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1 Introduction

Consider the curve in 3-dimensional space. Equations of such curves, following
[1] we can write in the form

€1 el
e =C| e (la)
e /. €3
€1 €1
€9 =G €9 (1b)
e /, e3
where
0 k 0 0 w3 —w?2
C=| -6k 0 7|, G=]| —fwz 0 w1 (2)
0 -7 0 fwy —wi O
Here
e?=p=+lel=el=1 (3)
Note that equation (1la) is the Serret - Frenet equation (SFE). So we have
Ci— G, +[C,G] =0 (4)
or
kt—ng—TWQZO (5@)
Woy — Tws + kwi =0 (5b)
T — Wiy + Bkwy = 0. (5¢)
We now consider the isotropic Landau-Lifshitz equation (LLE)
S: =S A S (6)
If
e = S (7)
then .
a1
q= 56281 T (8)
satisfies the NLSE
iQt+Qmm+2ﬁ|Q|2q:0' 9)

This equivalence between the LLE (6) and the NLSE (9) we call the Laksh-
manan equivalence or L-equivalence [1]. These results for the case § = +1
was obtained in [2] and for the case § = —1 in [1]. Note that between these
equations also take places gauge equivalence (G-equivalence) [6].

In this paper, starting from Lakshmana’s idea, we will discuss some aspects
of the relation between differential geometry of curves and surfaces and (2+1)-
dimensional soliton equations. Before this, in [1] we proposed some approaches
to this problem, namely, the A-, B-, C-, and D-approaches. Below we will work
with the B-, C-, D-approaches. We will discuss the relation between geometry
and the Hirota’s bilinear method. Also, we will consider the connection between
supersymmetry, geometry and soliton equations.



2 Curves and Solitons in 2+1

In this section, we work with the D-approach. Using this D-approach, we will
establish a connection between curves and (2+1)-dimensional soliton equations.
2.1 Some 2-dimensional extensions of the SFE

According to the D-approach, to establish the connection between (241)-dimensional
soliton equations and differential geometry of curves in [1] was constructed some

two (spatial) dimensional generalizations of the SFE (1a). Here we present some

of them.

2.1.1 The M-LIX equation

This equation has the form [1]

aely = fieiz + Z bje; A @el + ci1e9 + dies (10a)
j=1

aeyy = FExercise N1 (100)

aes, = Exercise N1 (10c¢)

Here the finding of the explicit forms of r.h. of (10b,c) we left as the exercises
(see, the section 7).

2.1.2 The M-LX equation
The M-LX equation reads as [1]

€] €1 €1
al| e =A| ey +B| es (11a)
€3 y €3 . €3
(S n i €]
I
€9 = Z Cj@ €9 (11b)
es3 Jj=0 es3

t
where A, B, - some matrices.

2.1.3 The M-LXI equation

This extension has the form [1]

(3] (S5} (S5} (S5}
€9 =C €9 s €9 =D €9 (12&)
es | e3 e/, e3
0 k 0 0 ms —my
C= —ﬁk‘ 0 T 5 D= —ﬁmg 0 mi . (12[))
0 -7 0 OBmy —my 0



2.1.4 The modified M-LXI equation
The modified M-LXI (mM-LXI) equation usually we write in the form [1]

€1 €1 e e
e =Cpn| e |, es =D, | e (13a)
e3 " (SR} (SR} y (SR}
where
0 k —o 0 m3  —mg
Cn = _Bk 0 T , Dp=D= —67713 0 mi (13[))
Bo -1 0 Omy —my 0

and so on [1]. In this paper, we work with the M-LIX, M-LXI and mM-LXI
equations. Note that the M-LXI equation is the particular case of the mM-LXI
eq. as 0 = 0.

2.2 The mM-LXI equation and the mM-LXII equation

Let us return to the mM-LXI equation (13), which we write in the form

(s3] (31
es =Cn| e (14a)
€3 . €3
(s3] el
€9 = Dm €9 (14[))
€3 Y €3
(s3] (s3]
€9 =G (S} (146)
€3 ‘ €3
where
0 w3 —Ww?2
G= —ﬁw:; 0 w1 (15)
ﬂwg —Ww1 0

From (14a,b), we obtain the following mM-LXII equation [1]

Cy—Dy+[C,D]=0 (16a)
or
ky —m3z, +omp —Ttmo =0 (160)
oy — Moz +7m3 —kmy =0 (16¢)
Ty — Migy + B(kma — omg) = 0. (16d)

As 0 = 0 the mM-LXII equation reduces to the M-LXII equation [1]. The
mM-LXII equation (16), we can rewrite in form

%eg(egm A esy) (17a)

ky — M3y =
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1
Oy — Moz = Eeg(egx A egy) (17[))

Ty — M1y = ei(ei; A ey) (17¢)

Also from (14) we get
ki —wsgp +owp —Twy =0 (18a)
o — wWog + Twz — kw1 =0 (18b)
Tt — Wi + B(kwa — ows) =0 (18¢)

and

miy — wiy + B(maws —maws) =0 (19a)
Mot — Wy + Miw3 — M3w1 = 0 (19b)
m3r — W3y + Mowy — miwy = 0. (19¢)

