in general, the nonassociative operators �numbers� do not allow us to present these
operators as observables of some physical quantities.

Equations �36� and �37� directly show that the operators Q , Q̄ are nonassociative and nonal-
ternative because the associators

�QQ̄�Q − Q�Q̄Q� � 0, �48�

�Q̄Q�Q̄ − Q̄�QQ̄� � 0 �49�

are nonzero.

V. UNOBSERVABLES AND HIDDEN VARIABLES

Commutators �36� and �37� tell us that operators ui and u
i
* have to be compared to hidden

variable of the hidden variables theory. According to �46�, we cannot interpret these operators as
quantum operators because we cannot determine the action of the operators on wave function �41�.
The reason for this is the nonassociativity of operators ui and u

i
*: they are split octonions. Let us

note that the supersymmetric quantum mechanics presented in Sec. III is a usual quantum me-
chanics because �+=u1 ,�−=u

1
* ,�z=−ıe7 are quaternions that are the associative subalgebra of

octonions.
Thus, the octonionic generalization of supersymmetric quantum mechanics presented in Sec.

IV is formed with operators Q and Q̄. These operators are built using split octonions ui and u
i
*.

Hamiltonian �34� is constructed in such a way that it has the physical application as the
Schrödinger equation

Ĥ	 = E	 . �50�

The special features of this quantum mechanics are as follows:

�1� the quantities Q and Q̄ are unobservables and

�2� the quantities QQ̄ and Q̄Q are physical observables.

Item �1� means that the Hamiltons equations of motion for the operators Q and Q̄:
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dQ

dt
= ��Ĥ,Q� = ��	

i,j=1

3

V,ijD jui
* − Q	

j=1

3

V,j j� , �51�

dQ̄

dt
= ��Ĥ,Q� = ��	

i,j=1

3

V,ijD̄ jui − Q̄	
j=1

3

V,j j� , �52�

have the nonassociative 	i,j=1
3 V,ijD jui

* and 	i,j=1
3 V,ijD̄ jui terms. One can say that quantities ui and

u
i
* are similar to the hidden variables �in the hidden variable theory� in the sense that the Hamilton

equations �51� and �52� do not 	 j=1
3 V,j jQ or 	 j=1

3 V,j jQ̄ but term only 	i,j=1
3 V,ijD jui

* and

	i,j=1
3 V,ijD̄ jui as well.

This situation should be compared to Bell’s theorem. If quantum mechanics has hidden vari-
ables ��
�Rn, then the probability distribution of the hidden variables in state 
 is �
���. As
a probability distribution, �
��� must have the properties

�
��� � 0, �53�

�
Rn

�
���dn� = 1. �54�

It is important for us that at the proof of Bell’s inequalities, we connive that hidden variables have
a probability distribution. However, the situation for the octonionic generalization of supersym-
metric quantum mechanics presented in Sec. IV is radically different: operators ui and u

i
* are

unobservables. The difference between the unobservables in our case and the hidden variables is
that the unobservables are neither classical �because they are nonassociative numbers—split oc-
tonions� nor quantum �because they are unobservables� variables. The special peculiarity of un-
observables is that they are nonassociative quantities.

Thus, the nonassociative unobservables do not provide a way to violate Bell’s inequalities.
This takes place because the hidden variables in the theory of hidden variables can be measured
in principle. However, the unobservables presented here cannot be measured in principle.

VI. PHYSICAL APPLICATIONS

The above mentioned consideration shows that the octonionic generalization of supersymmet-
ric quantum mechanics describes an observable particle formed from unobservable “particles.”

