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PREFACE

Most chemical processes in biological systems are performed and acceler-
ated by enzymes. Understanding the action of enzymes is both a challenge
and a fundamental requirement for further quantitative understanding of
biochemical processes. In recent years, enormous progress has been made in
this direction due, in part, to the accumulation of three dimensional
structures of enzymes and the advance of genetic engineering. Yet, despite
these developments, it is not entirely clear how to relate the structures of
enzymes to their catalytic activities or how to examine the feasibility of
different catalytic mechanisms in a well-defined way. Probably, these im-
portant issues could not have been addressed on a quantitative level before
the emergence of computer modeling approaches.

Written with these issues in mind this book attempts to simplify the key
concepts of chemical bonding so that they can be used to correlate the
structure and function of proteins. The reader is encouraged to define
enzyme mechanisms in terms of well-defined physical statements about
bonding and charge distribution that can then be analyzed by computer
. simulation approaches. The general philosophy of the book reflects the
opinion that, while we may still be arguing about the way different enzymes
work, we have clearly reached the stage where key mechanistic problems
should be addressed in terms of the underlying energetics, and where some
incorrect mechanisms may be excluded.

The book can be used in a one semester course for senior undergraduate
and graduate students who are interested in understanding physical aspects
of biochemistry and computer modeling of macromolecules. It can also be

xiii



xiv . ‘ PREFACE

used as a self-study text and as a complement to other books. Although it
follows a rigorous introductory outline, this book does not require signifi-
cant prior knowledge, and many of the principles taught in the first three -
chapters can be adopted as working recipes even without a full understand-
ing of their exact derivations. Several specific examples of enzymatic
reactions are presented and analyzed to illustrate the approaches needed for
simulating such reactions. These examples can be followed conveniently in
studies of other systems. Many problems and computer exercises are
provided to help readers test their understanding of actual modeling con-
cepts and prepare them to handle larger molecular simulation packages in
studies of biophysical problems. This includes the package, ENZYMIX,
which follows the formulation of the book quite closely.

I have tried to address, in addition to the technological issues of
simulating enzyme functions, the recent scientific revolution with regard to
the role of theoretical approaches in biophysics. Traditionally, one formu- .
lated an hypothesis to explain the action of a biological molecule and then
attempted to examine this hypothesis by some set of experiments. However,
biological systems are very complex and in many cases it has been imposs-
ible to distinguish between different hypotheses through experimental
studies. Apparently, the functions of biological molecules are determined by
many interactions which are hard to dissect experimentally. However,
computer modeling approaches provide an ideal way of counting and
assessing the totality of the interactions between the protein'. and its
cofactors. Thus one can now use computers to examine directly a detailed
hypothesis and then use experiments to indirectly verify the reliability of the
given computer model (rather than to examine the given hypothesis). For
example, a computer model that is being used to examine the contribution
of strain energy to enzyme catalysis cannot be verified by comparing the
calculated and observed strain effect, since we do not know how to evaluate
experimentally the magnitude of this effect. Yet, the reliability of such a
computer model can be assessed by examining its ability to reproduce the
observed effect of mutations on the structure of the protein. With this
perspective in mind, I have tried to encourage the readers to view computer
simulation methods as “experimental” approaches which are designed to
examine different hypotheses about the function of biological molecules.
Such approaches may help in turning many concepts in biophysics and
biochemistry from qualitative classifications of different effects to quantita-
tive statements about how biological molecules really work.

I thank Shaohua Wang, Greg King, N. Vaidehi and Steve Creighton for
helping with the manuscript and with the computer programs. I am also
grateful to Henry Chu and Luigi Manna for assisting with the illustrations
and to Attila Szabo for his insightful comments on the manuscript.

ARIEH WARSHEL

Los Angeles, California
August 1991
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BASIC PRINCIPLES OF
CHEMICAL BONDING

All molecules, small and large, are built from atoms which are connected to
each other by chemical bonds. The chemistry of any molecule is determined
by the type of bonds that exist between its atoms. Thus, to understand any
molecular process, it is first necessary to have a good background in the
basic principles of chemical bonding. This chapter provides such a back-
ground by developing a simple picture of chemical bonding and introducing
the concept of molecular potential surfaces.