2.3 On the topological invariants

From the mM-LXII equation (16) follows

[C, D]t + Cty — D, =0 (20&)
or

(O'ml — Tm2)t + kty — M3tz = 0 (20b)
(tms — kmq)y + oy — Moy =0 (20c)
e(kma — om3)¢ + Ty — Mg, = 0. (20d)

Hence we get
(om1 —Tma) + (ow1 — Twa)y — (Mawi — Miwz), =0, (21a)
(TTTL3 — k‘ml)t + (TW3 — k‘wl)y — (TR1W3 — mgwl)m =0, (21b)
(kmg — omg); + (kwa — ows)y — (Mawa — Maw3), = 0. (21c¢)

So we have proved the following

Teorema: The (2+41)-dimensional nonlinear evolution equations (NLEE) or
dynamical curves which are given by the mM-LXI equation have the following
integrals of motions

K, ://(/img—kamg)dxdy, Ky ://(Tm2+am1)dxdy, K3 ://(ng—kml)da:dy

(22a)

. K — / / e1(ers A ey )dady (22b)
Ky = / / ea(ezs A ey)dady (22¢)

Ky = / / es(ess A e3)dady. (22d)
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So we have the following three topological invariants

Q1= % //el(elx A eyy)dzdy (23a)
Q2 = % //e2ie2x A egy)dxdy (23b)
Q3 = % //egiegw N esy)dxdy (23¢)

We note that may be not all of these topological invariants are independent.

2.4 The M-LXI equation and Soliton equations in 241

In this section we will establish the connection between the M-LXI equation
(12) and soliton equations in 2+1 dimensions. Let us, we assume

e = S (24)

Moreover we introduce two complex functions ¢, p according to the following

expressions
b1
9

g=are®™, p=ase® (25)

where aj,b; are real functions. Now we ready to consider some examples.

2.4.1 The Ishimori equation

The Ishimori equation (IE) reads as [7]

St =S A (Suz +a?Sy,) + usSy + u,S, (26a)
Upy — Py, = —202S - (S, AS,). (26b)
In this case we have .
— sh
=0 [y — 5y ME] (27a)
_ 1 Ish
my = 2a2kM2 u (27b)
_ a1 T Ish
mg =0, [ky + 2a2krM2 u] (27¢)
and
1
w1 =4 [—waz + Tw3] (28a)
wy = —kz — a®(may + mamy) + imau, (28b)
w3 = —kT + az(mgy — mamq) + tkuy + imgu,. (28¢)
M2Ish = M2|a:b:—%'

Functions ¢, p are given by (25) with

1 1
(m3 +m3) — 504ka3 — §qu;mg (29a)

2 2 1o |a|2
e — —k _—
al al 4 + 4



by = a;l{_271,2 ~(A-A+D-D)) (290)
ial
2
a3 = a'22 = l/<:2 + ﬂ(mg +m3) + 104};5/4;7713 — 1qu;mg (29¢)
4 4 2 2
by = a;l{—;?,z —(A—A+D-D) (29d)
ial,
where
(1o |af?
= z{§k: T+ T(mgk‘ml + moky)—
1 1
§aR(k2m1 + mskT + mok,) + §oq[k‘(2k‘y — mag) — kyms]}. (30a)

(1o |l
Yo = —Z{gk‘ T+ T(mgk‘ml + mgk‘y)+

%aR(k:2m1 + mgkT + moky) + %al [k(2k, — may) — kymg]}. (300)
Here a = ag + iag. In this case, g, p satisfy the following DS equation
i + Qoo + 0y + vg =0 (31a)
—ipt + Pux + PPy +vp =0 (31b)
Uz — @ Vyy + 2[(Pq) ez + & (pg)yy] = 0. (31c)

So we have proved that thelE (26) and the (31) are L-equivalent to each other.
As well known that these equations are G-equivalent to each other [5]. Note
that the IE contains two reductions: the Ishimori I equation as ag = 1,a; =0
and the Ishimori IT equation as ap = 0,y = 1. The corresponding versions of
the DS equation (31), we obtain as the corresponding values of the parameter
a [1].

2.4.2 The Myrzakulov IX equation

Now we find the connection between the Myrzakulov IX (M-IX) equation and
the curves (the M-LXI equation). The M-IX equation reads as

St =S AMS + A8, + AS, (32a)
Myu = 20*S(S; A S,) (320)
where «, b, a= consts and
, O 2 ) 92
M =« a7 + 4a(b — a)&z:@y + 4(a® — 2ab — b)@,
, 0° 2 92
My =« a7 2a(2a + 1)8x8y + 4a(a + 1)W’

Ay = i{a(2b + 1)uy — 2(2ab+ a + b)u, },
Ay = i{da™(2a%b + a® + 2ab + b)u, — 2(2ab + a + b)uy, }.