Let us note that a similar idea about unobservable variables existing in the t-J model with
high-Tc superconductivity. It is a widely spread opinion that the low energy physics of high-Tc

cuprates is described in terms of a t-J-type model, which is given by9–11

H = 	
i,j

J�Si · Sj −
1

4
ninj� − 	

i,j
tij�ci�

† cj� + H.c.� , �55�

where tij = t, t�, t� for the nearest, second nearest, and third nearest neighbor pairs, respectively. In
this model, the electron operator is presented as

ci�
† = f i�

† bi, �56�

where f i�
† , f i� are the fermion operators, while bi is the slave-boson operator. This representation,

together with the constraint

f i↑
† f i↑ + f i↓

† f i↓ + bi
†bi = 1, �57�

reproduces all the algebra of the electron operators. The physical meaning of the operators f and
b is unclear: do these fields exist or not?10,11
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If we compare factorization �56� and operators Q , Q̄ and QQ̄ , Q̄Q, we can presuppose that the
operators f i�

† ,bi are elements of an infinite dimensional nonassociative algebra Q. This algebra has
an associative subalgebra A�Q and the operator ci�

† �A is observable but the operators f i�
† ,bi

�Q \A are unobservables. It could mean that the high-Tc superconductivity �similar to quantum
chromodynamics� can be understood on the basis of a nonperturbative quantum theory and one
can assume that the nonperturbative quantum theory �on the operator language� could be realized
as a nonassociative quantum theory �realized as a nonassociative algebra Q� with observables
belonging to an associative subalgebra A and unobservables belonging to Q \A.

It is necessary to note here that in Refs. 12–15, there is a classical generalization of slave-
boson decomposition on gauge theories, which is the so-called spin-charge separation.

The next question naturally appearing here is as follows: Is it possible to apply the idea
presented here to the description of the unobservability of quarks in quantum chromodynamics?

VII. DISCUSSION AND CONCLUSIONS

Hidden variable theories were espoused by a minority of physicists who argued that the
statistical nature of quantum mechanics indicated that quantum mechanics is “incomplete.” In
quantum mechanics, the question arises whether there might be some deeper reality hidden be-
neath quantum mechanics, which is to be described by a more fundamental theory that can always
predict the outcome of each measurement with certainty. A minority of physicists maintain that
underlying the probabilistic nature of the universe is an objective foundation/property—the hidden
variable. The main point of the hidden variables in quantum mechanics is that they can describe
the movement of a quantum particle in a deterministic manner. For us, such description seems a
nondeterministic one because an underlying hidden variable theory is too complicated. It is very
important that for the hidden variables, we can introduce a probability distribution �
��� describ-
ing the hidden variables in a state 
. The situation for the unobservables in a nonassociative
quantum theory is radically different: the unobservables cannot have any probability distribution
in principle.

For the octonionic generalization of the supersymmetric quantum mechanics presented here,
the situation is similar: the observables are the quantities which are presented as a multilinear

combination of more elementary quantities—unobservables. For instance, the Hamiltonian Ĥ �34�
is the bilinear combination of unobservables Q and Q̄. In contrast to the hidden variable theory, the
unobservables in the octonionic generalization of the supersymmetric quantum mechanics are
unobservables in principle, i.e., for these unobservables we cannot assign any probability distri-
bution �53�. According Refs. 16 and 3, octonion valued observables become admissible only in the
case of three degrees of freedom. Octonion valued fields with an infinite number of degrees of
freedom can only operate in a nonobservable Hilbert space.

Let us note that the unobservability idea was applied in Ref. 17 for the description of the
unobservability of quark states and observability of mesons and nucleons. The idea presented there
is to describe quarks �and their associated color gauge bosons� in an octonionic Hilbert space.
States in such a space will not all be observable because the propositional calculus of observable
states as developed by Birkhoff and von Neumann18 can only have realizations as projective
geometries corresponding to Hilbert spaces over associative composition algebras, while octo-
nions are nonassociative. In Ref. 17, an observable subspace arises in the following way: within
the Fock space, there will be states that are observable �longitudinal, in the notation of Ref. 17�
which are the linear combinations of u0 and u

0
*. The states in transversal direction �spanned by ui

and u
i
*� are unobservables. Let us note that the octonionic generalization of the supersymmetric

quantum mechanics presented here is based on a similar consideration for u0 ,u
0
* and ui ,ui

*.
We have shown that supersymmetric quantum mechanics has a split octonionic generalization.

The algebra of variables in the octonionic generalization of supersymmetric quantum mechanics is
split into observables and unobservables. The unobservables in some sense are similar to hidden
varibles but they cannot be measured in principle.
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