Necessary and Sufficient Conditions for the Boundedness of the Riesz Potential in Local Morrey-type Spaces

DSpace/Manakin Repository

Show simple item record

dc.contributor.author Victor I. Burenkov
dc.contributor.author Vagif S. Guliyev
dc.date.accessioned 2013-04-19T11:31:42Z
dc.date.available 2013-04-19T11:31:42Z
dc.date.issued 2013-04-19
dc.identifier.uri http://repository.enu.kz/handle/123456789/7064
dc.description.abstract The problem of the boundedness of the Riesz potential Iα, 0 < α < n, in local Morrey-type spaces is reduced to the boundedness of the Hardy operator in weighted Lp-spaces on the cone of non-negative non-increasing functions. This allows obtaining sufficient conditions for the boundedness in local Morrey-type spaces for all admissible values of the parameters. Moreover, for a certain range of the parameters, these sufficient conditions coincide with the necessary ones. ru_RU
dc.language.iso en ru_RU
dc.subject Riesz potential ru_RU
dc.subject Fractional maximal operator ru_RU
dc.subject Local Morrey-type spaces ru_RU
dc.subject Hardy operator on the cone of monotonic functions ru_RU
dc.subject Weak Morrey-type spaces ru_RU
dc.subject Weighted estimates ru_RU
dc.title Necessary and Sufficient Conditions for the Boundedness of the Riesz Potential in Local Morrey-type Spaces ru_RU
dc.type Article ru_RU


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account