The M-IX equation was introduced in [1] and is integrable. It admits several
integrable reductions:

1) the Ishimori equation as a = b = —%

2) the M-VIII equation as a = b = —1

and so on [1]. In this case we have

my = 0, '[r, — Z%QMQU] (33a)
1
mo m—szﬂL (33b)
mg = 0y [k, + szkMQU] (33¢)
and ]
wy = E[_w% + Tws], (34a)

wy = —4(a® — 2ab — b)k, — da(b — a)k, — & (m3, + mami) +maA;  (34b)
w3 = —4(a® —2ab—b)kT —4da(b—a)kmi +a* (may —mami) +kAs+m3A; (34c)
Functions ¢, p are given by (25) with

|of®

o _la? o o

ay = W% = W{(l +1)%k% + T(mg +m3) — (I + agkms — (I + 1)arkms}
(35a)
by = a;l{—%tﬂ —(A—A+D-D)} (35b)

1

b|? b|? al?
a3 = %a’; = %{l%z + %(m% +m3) — lagkms + lagkms} (35¢)
bgz(‘);l{—;—zlz—(A—A—k[?—D) (2.9)

ia

where )
m =i{2(l+ 1)2/€2T + %(mgkml + moky)—

(l + 1)aR[k2m1 + mng + mgkx] + (l + 1)04][]€(2]€y — mgx) — kxmg]} (36&)
2
yo = —i{20%k>T + %(mgkml + maky,)—
lag(k*my 4+ makt +mak,) — lag[k(2k, — may) — kyma]}. (360)

Here @ = ar + iay. In this case, g, p satisfy the following Zakharov equation
[4]

iqt + Miq+vqg=0 (37a)
ipe — Mip—vp =0 (37b)
Myv = —2M, (pq) (37c)

As well known the M-IX equation admits several reductions: 1) the M-IXA
equation as ag = 1,ay = 0; 2) the M-IXB equation as ag = 0,a; = 1; 3)
the M-VIII equation as a = b =1 4) the IE a = b = —% and so on. The
corresponding versions of the ZE (9), we obtain as the corresponding values of
the parameter a.



2.5 The modified M-LXI equation and Soliton equations in 241

In this section we will establish the connection between the modified M-LXI
equation (14) and soliton equations in 2+1 dimensions. As above we assume

e =S (38)

and

q=aie®, p=ae™ (39)

where aj,b; are as and above, real functions. Examples.

2.5.1 The Ishimori equation
Consider the IE (26). For this equation we obtain

_ B
my = 0, l[Ty ~ 52 QIShu] (40a)
g 1 Ish
mg = M3 — 2a2k‘M28 u (400)
Mg + Emg =k, + 00, [, — £ 75hu] + Mg (40c)
k Y T LY 902 202k
and ]
wi = E[O-t — woy + Tws] (41a)
wo = —(ky +07) — az(mgy + mamy) + iouy + imauy, (41d)
wg = (0, — k7)) + a2(m2y — mamy) + ikuy + imauy,. (41c)
Functions ¢, p are given by (39) with
o 21 2 |Of|2 2 2 1
aj =a; = Z(IH—J )+T(m3—|—m2)—fracl2aR(k‘m3—|—0m2)—qu(k:mg—l—amg)
(42a)
b=, {(—— — (A— A+ D - D)} (42b)
2ia]
2 2 1o 2 |Of|2 2 oy, L 1
a5 = ay = Z(k +0°)+ T(mg +m3)+ iozR(k:mg +omg) — §oq(k‘m2 +oms)}
(42¢)
by = 8, {——2 — (A— A+ D - D)} (42d)
21a4

where

v = z{%[k(lm' —0z)+o(or+ k)] + %[mg(k‘ml —oy) +ma(omy + ky)|—

1
§aR[k(l<;m1 —oy) +o(omy + ky) + ma(kT — 03) + ma(oT + k)| +

1
§a1[k(2ky —m3z) + 0(20y — May) — kxyms — o,moa} (43a)



ol?
Yo = —z{%[k‘(lm’ —0z)+o(lor+ k)| + %[mg(kzml —oy) + ma(omi + ky)|+

1
§aR[k(l<;m1 —oy) +o(omy + ky) + ma(kT — 03) + ma(oT + ky)|+

1
§a1[k(2ky — M3g) + 0(20y — May) — kymg — ozmel }. (43b)
Here
B , i 2a 1 (2a+1)
a = agr +iay, A—Z[uy—gum], D_Z[ " Up — Uy).

In this case, ¢, p satisfy the DS equation (31).

The Ishimori I and DS I equations, we get as ag = 1,y = 0. The Ishimori
IT and DS II equations we obtain from these results as ag = 0, ay = 1. Details,
you can find in [1].

2.5.2 The Myrzakulov IX equation

Now let us establish the connection between the M-IX equation (32) and the
mM-LXT equation (14). From (32) and (14) we get

g

_ a-1
my =0, [Ty — ﬁMgu] (44a)
Ty — — M (44b)
T T g2
TO 1 € T
msy —+ ?m;; = k’y + O'am [Ty — EMQU] + 20[—2kM2'LL (44C)
and 1
wy = E[Ut — wop + Tws), (45a)
wy = —4(a?—2ab—b)(ky+o1)—da(b—a)(k,+omy)—a? (mz,+mamy ) +0 Ag+ma Ay
(45b)
w3 = 4(a*—2ab—b)(0,—kT)+4a(b—a)(o,—km1)+a?(ma,—mamy ) +kAs+msz A
(45¢)
Functions ¢, p are given by (39) with
o a2 af? 2 o el o g
aj = Wal = W{(H_l) (k+o )—I—T(m3+m2)—(l—l—l)ozR(k:m3+0m2)—(l—l—l)oq(k:m2+0m3)}
(46a)
b=, {——5 — (A— A+ D - D)} (46D)
2ial
o _ P o [b? |of?