After a brief consideration of the molecular orbital (MO) theory of
chemical bonding we will spend the better part of the chapter developing the
valence bond (VB) theory, emphasizing the semi-empirical VB methodolo-
gy. Although the VB theory is difficult to implement rigorously on compu-
ters, it can provide a very good understanding of the basics of chemical
bonding in organic molecules. With an understanding of some simple
aspects of the VB theory, the reader will be able to tackle the chemical

“aspects of enzyme catalysis.

- 1.1. THE ISOLATED ATOM

The atom is the building block of all molecules. When an atom is incorpo-
rated into a molecule it still retains much of its identity. We will begin our

1



2 ‘ BASIC PRINCIPLES OF CHEMICAL BONDING

study of chemical bonds by considering the properties of electrons in
individual isolated atoms. The best place to start is the simplest system—the
one-electron atom. '

The hydrogen atom is composed of a negatively charged electron orbiting
a positively charged (and much more massive) nucleus. The probability of
finding the electron at any given point around the nucleus can be described
by functions which are called atomic orbitals. These functions tell us where
the electron is most likely to be found and thus provide important insight
into the nature of chemical bonding between different atoms. Some mathe-
matical background about the concept of atomic orbitals is given below.

1.1.1. The Schroedinger Equation

The behavior of a single electron in an isolated atom can be exactly
determined (neglecting relativity) by solving the Schroedinger equation

H@¥() = (T+ V)¥()= E¥(r) (1.1)

where r is the position vector of the electron. H is the Hamiltonian operator,
which is given as the sum of the kinetic energy operator T, and the potential
energy V. E is the total energy of the system and the function ¥, which is
called the wave function, describes the probability distribution for the
electron. That is, the probability of finding the electron in a volume element
of dimensions dx dy dz located around the point (x, y, z) in space, is given
by ¥(x, y, z)*¥(x, y, z) dx dy dz.

The Hamiltonian for a single electron in orbit around a fixed nucleus of
charge Z is

2 2
H=—— v %2 (1.2)

87’m r

where V7 is the Laplacian operator given by 97/dx* + 9% dy* + 8%92%, m and
e are, respectively, the mass and charge of the electron, h is Planck’s
constant and Ze is the nuclear charge. Converting the Hamiltonian to atomic
units (au) we obtain the following:

(—% V2~ %)‘I’(r) = E¥(r) (1.3)

where in au (e =h/27 =m=1). This equation can be solved exactly and
the corresponding set of solutions are called the hydrogen-like atomic
orbitals. These wave functions can be used to describe any one-electron
atom (or ion). The hydrogen-like orbitals depend on three quantum num-
bers (n, [, and m) and their functional forms are tabulated in many books
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(e.g-, Refs. 1 and 2). Here, we only list the two lowest energy orbitals using
the notation y,, , ,, for the wave functions.

X100 = LA exp[—Zr]

Xooo = (327) V?Z°"*(2 — Zr) exp[— Zr/2] (1.4)
The energies associated with these atomic orbitals are given by

ZZ
E,=——— 1.5
n 2n2 ( )
Exercise 1.1. Verify eq. (1.5) using eq. (1.3) and x,,, of eq. (1.4). Hint:
Use the V* operator in the spherical coordinates representation

1 9 ] 19 J 1 9’
v(o, =i ( ’ —> + ( *) ¢’
6, ¢, 1)= 2 ar\" 3r) T Y sine 90 in 0 30/ r*sin’ 0 a¢’

Solutton 1.1. Since y is independent of 6 and ¢, we can write Vix(r) =
,2,,, (r*£)x(r). Substituting in eq. (1.3) we obtain %x(r)— & x(r) -
Zx(r)y=Ex(r), and E; = — %

1.1.2. Wave Functions for Atoms

To describe atoms with several electrons, one has to consider the interaction
between the electrons, adding to the Hamiltonian a term of the form %,_; 7.
Despite this complication it is common to use an approximate wave function
which is a product of hydrogen-like atomic orbitals. This is done by taking
the orbitals in order of increasing energy and assigning no more than two
electrons per orbital.

