ON MAXIMAL SUBGROUP OF A FINITE SOLVABLE GROUP

D.V. Gritsuk, V.S. Monakhov

Communicated by A.S. Dzumadildaev

Key words: finite solvable group, Sylow subgroup, maximal subgroup.

AMS Mathematics Subject Classification: 20D10, 20D20, 20D25.

Abstract. Let H be a non-normal maximal subgroup of a finite solvable group G, and let $q \in \pi(F(H/\text{Core}_{G}H))$. It is proved that G has a Sylow q-subgroup Q such that $N_{G}(Q) \subseteq H$.

1 Introduction

All groups considered in this paper are finite. All notation and definitions correspond to those in [1, 2].

In 1986, V. A. Vedernikov obtained the following result:

Theorem A. [3, Corollary 2.1] If H is a non-normal maximal subgroup of a solvable group G then $N_{G}(Q) \subseteq H$ for some Sylow subgroup Q of G.

Here $N_{G}(Q)$ is the normalizer of Q in G.

In this paper we consider the following problem:

What is a Sylow subgroup such that its normalizer is contained in a non-normal maximal subgroup of a solvable group?

Answering the question we prove the following theorem:

Theorem 1.1. Let H be a non-normal maximal subgroup of a solvable group G, and let $q \in \pi(F(H/\text{Core}_{G}H))$. Then G has a Sylow q-subgroup Q such that $N_{G}(Q) \subseteq H$.

Here $F(X)$ is the Fitting subgroup of X, $\pi(Y)$ is the set of all prime divisors of $|Y|$, $\text{Core}_{G}H = \cap_{g \in G}H^{g}$ is the core of H in G, i.e., is the largest normal subgroup of G contained in H.

Corollary 1.1. Let H be a non-normal maximal subgroup of a solvable group G, and let $q \in \pi(F(H/\text{Core}_{G}H))$. Then H has a Sylow q-subgroup Q such that $N_{G}(H_{1}) \subseteq H$ for each subgroup H_{1} of H satisfying $Q \subseteq H_{1} \subseteq H$.
Corollary 1.2. Let H be a non-normal maximal subgroup of a solvable group G, and let $\omega \subseteq \pi(F(H/\text{Core}_G H))$. Then G has a Hall ω-subgroup G_ω such that $N_G(G_\omega) \subseteq H$.

For non-solvable groups, this result is false. For example, $PSL(2, 17)$ has the order $2^4 \cdot 3^2 \cdot 17$, and the symmetric group S_4 is a maximal subgroup in $PSL(2, 17)$, see [3]. Since $|S_4| = 2^4 \cdot 3$, it follows that S_4 does not contain a Sylow subgroup of $PSL(2, 17)$. Thus it is not possible to extend theorem of V. A. Vedernikov and Theorem 1 to non-solvable groups.

The following question is contained in [3]:

Question. (V. A. Vedernikov, [3]) Is it possible to extend Theorem A to a p-solvable group G containing a maximal subgroup M such that $|G : M| = p^a$, $a \in \mathbb{N}$?

Answering this question we prove the following theorem:

Theorem 1.2. Let G be a p-solvable group. Let M be a non-normal maximal subgroup of G, and let $|G : M| = p^a$, $a \in \mathbb{N}$. Then:

1) if $F(M/\text{Core}_G M) \neq 1$ and $q \in \pi(F(M/\text{Core}_G M))$ then G has a Sylow q-subgroup Q such that $N_G(Q) \subseteq M$;

2) if $F(M/\text{Core}_G M) = 1$ then $N_G(K) \subseteq M$ for some Hall p'-subgroup K of G.

2 Notations and preliminary results

In this section we give some definitions and basic results that will be used in our paper.

Let \mathbb{P} be a set of all prime numbers, and let π be a set of primes, i.e., $\pi \subseteq \mathbb{P}$. In the paper, π' is the set of all primes not contained in π, i.e., $\pi' = \mathbb{P} \setminus \pi$, $\pi(m)$ is the set of all prime divisors of m. If $\pi(m) \subseteq \pi$ then m is called a π-number.

A subgroup H of G is called a π-subgroup, if $|H|$ is a π-number. A subgroup H of G is called a Hall π-subgroup, if $|H|$ is a π-number and $|G : H|$ is a π'-number. As usual, $O_\pi(X)$ is the largest normal π-subgroup of X. A group is called π-separable if it has a normal series whose factors are π-groups or π'-groups.

A group G is called π-solvable if it is π-separable and it has a solvable Hall π-subgroup.

Lemma 2.1. [3, Theorem 1] Let G be a π-separable group, and let H be a subgroup of G. If $|G : H|$ is a π-number then $O_\pi(H) \subseteq O_\pi(G)$.

Lemma 2.2. Let R be a Hall π-subgroup of a π-separable group G, and let N be a normal subgroup of G. Then $N_G(R)N/N = N_{G/N}(RN/N)$.