a3 = Wa2 = W{ZZ(kQ—FaQ)—i-T(m%—i—m%)—laR(k‘mg—Famg)—i—laI(k:mg—i-amg)}
(46¢)

by=0;{~-2; — (A~ A+ D - D)} (46d)
2ial,

10



where

1 = i{2(0+1)2[k(kT —0p) +0(oT + kg )]+ g [m3(kmq —oy) +ma(omy +ky)]—

(I + Dag[k(kmi — oy) + o(omi + ky) + ma(kT — 0y) + ma(oT + kz)]+
(4 Dar[k(2ky — m3y) + 0(20y — maog) — kymg — o,ma)} (47a)

Yo = —i{202[k(kT — 0,) + o (0T + ky)] + %[mg(kzml —oy) + ma(omy + ky)|—

laglk(kmy — oy) + o(omy + ky) + ms(kT — 05) + ma(oT + k)| —
lag[k(2ky —msg) + 0 (20, — maog) — kyma — o,ma}. (470)

Directly calculation show that ¢, p satisfy the ZE (37).

These results gives: 1) as ag = 1,y = 0 the M-IXA equation; 2) as
ar = 0,ar = 1 the M-IXB equation; 3) as a = b = —%,aR = 1,a; = 0 the
Ishimori I and DS I equations; 4) asa = b = —%, ar = 0,a; = 1 the Ishimori IT
and DS II equations; 5) as a = b — 1 the M-VIII and corresponding Zakharov

equations; and so on [1].

2.6 The M-LIX equation and Soliton equations in 2+1

Now let us consider the connection between the M-LIX equation and (2+1)-
dimensional soliton equations. Mention that the M-LIX equation is one of
(2+1)-dimensional extensions of the SFE (1a). As example, let us consider the
connection between the M-LIX equation and the M-IX equation (32). Let the
M-LIX equation has the form [1]

2a +1 1 :
aely = ——e1; + e Aeiz++i(qg+ples + (¢ — p)es (48a)
aeyy = Exercise N1 (480)
aes, = Exercise N1. (48¢)

In terms of matrix this equation we can write in the form

~ 2a 4+ 1, 1. . . . A
ally = —5 € + 1[61, é1z] +ilg+pléa+ (¢ —plés (49a)
aéyy = Exercise N1 (490)
aézy = Exercise N1 (49¢)
where
é1=g oy, é=g 'oag, é3=g 'ong (50)

Here o are Pauli matrices
01 0 —3 1 0

11



So we have
0109 = 103 = —0901, 0103 = —i09 = —0301, 0302 = —i0] = —0203 (H2a)

and
o7 =1 = diag(1,1). (52b)

Equations (49) we can rewrite in the form

03, Bo] = i(q + p)oz + (g — p)or (53a)
[02, Bo] = —i(q + p)os (53b)
[01, Bo] = —(q — p)os (53¢)
where 2+ 1 !
_ _ a
Bo=agy,g~ ' —Big.g™', Bi= 5 I+ 503 (54)
Hence we get
_ (0«
By = ( » 0 ) . (55)
Thus the matrix-function g satisfies the equations
agy = Bigz + Bog. (56)

To find the time evolution of matrices é; or vectors e;, we require that the
matrix é; saisfy the M-IX equation, i.e.

N 1., . R R
€14 = 5[ 1, Mlel] + Alely + Aséiy (57&)
oz
Mou = ?itT(el([elx’ é1y)) (57b)

From these informations we find the time evolution of matrices é5,é3. So
after some algebra we obtain

[0’3, C()] = i(Clg + 021)0'2 + (612 — 621)0'1 (58&)
(02, Co] = i(c11 — ca2)o1 — i(c12 + €21)03 (58b)
[0'1, C(]] = —i(CH — 622)02 — (Cl@ — 621)03 (586)
where
_ . _ _ 2b+1 1 .
Co=g1g~ " —2iCogueg ' — C1g,97", Co= Tf-i- 378 Cy =iBy. (59)

Hence we get

CO — ( C11 C12 ) (60)

C21 €22

with
ci2 =i(2b —a+ 1)qy +iagy, co1 =i(a —2b)g, —iapy (61a)

12



and c;; are the solutions of the following equations
(a4 1)er1z — aciy = i[(20 — a + 1)(pqg)z + apq)y] (61b)

acey — gy = i[(a — 20)(pq)z — a(pq)y). (61c)

So that the matrix g satisfies the equation
gt = 2029:(::(: + Clgx + C()g- (62)

So we have identified the curve, given by the M-LIX equation (48) with the
M-IX equation (32). On the other hand, the compatibilty condition of equations
(56) and (62) is equivalent to the ZE (37). So that we have also established the
connection between the curve (the M-LIX equation) and the ZE. And we have
shown, once more that the M-IX equation (32) and the ZE (37) are L-equivalent
to each other. Finally we note as a = b = —% from these results follows the
corresponding connection between the M-LIX, Ishimori and DS equations [1].
And as a = b= —1 we get the relation between the M-VIII, M-LIX and other
Zakharov equations (for details, see [1]).