The wave function, constructed from the atomic orbitals must be antisym-
metric with respect to interchange of electrons in order to satisfy the Pauli
exclusion principle, having different spin quantum numbers (a and ) for
two electrons which are in the same orbital.

For example, the helium atom electron wave function can be written as

Yy = 2—11/5 (X100(D@(D) x100(2)B(2) = X100(1) B(1) X100(2)(2))
(1.6)

This type of wave function, which is clearly antisymmetric with respect to
. exchange of electron 1 and 2, can be also written in a determinant form

1 Xioo(Da(l)  xi90(2)2(2)
V2 [ x100(DB(L)  x100(2)B(2) (1.7)
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Such a wave function is known as a Slater determinant. In general, when we
deal with antisymmetrized wave functions, we use a compact notation for
the Slater determinant: \

% (xa(Da(Dx(2)B2) — xa(DBMx5(2)a(2) = [xaxsl  (1.8)

where the vertical bar implies determinant and the horizontal bar indicates
that the corresponding wave function is associated with a spin function B.

1.1.3. Valence Electrons and the Core/Valence Separation

When multi-electron atoms are combined to form a chemical bond they do
not utilize all of their electrons. In general, one can separate the electrons of
a given atom into inner-shell core electrons and the valence electrons which
are available for chemical bonding. For example, the carbon atom has six
electrons, two occupy the inner 1s orbital, while the remaining four occupy
the 2s and three 2p orbitals. These four can participate in the formation of
chemical bonds. It is common practice in semi-empirical quantum mechanics
to consider only the outer valence electrons and orbitals in the calculations
and to replace the inner electrons + nuclear core with a screened nuclear
charge. Thus, for carbon, we would only consider the 2s and 2p orbitals and
the four electrons that occupy them and the +6 nuclear charge would be
replaced with a +4 screened nuclear charge.

1.2. MOLECULAR ORBITALS FOR DIATOMIC MOLECULES

The atomic orbitals considered above can be used to help describe the wave
functions of electrons in chemical bonds. To see this, we start with the
simple problem of the H, molecule (Fig. 1.1). -

The Hamiltonian for this system should include the kinetic and potential
energy of the electron and both of the nuclei. However, since the electron
mass is more than a thousand times smaller than that of the lightest nucleus,
one can consider the nuclei to be effectively motionless relative to the
quickly moving electron. This assumption, which is basically the Born-
"Oppenheimer approximation, allows one to write the Schroedinger equation
neglecting the nuclear kinetic energy. For the H, ion the Born-
Oppenheimer Hamiltonian is

HUR, 7 7) = (5 = - L 2 )bR, rarrs) = (RINR, 740 y)
(1.9)

where R is the distance between the two nuclei and r, and ry, are the
distances of the electron from nucleus A and B respectively.
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Hj HE

FIGURE 1.1. The H; molecule.

1.2.1. The MO Potential Surface for the H; Molecule

In order to obtain an approximate solution to eq. (1.9) we can take
advantage of the fact that for large R and small r,, one basically deals with a
hydrogen atom perturbed by a bare nucleus. This situation can be described
by the hydrogen-like atomic orbital ., located on atom A. Similarly, the
case with large R and small r, can be described by x4, on atom B. Thus itis
reasonable to choose a linear combination of the atomic orbitals 7, and
x>, as our approximate wave function. Such a combination is called a
molecular orbital (MO) and is written as

g = CAXlAOO + CBXlBOO (1.10)

To find the optimal coefficients C, and Cz one can use the variation

. principle, which states that any trial solution for the wave function will give

a larger value for e(R) than the value obtained with the exact wave function.

With this in mind, we should try to find the minimum of &(R) as a function
of C, and Cy. This is done by expressing £(R) as

f Y*HYy AT crh 4 CiH,, +2C,ChH
Co+ Co+2C,CuS 4z

o(R) = (1.11)

[ v ar
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where H,p = [ xiHyy dr and S, = | x} xp dr. The optimal Cs are found
by solving the set of equations

de(R) _ de(R) _

5c, = 3¢, ~° (1.12)

This leads to the well-known secular equation
Ci(Hyp— &)+ Cy(Hypg — Sy58)=0
Cu(Hyp— &S45)+ Cp(Hpp — ) =0 (1.13)

The permissible values of ¢ are determined by solving the equation

Hy,y—¢ H,p— S,y
=0 .