Proof. For $x \in N_G(R)$ we have:

$$(x^{-1}N)(RN/N)(xN) = R^xN/N = RN/N,$$

i.e., $N_G(R)N/N \subseteq N_{G/N}(RN/N)$.

Conversely, if $yN \in N_{G/N}(RN/N)$ then $R^yN = RN$. Next R and R^y are Hall subgroups of RN which are conjugate, i.e., $R^y = R^{ak} = R^k$ for some $ak \in RN$. Therefore...
a ∈ R, k ∈ N. Then \(yk^{-1} \in N_G(R) \), whence \(y \in N_G(R)N \), i.e., \(N_G/N(RN/N) \leq N_G/RN/N \).

Lemma 2.3. Let \(G \) be a \(\pi \)-solvable group containing a nilpotent Hall \(\pi \)-subgroup. If \(H \) is a maximal subgroup of \(G \) and \(|G : H| \) is \(\pi \)-number then \(O_\pi(H) \) is a normal subgroup of \(G \).

Proof. By Lemma 2.1, \(O_\pi(H) \subseteq O_\pi(G) \). If \(O_\pi(H) = O_\pi(G) \) then \(O_\pi(H) \) is a normal subgroup of \(G \). Let \(O_\pi(H) \) be a proper subgroup of \(O_\pi(G) \), and let \(G_\pi \) be a Hall \(\pi \)-subgroup of \(G \). Clearly, \(O_\pi(G) \) is a proper subgroup of \(G_\pi \). Since \(G_\pi \) is a nilpotent subgroup we have that \(O_\pi(H) \) is a proper subgroup of \(D = N_{G_\pi}(O_\pi(H)) \). Since \(O_\pi(H) = H \cap O_\pi(G) \) it follows that \(D \) is not contained in \(H \), so \(N_G(O_\pi(H)) \supseteq \langle H, D \rangle = G \) and \(O_\pi(H) \) is a normal subgroup of \(G \).

3 Main results

Theorem 3.1. Let \(G \) be a \(\pi \)-solvable group containing a nilpotent Hall \(\pi \)-subgroup. Let \(M \) be a non-normal maximal subgroup of \(G \), and let \(|G : M| \) be an \(\pi \)-number. Then:

1) if \(F(M/\text{Core}_G M) \neq 1 \) and \(q \in \pi(F(M/\text{Core}_G M)) \) then \(G \) has a Sylow \(q \)-subgroup \(Q \) such that \(N_G(Q) \subseteq M \);

2) if \(F(M/\text{Core}_G M) = 1 \) then \(N_G(K) \subseteq M \) for some Hall \(\pi' \)-subgroup \(K \) of \(G \).

Proof. Case 1: \(\text{Core}_G M = 1 \). Since \(M \) is a \(\pi \)-solvable group we have that \(M \) contains a Hall \(\pi' \)-subgroup \(K \). Thus

\[|G : K| = |G : M||M : K| \]

Since \(|G : M| \) is an \(\pi \)-number we have that \(K \) is a Hall \(\pi' \)-subgroup of \(G \). Hence \(O_{\pi'}(G) \leq K \leq M \), so \(O_{\pi'}(G) \leq \text{Core}_G M = 1 \). Since \(G \) is a \(\pi \)-solvable group we have that \(O_{\pi'}(G) \neq 1 \). However, \(G \) is a primitive group with a maximal subgroup \(M \) such that \(\text{Core}_G M = 1 \). Therefore, for some \(p \in \pi(G) \) we have the following:

\[N = O_p(G) = F(G) = C_G(O_p(G)) \neq 1, \ G = M[O_p(G)], \ \Phi(G) = 1, \]

and \(O_p(M) = 1 \).

Assume that \(F(M) \neq 1 \), \(q \in \pi(F(M)) \), and let \(Q \) be a Sylow \(q \)-subgroup of \(M \). Then \(O_q(M) \neq 1 \), \(O_q(M) \subseteq Q \), and since \(\text{Core}_G M = 1 \) we have \(N_G(O_q(M)) = M \).

Since \(O_p(M) = 1 \), it follows that \(p \) does not belong to \(\pi(F(M)) \) and \(p \neq q \). A subgroup \(D = N_G(Q) \cap O_p(G) \) is a normal subgroup of \(N_G(Q) \), and

\[D \subseteq C_G(Q) \subseteq C_G(O_q(M)) \subseteq N_G(O_q(M)) = M. \]

Next \(D = N_G(Q) \cap O_p(G) \subseteq M \cap O_p(G) = 1 \). We consider the subgroup \(L = N_G(Q)O_p(G) \). Since \(N_G(Q) \cap O_p(G) = 1 \) we have \(L = [O_p(G)]N_G(Q) \). It follows from \(G = [O_p(G)]M \) and Dedekind’s identity that

\[L = [O_p(G)]N_G(Q) = [O_p(G)](L \cap M), \ L/O_p(G) \simeq N_G(Q) \simeq L \cap M, \]
and $L \cap M$ is a q-closed subgroup. The inclusion $Q \subseteq L \cap M$ implies that Q is a normal subgroup of $L \cap M$. It follows from $|N_G(Q)| = |L \cap M|$ that $L \cap M = N_G(Q)$ and $N_G(Q) \subseteq M$.