2.7 Spin systems as reductions of the M-0 equation

Consider the (2+1)-dimensional M-0 equation [1]

S = aizez + aizes, S, = bizez +bizes, Sy = cizez + cizes (63)
where
ey = Cﬁsw_ bﬁs e; = —Cﬁsm—i—bﬁs A =biac13 — bigcia.  (64)
A ATV A ATV

All known spin systems (integrable and nonintegrable) in 2+1 dimensions are
the particular reductions of the M-0 equation (63). In particular, the IE (26)
is the integrable reduction of equation (63). In this case, we have

a1z = w3, a13 = —ws, b1z = k, b1z = —0,c12 = mg3, c13 = —Mma. (65)
Sometimes we use the following form of the M-0 equation [1]
St = d2S; + d3S, (66)
with

a12€13 — G13C12 a12b13 — aizbi2

dy = N , d3= N

3 Surfaces and Solitons in 2+1

3.1 The M-LVIII equation and Soliton equationa in 241

In the C-approach [1], our starting point is the following (2+1)-dimensional
M-LVIII equation [1]
r; = Tiry + YTory + T3n (68a)
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ry; = ey +THr, + In (680)
ryy = oty + Thr, + Mn (68¢)
ryy = [3or, + 3,1, + Nn (68d)
n, = pi1ry + Pialy (68e)
n, = p21ry + poly. (68f)

This equation admits several integrable reductions. Practically, all integrable
spin systems in 2+1 dimensions are some integrable reductions of the M-LVIII
equation (68).

3.2 The M-LXIII equation and Soliton equationa in 2+1

Sometimes it is convenient to work using the B-approach. In this approach the
starting equation is the following M-LXIII equation [1]

iy = Loty +T3r, + Tn (69a)
vy = Doors + Tiory, + Thon (69b)
ry; = ey +THr, + In (69¢)
ryy = [or; + Thr, + Mn (69d)
r,, = [3or; + 3,1, + Nn (69¢)
ny = po1Tsz + Po2ly (69f)
n, = p11Ty + Piary (699)
Ny = Pa1Ty + Poaly. (69h)

This equation follows from the M-LVIII equation (68) under the following con-
ditions
U1 = Y1z + Y103y + Toly + Tapn

Loy = Yop + Y1T) + Tol'Ty + Tapio
Fég =Tz, +T1L+ YoM

FT, ET, 2
= =— A=FEG-F 70
Po1 A Po2 A (70)
Note that the M-LXIII equation (69) usually we use in the following form
Z, = AZ (T1a)
Z,=BZ (71b)
Zt =CZ (716)
where Z = (r;, 1y, n)" and
Iy I L Iy Tf, M Lo, T TG
A=|Ti, Iy M |, B=|Ty I3 N |, C=|Tp Iy I
pii pi2 0 p21 p2 0 Loz Igs 0
(72)
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3.3 The M-LXIV equation

In this subsection we derive the M-LXIV equation, which express some relations
between coefficients of the M-LXIII equation (69) or (71). From (71) we have

Ay — B, +[A,B] =0 (73a)
A —Cp+[A,C] =0 (73b)
B;—C, +[B,C] =0 (73¢)

It is the M-LXIV equation. These equations are equivalent the relations
Yyre = Yooy, Yyyr = Tayy (74&)
Tizx = Yaxt, Tigy = Tayt, Tiyy = Tyyt- (74b)

Note that (73a) is the well known Codazzi-Mainardi-Peterson equation (CMPE).

3.4 Orthogonal basis and LR of the M-LXIV equation

Let us introduce the orthogonal trihedral

e =mn, ez —=e;es. (75)

v

Let €2 = 8 = +1,e3 = e3 = 1. Then these vectors satisfy the following
equations

A T2

e 1 0 L =5 e

ey = — —GL 0 —Ap1a €eo (76a)
E
es | vVE %F%1 Apr2 0 es
0 M —Ar?

e 1 s \/AE 12 e 7o)
e = — — 0 —Ap22 e 76b

e3 \/E ﬂFQ A 0 €3

y VE 12 P22
e 1 0 F%l _%Pgl el
e /, VE JETg AT?03 0 es
The matrix form of this equation is
1 A
1y = —=(Léy — —=I'2¢ T7a
1 E( 2 VE 11€3) (77a)
R 1 R R
Cor = —E(—ﬁLel — Ap12€3) (77b)
1 BA
é3r = —(—=I"71€1 + Ap12é T7c
3 E(\/F 1161 + Ap12éa) (77c)
1 A

b1y = —=(Méy — —TI2%,¢ 78a
1y E( 2 \/E 12 3) ( )
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oy = —=(—FMé; — Apaoé3)
VE
A A
egy = —( 6 F1261 + Apggeg)
VE'VE
R A o
€1t = ﬁ(rm@ \/Ermei’»)
. 1 . .
€9t = ﬁ(—ﬁfglel — AF3363)
A
égt T(\ﬁ/_FMQ + AP O3E2

where
A -1 s~ -1 s -1
€1 =g 039, €ex2=¢g 029, €3=¢g 0149

Equations (77-79) we can rewrite in the form

(03, U] = %(Lag - %F%lal)
(02, U] = %(—M@, — Apiso)
(01, U] = %( \ﬁ/ﬁruag 4 Ap1aos)
[03,V] = ﬁ(M@ \;XEF%U;[)
(02, V] = %(—ﬁMdg — Apsor)
(o1, V] = %(\ﬁ/ﬁrwag + Apssc)
78, W) = =T = 2=Thion)
(02, W] = %(—mglag _AM2,00)
(o1, W] = %(%rglag + AT2;09

where
U=g,g", V=gg ' W=gg*

U— 1 —VAp1a L+i\/%l“%l
21\/E L — Z\/§F%1 \/Kpm

v — 1 ( —\/Kpgg M — i\/gr%z )