H,p—eS,5 Hpg—¢ (1.14)

The coefficient vector C is then solved by substituting the value of & back -

into the original secular equation.

Since we deal with two identical nuclei H, , = H,, we obtain
— HAA + HAB
e.(R)= 1£5,, (1.15)

Evaluating the energy ¢ for different values of R gives the effective potential
for the nuclei in the presence of the electron. This function is called the
Born—Oppenheimer potential surface or just the potential surface. In order
to evaluate ¢(R) we have to determine H,,, H,,, and S,,. These
quantities, which can be-evaluated using elliptical coordinates, are given by

H,,=E,+vy+R™!

Hgp=H,,

H,,=SE,,,+B+SR™"

Hy,=H,y (1.16)

where

y= —% [1—exp[—2R](1 + R)]

B= —exp[—-R](1+ R)

S=exp[—R]<1+R+ %) (1.17)
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FIGURE 1.2. The potential surfaces of the H; molecule.

and E,,, is the energy of an electron in the x,,, orbital (which is equal to
1
—3 au).

The potential surface obtained from eqgs. (1.15) and (1.16) is described in
Fig. 1.2. Note that at large distances we obtain the energy of the isolated
hydrogen atom (—1/2). The coefficients C, and C, and the MO wave

function is obtained by substituting eq. (1.15) in eq. (1.13) and requiring a
normalized wave function, for example,

f¢j¢+ dr=C%+2C,CpS, 5+ Ch=1 (1.18)
The resulting two sets of coefficients (for £, and £_) give

Yo = (Xa * X5)/(2%28,5)"" (1.19)

" 1.2.2. MO Potential Surface for Molecules with Many Valence
Electrons

In treating molecules with more than one electron we use Slater determin-
ants made of molecular orbitals. For example, for the H, molecule we use

Yy, =y | (1.20)
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The general treatment of 2n electrons and n molecular orbitals is outlined
in Appendix A and can be skipped by the readers who are not interested in
this additional background. Here we only give very simplified versions of
this treatment, which will help us in some qualitative discussions.

We start with the oversimplified version of the regular Huckel approxima-
tion. This approach considers the complete Hamiltonian of a system of 25
electrons and m nuclear cores, which is given by

a-¥(-dv-$4)i3 L Shpe3l oo

A i<j ,] i=1 i<j 11

This Hamiltonian is then approximated by removing the electron—electron
repulsion term and representing its effect by replacing each Z, by a new
effective charge (Z) that reflects the screening of the original core charge
by the presence of other valence electrons. This gives :

m ’ 2n
H= Z (—-1— V- f—f*) = ; B (i) (1.22)

i=1 A=1

For this simple Hamiltonian, which involves the sum of one-electron
Hamiltonians, we can use a wave function of the form

V=9 (D (2)4(3) - - - 4, (2n) (1.23)

where the ¢, are the molecular orbitals constructed from the m atomic
orbitals by

h=2 Cyx, (1.24)

where p runs over the atomic orbitals, which are attached to the m cores
assuming for simplicity that m = n. Here we do not use a Slater determinant
wave function but the simple wave function of eq. (1.23), since in the
absence of the 1/r, term we get the same energies and MOs for both wave
functions. Of course, after solving for the C’s and obtaining MO we can
take the 2m active electrons and place them with the proper spins in a Slater
determinant.

Since our Hamiltonian involves a sum of A, (i), which are only functions
of the coordinates and momenta of a single electron, we can use separation
of variables and reduce the problem to m identical one-electron problems

heff(l)(lji(l) = &,(1) (1.25)

where the total energy is given by
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E= an+2 ZaZ (1.26)

A>B RAB

MOLECUL

where 71, is the number of electrons in each orbital and where the ZZ;, term
represents the core—core repulsion term.