Assume that $F(M) = 1$, and let K be a Hall π'-subgroup of M. By Lemma 2.3, $O_{\pi}(M)$ is a normal subgroup of G. Hence $O_{\pi}(M) \leq Core_G M = 1$. Since G is a π-solvable group we have $O_{\pi'}(M) \neq 1$ and $O_{\pi'}(M) \subseteq K$. Since $Core_G M = 1$ we have $N_G(O_{\pi'}(M)) = M$. A subgroup $B = N_G(K) \cap O_p(G)$ is a normal subgroup of $N_G(K)$ and

$$\forall C \subseteq \pi(G) \subseteq \pi(G) \subseteq N_G(O_{\pi'}(M)) = M.$$

Next $B = N_G(K) \cap O_p(G) \subseteq M \cap O_p(G) = 1$. We consider the subgroup $T = N_G(K)/O_p(G)$. Since $N_G(K) \cap O_p(G) = 1$ we have $T = [O_p(G)]N_G(K)$. It follows from $G = [O_p(G)]M$ and Dedekind’s identity that

$$T = [O_p(G)]N_G(K) = [O_p(G)](T \cap M), \quad T/O_p(G) \simeq N_G(K) \simeq T \cap M,$$

and that $T \cap M$ is a π'-closed subgroup. Since the Hall π'-subgroup K is contained in $T \cap M$, K is a normal subgroup of $T \cap M$ and $T \cap M \subseteq N_G(K)$. It follows from isomorphism $N_G(K) \simeq T \cap M$ that $|N_G(K)| = |T \cap M|$, so $T \cap M = N_G(K)$ and $N_G(K) \subseteq M$.

Thus the theorem in Case 1 is proved.

Case 2: $N = Core_G M \neq 1$. We consider the quotient group $G = G/N$. Clearly, G is a π-solvable group and $|G : M| = |G : M|$ is a π-number, where $M = M/N$. Since $Core_G M = 1$, for the group G with a non-normal maximal subgroup M, we can apply Case 1.

Assume that $F(M) \neq 1$, and let $q \in \pi(F(M))$. By Case 1, G has a Sylow q-subgroup Q such that $N_G(Q) \subseteq M$. Let $Q = A/N$, and let Q be a Sylow q-subgroup of A. Then $Q/A = A/N$ and $Q = Q$.

$$N_G(Q) = N_G(A)N/Q = N_G(Q)N/N.$$

By the condition $N_G(Q)N/N \subseteq M = M/N$ it follows that $N_G(Q) \subseteq M$.

Assume that $F(M/Core_G M) = 1$. By Case 1, $N_G(K) \subseteq M$ for some Hall π'-subgroup K of G. Let $K = B/N$, and let R be a Hall π'-subgroup of B. It exists because B is a π-solvable group. Therefore R is a Hall π'-subgroup of G, $RN/N = B/N = K$, and by Lemma 2.2,

$$N_G(R)N/N \subseteq N_G(RN/N) = N_G(K).$$

By induction, $N_G(R)N/N \subseteq M = M/N$, so $N_G(R) \subseteq M$.

Thus the theorem is proved in Case 2.

Note that Theorem 1.2 follows from Theorem 3.1 if $\pi = \{p\}$. If G is a solvable group then under the assumptions of Theorem 3.1 we have $\pi(F(M/Core_G M)) \neq \emptyset$. So Theorem 1.1 follows from Theorem 3.1.
Proof of Corollary 1.1. By Theorem 1.1, G has a Sylow q-subgroup Q such that $N_G(Q) \subseteq H$. Let H_1 be any subgroup such that $Q \subseteq H_1 \subseteq H$, and let $T = N_G(H_1)$. By Frattini’s argument, we have

$$T = N_T(Q)H_1 \subseteq N_G(Q)H_1 \subseteq H, \quad T = N_G(H_1) \subseteq H.$$

In the case in which H_1 is a Hall ω-subgroup of H we obtain Corollary 1.2.
References

Dmitry Vladimirovich Gritsuk
Department of Mathematics,
Gomel F. Scorina State University,
Gomel 246019, Belarus
E-mail: Dmitry.Gritsuk@gmail.com

Victor Stepanovich Monakhov
Department of Mathematics,
Gomel F. Scorina State University,
Gomel 246019, Belarus
E-mail: Victor.Monakhov@gmail.com

Received: 04.08.2011