2Z\/E M —|—’L\/§F%2 \/Kpgg

Hence we get
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(78b)
(78¢)
(79a)
(79b)

(79¢)

(80)

(81a)

(81b)
(8lc)
(82a)
(82b)
(82¢)
(83a)
(83b)

(83c)

(85a)

(85b)



W= — . (85¢)
2VE \ T§, + i\/%rgl VAT
Thus the matrix-function g satisfies the equations
9. =Ug, g,=Vg, g=Wg. (86)

From these equations follow

U, —Va+[U,V]=0 (87a)
U — W, +[U,W] =0 (87b)
Vi = Wy + [V, W] =0 (87¢)

This equation is the M-LXIV equation. Equation (87a) is the CMPE. Note that
the M-LXIII equation in the form (76) have the same form with the mM-LXI
equation (14) with the following identifications

L A A
k= —\/E, o = E %1, T = —\/Eplz (88&)
A A M
my = —ﬁpzz, ma = EF%% m3 = ﬁ (88b)
1 A 1
w1 = —ﬁAng, w9y = Ergg, w3 = ﬁfgl (88C)

4 Self-cordination of the geometrical formalism and
Hirota’s bilinear method

The main goal of this section is the establishment self-coordination of the our
geometrical formalism that presented above with the other powerful tool of
soliton theory - the Hirota’s bilinear method. We demonstrate our idea in
some examples. Usually, for the spin vector S = (51, .52, 53) take the following
transformation

2fg s ff—3g

St =8,4+4iS; = = , = = ==
R A

Also n this section, we assume
S=e; (90)

Now consider examples.
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4.1 The Ishimori equation

It is well known that for the IE (26) the bilinear representation has the form

D,(f g D.(f g
ux:_21a2 y(fff":gog)7 Uy:—2Z (fiof—’:gog) (91)
ff+ag ff+ag
Then the IE (26) is transformed into the bilinear equations [7]
(iDy — D = o®Dy)(fo f —gog) =0 (92a)
(iDy — D2 — a*D})f o g =0. (920)
Plus the additional condition, which follows from the condtion
Upy = Uyg (93)
Now we assume that ! 1
T = §Uy, mi = ﬁux (94)

Then, the second equation of the IE (26b) has the same form with the third
equation of then mM-LXII equation (17c). So, we get

2_ ra _ p—
ef = %7 e13 = —ffA 99 (95a)
D.(f g D,(f g
o Delfeftaen o Dffoftace) e
A A
Similarly, after some algebra we obtain
P+q f9— 13 -9 fa+fg
6;_ =1 A ) =1 A ) eg_ - ’ 33 — A (96)
and o o
he Pelgof=gof)  _ Dlgoftgef) (97a)
A A

:l: .
Here e; = (ej1,€j2,€53), €5 = ej1 L iejo.

4.2 The M-I equation
Let us now consider the Myrzakulov I (M-I) equation, which looks like [1]

St =(SASy+uS), (98a)
Uy = —S - (Sz A Sy). (98b)

To this equation we take
T=0, mi=u (99)
Then equations (17¢) and (98b) have the same form. From (95) and (99) follow
Dy(fof+gog) =0 (100)
we i Dulfo £+§ °g) (101)
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4.3 The M-IX equation

In this case, we take
= —1 [ — (2a + 1)uy] = —1 [a((2a + V)u, — 4a(a + Du,] (102)
= ay a U mp = a(2a U ala U
T 2 y x|, 1 2 B Y T

So, for potential we have

g = 2ia(2a + 1)Dx(f°£+gog) — 2ia? y(fo{;rgog) (103a)
uy:8ia(a+1)Dm(fof+gog) —2ia(2a+1)Dy(f°f+§°g) (103b)

A A

5 Supersymmetry, geometry and soliton equations

In this section we establish a connection between geometry and supersymmet-
ric (susy) soliton equations. As example we consider the susy generalizations
of NLSE (1) and LLE (9). To this purpose, first we must construct a susy
extensions of the SFE (9). Simple example of such extensions is the OSP(2|1)
M-LXV equation [1]. It is convenient to work with the matrix form of the
OSP(2|1) M-LXV equation, which we write in the form [1]

€1z = 2qé9 — 2pés + Bé4 — €é; (104a)
€og = pe1 — 2i\ég + €éy (104b)

€3, = —qe1 + 2iAé3 + [és (104c)
€4y = €e1 — 23E9 — iNé4 — pés (1044)
ése = —fPe1 + 2eé9 — qés + ié5 (104e)

Here, é1, é2, é3 are bosonic matrices, é4, é5 are fermionic matrices, p(¢q) = p(p)
0,p(B) =p(e) =1 and

é1=9 'hg, éx=g 'lg, eés=g 'lsg, é1=g 'lg, é5=g 'lzg (105)

Generators of the supergroup OSP(2|1) have the forms

1 0 0 010 000
L=|0 101, b=l0o0o0], 3=]10 0],
0 0 0 000 000
0 0 1 000
L=|0 0 0], i5=001 (106)
0 -1 0 100