Equation (1.25) leads to the mth dimensional equivalent of eq. (1.13),
which can be written in matrix notation as

HC, = ¢,C, (1.27)

. Here the overlap integrals between different orbitals are neglected (S,
8,, where 8, » is the Kronecker delta which is given by 8,, =0 for u # v and

ﬁﬂ =1 for ;u = ). The elements of the H matrix are glven by

H,, = [ xiOhaDx, (D) dry = a,

H,,= [ X2kl Dy, () dr, = B, (1.28)
The energy surface of eq. (1.26) can be written now as

E= ch HC,+ 2, Z'Z}/R = ZPMHM—F > Z!ZUR ,,
A>B A>B

(1.29)

where the P, are called bond orders and are given by

Z n,C, C, (1.30)

i~ip iv

where #n, is the number of electrons in the ith MO (#n, is 1 or 2 for the
occupied molecular orbitals and zero for all other orbitals).

The regular Huckel approach presented above does not give correct
bonding properties and serves here mainly to give the reader a simple
description of a complicated many-electron problem. In order to address
realistic problems in our exercises we will move to the simplest approach
that gives reasonable bonding properties. This can be obtained by a variant
of Appendix A which is called the iterative extended Huckel method. In this
approach we obtain the same secular equation as in the regular Huckel
. method, but now the matrix elements of H are given by
H,=a,=a,-aQ,— gA 14.4Q,(D + R ;)"

[ (7

H,,=B,, =Byexp[-pR,,] (1.31)

where from now on we will be using energy units of either electron volt (V)
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(1au=27.21¢eV) of kcal/mol (1 au= 627.5 kcal/mol) and distance units of
A (1au=0.529 A). The units used in eq. (1.31) and through the rest of this
section are ¢V and A. In later stages we will switch to kcal/mol and A.
The parameter a, is the ionization energy of an electron from the uth
atomic orbital located on the Ath atom and B is the so-called resonance
integral (represented here by a simple exponential). The Q, and P,, terms
of a, represent corrections to the effective ionization potential due to the
residual charges on the different atoms. The charges are determined by

Q4= E Q,m= E (Z,L_PML):ZA_PAA
n(A) wn(4)

(1.32)
PAA = Z PML

n(4)

Since P,, depends on the solution of the secular equation, which in turn
depends on P, , it is clear that we must solve iteratively for the molecular
orbitals. In general, we will consider only the first few iterations and start
the first iteration with P?m =Z,, where Z  is the effective charge of the
nuclear core of the vth orbital (for more than one orbital per atom we have
Z, =Y, Z,)- The potential surface of the system is then approximated

by

E=2 ne,+ > 144[{Z,Z,R,5 —P,Ps(D+R,;)"'] (133)

i=1 A>B

The matrix elements H,, and H,, in eq. (1.31) could be evaluated
analytically as was done in the simple case of eq. (1.16). However, such a
treatment would result in an entirely unreliable potential surface, since the
Huckel approximation neglects several important integrals. Instead it is
preferable to take a semi-empirical approach, representing the integrals B
and « by a fairly simple function [as indeed done in eq. (1.31)] with
adjustable parameters ( 8; and p). These parameters and the parameters @,
and D can be calibrated by fitting the calculated properties to the corre-
sponding observed properties (e.g., equilibrium structures, bond energies,
and excitation energies) for different molecules. In this philosophy it is

-assumed that the a and the B, which are calibrated on few molecules will
give reasonable results for other molecules from the same class.

To clarify this somewhat formal discussion it is important to perform the
exercises given below.

Exercise 1.2. Consider a diatomic molecule that has two orbitals (A and B
on the atoms A and B, respectively) and two electrons in the MOs formed
by these orbitals. What is the Huckel electronic energy of this system in
terms of the parameters «,, ay, and B,,?
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Solution 1.2. The secular determinant for this problem is:

= Pas | (1.34)

Bap ap — €

The solution to the 2 X 2 secular equation given above is
1 1
) [(a, +ag)*((a, — 0‘19)2 + 452)2] (1.35)

Exercise 1.3. Using the equations introduced in the last problems, generate
a potential surface for the H, molecule assuming that a, = —13.6¢€V,
p=—-9.5exp[—R]eV (with R in A), D=0.3A, and a=1. Consider only
the first iteration with P,, =1 and Z,, = 1. Adjust the value of 3, to see how
it affects the value of the bond energy (the value of E at its minimum). Such
a procedure will clarify the point that B, (as well as the other parameters)
are chosen semi-empirically to give the best potential surface for our
molecule.

Solution 1.3. Since a, = ap = «, the expression given above reduces to
e, =a*f (1.36)

There are two electrons that can both be put into the lower-energy orbital
with opposite spins so the ‘electronic energy is 2¢,. The internuclear
repulsion term must also be included in the total energy expression, giving
(through eq. 1.33):

E=2(-13.6—-9.5exp[-R]) +14.4R' — 144D+ R)"" (1.37)

Exercise 1.4. Solve the exercise given above for the HF molecule. Con-
sider only the hydrogen 1s orbital (a; = —13.6¢eV) and one fluorine 2p
orbital (& = —13.0eV). Use the resonance integral B, = —6 exp[—2R] eV,

D=4A, and a =0.5.
1.2.3. Solution of Secular Equations by Matrix Diagonalization

The treatment of molecular problems frequently leads to secular equations
(e.g., eq. 1.27). Such equations might have much larger dimensions than
2 X 2, making it difficult and sometimes impossible to solve them analytical-
ly. Fortunately, there are numerical methods that allow us to take eq. 1.27
and to find the vectors C (which are called eigenvectors) and the energies
(which are called eigenvalues). Such methods are called diagonalization
methods since they transform the matrix H into a diagonal matrix by

CHC=E (1.38)
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where E is a diagonal matrix with E; = ¢, and E;; =0 for i #j, and C is a
matrix with the C, in its columns (e.g., C, in the first column). Many
diagonalization approaches are now available in standard computer pro-
grams which can be treated as black boxes that receive the matrix H and
give out the eigenvalues ¢, and the eigenvectors C;. A typical diagonalization
subroutine called subroutine DIAG is given in Program 1.A at the end of
this chapter and can be used by the reader.

Exercise 1.5. Use subroutine DIAG to evaluate the ¢, and £_ for the
system of Exercise 1.4.

Solution 1.5. See Program 1.A.
1.2.4. Incorporating the Effect of External Charges in MO Treatments

The approach discussed above can provide a qualitative description of the
effect of external fields on bond-breaking processes. For example, consider
the H, molecule (H, — H,) in the presence of an Li* ion 3 A away from H,

on the A~-B axis. To study this problem, we assume that there is no charge
migration to the Li} location (so that P, =0) and that B,. = Bz = 0 since
the Li" ion is sufficiently far from H, and H,. In this case, we can write the
H matrix as

a, PBap O
=|Basp @ O (1.39)
0 0 ac
where we have in the first iteration
a’=a,—a-144D+R,.)"
a%=a,—a—14.4D + Ry.) "
al=a, (1.40)

The index O represents the first iteration in our procedure. We can use the
subroutine DIAG to solve the secular equation and this is a recommended
exercise, but instead we can make use of the fact that the 2 X 2 matrix of A
and B is not mixed with the 1 X 1 submatrix of C. Thus, we can solve the
2 x 2 problem, including the effect of the lithium ion, only through its effect
on a, and a,. This will give the &, of eq. (1.35) that upon substitution in
eq. (1.27) will give the molecular orbital coefﬁcrents (the C’s) and then
through eq. (1.32) will give the charges Q) and Q} of our first iteration
(where the superscript one designates the first iteration). Substituting the
Q’s in the expression for the a’s will give o, and @ and new energies and
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new O’s. The calculated energies and wave functions after the first iteration
are illustrated schematically in Fig. 1.3.

_ The main feature of the new wave function is its polarization by the field
of the ion. That is, the presence of the ion changes the effective ionization
energies of H, and Hj and tends to pull electrons toward H. The effect of
the external ion on the potential surface for bond breaking is shown in Fig.

1.4.