These generators satisfy the following commutation relations
l1,lo] = 202, [l1,l3] =23, [l2,l3] =1, [h,l]=1, [I,l5]=-I5

[l27 l4] = 07 [l27 l5] = l47 [137 l4] = l57 [l37 l5] =0
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{la,la} = =21y, {la,l5} = U, {l5,15} = 2I3 (107)

From (9) follows
[[1, U] = 2qlz — 2pl3 + Bl — €ls

(108a)

[lg, U] = pll - Qi)\lg + El4 ( )
(I3, U] = —qly + 2iXl3 + Bl5 (108¢)
[l4, U] = €ly — 2Bly — iNly — pls (108d)
(108¢)

[15, U] = —0l1 4+ 2€ely — qlg + i \l5 108e
where
929" =U (109)
Hence we get
U =i\l + qly + pls + Bly + €l (110)

Now we consider the (1+1)-dimensional M-V equation [1]

1 3
Here R € osp(2]1), i.e it has the form
S3 ST m
R= S+ —Sg Y2 (112)
2 -7 0
and satisfies the condition
R}*=R (113a)
or in elements
S3+STS™ 4+ 2yy0 = 1. (113b)

Here S;; are bosonic functions and +; are fermionic functions, i.e. p(S;;) =
0,p(v;) = 1. The M-V equation is the simplest supersymmetric generalization
of the LLE (9) on group OSP(2|1). It admits two reductions: the UOSP(2|1)
M-V equation and the UOSP(1,1|1) M-V equation [1]. As was established in
[1], the gauge equivalent counterparts of the M-V equation (9) is the OSP(2|1)
NLSE [8,9]. In [10] was studied the UOSP(1,1]1) M-V equation.

The LR of the M-V equation has the form [1]

Ve = U1, (114a)
Y = V' (114b)
with
U =i)R, (115a)
/ 2y 2 3\ 2 2
V'=2iN R+ T5[RY, (R),). (115b)
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Now let us return to the our supercurves. To find the time evolution of this
supercurves for the OSP(2|1) group case, we assume that

é&1=R (116)
Then é; satisfies the the M-V equation, i.e

. 1. . 3.9 .
1t = 5[617 elxw] + 5[6%7 (ei)xx] (117)

Now we are in position to write the time evolution of é;. We have
élt = 2)\é1x — 2iqxé2 — Qipxég — Qiné4 — 2i6xé5 ( )
€9t = 2Xé9p — 2i(pq + 2ﬁe)ég 4 ipLEo + 21€,64 ( )
é3r = 2Xé3z + 2i(pq + 20€)é3 + iryé; — 2i[,€5 (118¢)
Eat = 2Néyy + 2i€é1 + 4if,60 — i(pq + 20€)éq — ipiés ( )
€5t = 2Aé5y — 203,61 + diege3 + iryé4 +i(pg + 26€)és (118e)
Hence we obtain
[ll, V- 2)\U] = —22’qu2 — Qipxlg — 2iﬂxl4 — 2i€xl5 ( )
[la, V = 2)\U| = —2i(pq + 28€)la + ipyla + 2ie,ly ( )
I3,V = 2X\U| = 2i(pq + 28¢€)l3 + iryly — 2i0415 (119¢)
[147 V- 2)‘U] = 2iezly + 4if,lo — i(pq + 2ﬁ€)l4 — ipgls ( )
[15, V- 2)\U] = —2i0,l1 + diezls + irgly + z'(pq + 2ﬁ€)l5 ( )

where
Gy =V (120)

From (9) follows
V =2XU +i(pq + 28€)ly —iquly + ipyls — 2iB,14 + 2ie,l5 (121)
So for g we have the following set of the linear equations ce we obtain

9= =Ug (122a)
g =Vg (1220)

The combatibility condition of these equations gives

G + Quw — 2rq° — 4qBe — dee, = 0, (

it — Toz + 2qr* + 4rBe — 463, = 0, (
i€t + 2€55 + 2985 + ¢ 3 — erqg =0, (123¢

(

iﬁt - Zﬁmp —2rey —rp€+ ﬁrq =0,

It is the OSP(2|1) NLSE [8,9]. So we have proved that the M-V equation and
the OSP(2|1) NLSE are equivalent to each other in geometrical sense.
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6 Conclusion

To conclude, in this paper, starting from Lakshmanan’s idea [2] we have dis-
cussed some aspects of the relation between differential geometry of curves/surfaces
and soliton equations in 2+1 dimensions. Also we presented our point of view
on the connection between geometry of curves and supersymmetric soliton equa-
tions. The self-cordination of geometry and Hirota’s bilinear method is estab-
lished.

Finally, we would like note that the above presented results are rather the
formulation of problems than their solutions. The further studies of these prob-
lems seem to be very interesting. In this connection, I would like ask you, if
you have or will have any results in these or close directions, dear colleaque,
please inform me. Also any comments and questions are welcome.

7 Exercises

Finishing we also would like to pose the following particular questions as exer-
cises:

Exercise N1: Write the vector form of the M-LIX equation.

Exercise N2: Write the vector form of the M-LXIV equation.

Exercise N3: Find a surface corresponding to the M-LIX equation.
Exercise N4: Find the integrable reductions of the M-LVIII.

Exercise N5: Find the integrable reductions of the M-LXIII.

Exercise N6: Find the integrable reductions of the M-LXV.

Exercise N7: As well known the M-XXXIV equation (9) is integrable. Find
the other integrable equations among spin - phonon systems (3)-(9).
Exercise N8: Study the following version of the M-LIX equation

2a +1 {

aeyly = Telm + §e1 Aeip + +cey — des (124a)
2a+1 {

ey = ——e + ¢ N ey + —cel + nes (124b)
2 1 ]

ez, = %egx + %eg N ez, + de; — nes (124c¢)

Exercise N9: Find the physical applications of the above presented equations
and spin-phonon systems from Appendix.

8 Appendix: Spin - phonon systems

Here we wish present some spin-phonon systems, which describe the nonlinear
dynamics of compressible magnets [1]. May be some of these equation are
integrable. For example, the M-XXXIV equation is integrable.
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8.1 The 0-class
The M-LVII equation:

2iSt =[S, Szz| + (u + h)[S, 03] (125)

The M-LVI equation:
2iS; = [S, Szz] + (uSs + h)[S, 03] (126)

The M-LV equation:

2iS; = {(uS% — u +m)[S, Sz]}x + R[S, 03] (127)

The M-LIV equation:
2iS; = n[S, Sezza] + 2{(nS; —u+m)[S, Sul}e + B[S, 03] (128)

The M-LIII equation:
2iS; = [S, Spa] + 2iuS, (129)

where v, u, A\, n,m,a,b,, 3, p, h are constants, u is scalar potential,

_( S5 ST + _ - 2 _ 2 _
S_(TS+ _5,3), S —Slzl:ZSQ, r =41 S°=1.

8.2 The 1-class
The M-LII equation:

2iS; =[S, Spa| + (u+ h)[S, 03] (130a)
pus = Vytzr + A(S3) sz (1300)

The M-LI equation:
2iS; =[S, Spa] + (u+ h)[S, 03] (131a)
PUtt = Vguxx + a(u2)x:c + ﬂuxxxx + )\(53):(::0 (131b)

The M-L equation:
2iSy =[S, Szz| + (u + h)[S, 03] (132a)
ug + Uy + AN(S3), =0 (1320)

The M-XLIX equation:

2iSy =[S, Sgaz| + (u + h)[S, 03] (133a)
up + Uy + a(u?)y + Bger + A(S3), =0 (133b)
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8.3 The 2-class
The M-XLVIII equation:

2iS; = [S, Sya] + (S5 + h)[S, 03]

PUtt = V02uxx + )\(532,):(::0

The M-XLVII equation:

2iS; =[S, Szz| + (uSs + h)[S, 03]

PUt = Vgumv + a(uz)mm + ﬁumpxw + A(Sg)xx

The M-XLVI equation:
2iSy =[S, Sgaz| + (uS3 + h)[S, 03]

U+ ugy + A(S3)s =0
The M-XLV equation:

2iS; =[5, Sz + (uSs + h)[S, 03]
s + g + (u?)y + Bgee + A(S3)z =0
8.4 The 3-class
The M-XLIV equation:
2iS; = {(uS? — u +m)[S, Sy }a

PUtt = Vgumv + /\(gg)mm

The M-XLIII equation:

205y = {(NSE —u+m)[S, Sz }a

pugy = Vitugy + a(u?)py + Bprrs + MS2)zx

The M-XLII equation:
2iSy = {(uS; — u+m)[S, S}

ug + g + A5, =0
The M-XLI equation:

2iS; = {(nS7 — u+m)[S, Sul}a

Ut + Ug + a(u2)m + Bz + /\(‘S—g)m =0
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(134b)

(135a)

(135b)

(136a)

(136b)

(137a)

(137b)

(138a)

(138b)

(139a)

(139b)

(140a)

(140b)

(141a)

(141b)



8.5 The 4-class
The M-XL equation:

2iSy =[S, Szawa] + 2{((1 + )52 — w4+ m)[S, Sz]}e

PUtt = V02uxx + )\(Sg)xx

The M-XXXIX equation:
2iSt =[S, Szaza] + 2{((1 + N)Sg —u+m)[S, Szl}u

Pl = Vgumc + a(uz)mm + ﬁumcmc + )\(S’g)xw
The M-XXXVIII equation:

2iSt = [57 Sxxxx] + 2{((1 + N)’S_E —u+ m)[S7 S@’]}x

w4 g + A(S2); =0
The M-XXXVII equation:

2iS; = [S, Saawe) + 2{((1 + 1)S7 — u+m)[S, Sy]}a
U 4ty + a(u?)y + Buges + A(S2)e =0
8.6 The 5-class
The M-XXXVI equation:
2iSy =[S, Sza] + 2iuS;

PULt = Vgumv + )\(f)xx
The M-XXXV equation:

PUtt = Vgu:c:c + a(u2)xx + Bu:{:xx:c + )\(f):c:c
The M-XXXIV equation:

2iS; = [S, Spa] + 2iuS,

The M-XXXIII equation:

215, =[S, Suu] + 2iuS,

Ug + Uy + a(u2)w + Buggr + )\(f)w =0
Here f = %tr(S%), A=1.
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(142a)

(142b)

(143a)

(143b)

(144a)

(144b)

(145a)

(145b)

(146a)

(146b)

(147a)

(147b)

(148a)

(148b)

(149a)

(149b)
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