Exercise 1.6. Evaluate the potential surface of the H, + Li" system at four
points (R,45=1, 2, 3, and 4 A), using @, =—13.6¢eV, a=1, D=0.3, and
B=-9 5exp(—R)eV.

Solution 1.6. Use Program 1.B, which is given at the end of this chapter.

The Huckel approach does not really consider the interaction between
the bonding electrons. Including this electrostatic interaction in the calcula-

0
€
/ \
/ \
/ \
/ \
/ \
! \
Il \\
(X,A ﬁ LY
-1
\ \ !
\ \\ e0 ll .
‘\\ S / 0p-(Rpc+D)
1

Wi =N[Xs-B /(o) -0t )X a

A B C

FIGURE 1.3. A schematic illustration of the energies and wave functions of a diatomic
molecule in the presence of a positively charged ion. The ground state singlet wave function has
a large character of y,, since the electron is attracted to the positively charged ion. ¢} and &°
represent the ground state energy in the first and second iteration, respectively.
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FIGURE 1.4. A simplified MO potential surface for an H, molecule in the presence of a Li*
jon. The Li* is held 3 A from H,, and the bond length R, is changed by moving H .

tions leads to the more complicated self-consistent field approach given in
Appendix A. However, even this sophisticated treatment does not give
a correct description of the correlated motion of the bonding electrons.
Only the configuration interaction (CI) treatment, which is not considered
here, can make the MO method give a correct potential surface for a
bond-breaking reaction. This is done, however, at the expense of physical
insight.

1.3. THE VALENCE BOND DESCRIPTION OF DIATOMIC MOLECULES

The main features of the chemical bonding formed by electron pairs were
captured in the early days of quantum mechanics by Heitler and London.
Their model, which came to be known as the valence bond (VB) model in
its later versions, will serve as our basic tool for developing potential
surfaces for molecules undergoing chemical reactions. Here we will review
the basic concepts of VB theory and give examples of potential surfaces for
bond-breaking processes.
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1.3.1. The Heitler-London Treatment of the H, Molecule

The original VB wave function was introduced in the treatment of the
hydrogen molecule by Heitler and London in 1932. This treatment consid-
ered only the one 1s orbital on each hydrogen atom and assumed that the
Best wave function for a system of two electrons on two different atoms is a
product of the two atomic 1s orbitals: = y{. x+.. This wave function needs
to be modified, however, to accommodate the antisymmetry of the wave
function and to take into account the spin of the two electrons.

In order to include the spin of the two electrons in the wave function, it is
assumed that the spin and spatial parts of the wave function can be
separated so that the total wave function is the product of a spin and a
spatial wave function: W= ;... ;. Since our Hamiltonian for the H,
molecule does not contain any spin-dependent terms, this is a good approxi-
mation (NB—the complete Hamiltonian does contain spin-dependent terms,
but for hydrogen they are rather small and do not appreciably affect the
energetics of chemical bonding). For a two-electron system it turns out that
there are four possible spin wave functions; they are:

6= a,B, ~ By,

0, = a,a,

0= B, + B,

L =8B, (1.41)

where, for example, @ refers to a spin wave function with total spin of 1
and a spin z-component of 0.

Considering first the state with a total spin of 0, we note that since the
spin wave function is antisymmetric with respect to interchanging the
particle labels, the spatial part of the wave function should be symmetric in
order to preserve the overall antisymmetry of the wave function. This leads
to the following expression for the wave function:

1‘//C+0v = Nxa(Dxp(2) + x5(Dx ()], B, — Biay) (1.42)

where the superscript cov designates a covalent bond and N is a normaliza-
tion constant which is evaluated through the relation

f(ll/ICOV)*(ll/ICOV) d’T =1 (143)

For the triplet spin states it is only necessary to consider one of the three
possible spin wave functions and we will take the @ wave function. Since
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the triplet wave function is symmetric with respect to switching the labels of
particles 1 and 2, the spatial wave function needs to be antisymmetric. These
considerations lead to the following form for the triplet-state wave function:

Y = Nl[XA(l)XB(Z) = xz(Dxa(2))(a; 8, + Byay) (1.44)
The H, electronic Hamiltonian is
H=h(1)+ h(2)+1/r, (1.45)

with the one-electron Hamiltonians:

—y? ~
W)= —* —rii—ri

2

v ~ ,
h(2)= —2 - r2A "21; (1.46)

Evaluating { 'y "|H|'"y*") gives the total ground state energy as

_ (J+K)

+ (1 + Sz) (147)

where
J={x,(Wxp)H|x,(D)x5(2))
K= <XA(l)XB(2)|H|XA(2)XB(1)>

= (X (Mxs@xa@)xs(1)) (1.48)
Similarly, the energy of the triplet state is given by

3 _(J_K)
==

(1.49)

The integrals J and K are called the Coulomb and exchange integrals
respectively. The actual potential surface of the singlet Heitler—London
wave function gives a good description of the real H, ground state, including
the bond-breaking process (see Fig. 1.5). This is because the wave function
tends to keep the electrons apart and mimics the correlation of the
electrons. Since at large intranuclear separation the electrons are almost
completely localized on different nuclei, the Heitler-London wave
function gives the asymptotlcally correct wave function for bond-breaking
processes.
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FIGURE 1.5. The VB potential surface of the H, molecule and the corresponding experimen-
tal potential surface.

1.3.2. Adding lonic Terms

The Heitler-London wave function given in the last section provides a
qualitatively good picture of the bonding in the hydrogen molecule, but has
a binding energy that is about 1€V too small. In order to rectify this
problem, it is necessary to consider states that have both the electrons
located on one of the hydrogen atoms. These states are called ionic states
and their addition to the Heitler-London wave function gives the VB
theory.

For the H, molecule there are two possible ionic states: (H"H™) and
(H"H™). The wave functions for these two ionic states are

1‘//;—(;21{" = NionXAXA(alﬁZ - Bia,)

1‘//ilfln+1H‘ = NionXBXB(aIBZ - Bay) (1.50)
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Adding the contributions from these ionic wave functions to the ground
state of the H, molecule gives

W= Coo W+ Cion (Wit + Wit ) (1.51)
where the best values for the coefficients C,, and C, , are obtained by
solving the relevant secular equation. This ground-state wave function
improves the calculated energy of the H, molecule by 0.25 €V relative to the
energy obtained from the covalent wave function.

The incorporation of ionic terms in molecular wave functions plays a

major role in the description of solvent (and protein) effects on chemical
processes. This point will be emphasized repeatedly throughout this book.

1.3.3. Semi-empirical Parametrization of the VB Hamiltonian

The VB potential surfaces 'E and *E can be approximated by analytical
Morse and anti-Morse functions:

'E. ~ D[exp{—2a(R — R")} — 2 exp{—a(R — R")}] = M(R)

3E_"~"’

D[exp{—2a(R — R")} + 2exp{—a(R — R")}] = M*(R)
(1.52)

Y

The parameters D and a can be obtained by fitting 'E to the actual ground
state of the given molecule (D is determined by the observed bond
dissociation energy and a is determined by the vibrational force constant).
This allows one to express J and K in terms of available experimental
information. That is, from eqs. (1.47), (1.49), and (1.52) we obtain

J=[(M+ M*)+ S*(M — M*)]/2
K=[(M—-M*+ S*M+ M*]/2 - (1.53)

where the bar indicates an effective integral. This powerful procedure is
another example of the philosophy of semi-empirical parameterization
which was introduced in Section 1.2.2. Here we evaluate the relevant
integrals (e.g., J and K) using readily available experimental information
[e.g., the observed bond properties for the function M(R)], rather than
quantum mechanical wave functions. In general, if the approximate quan-
tum mechanical treatment captures the correct physics of a given system, the
corresponding semiempirical procedure is expected to provide an effective
way of describing that system. This point will be emphasized in later
chapters.

The covalent nature of the chemical bond changes significantly when the
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ponding electrons are shared between atoms of different electronegativity.
In such cases the VB wave function should include ionic contributions of the
{ype discussed in the previous section. For example, in describing the HF
molecule we should consider the contribution from the covalent and ionic
wave functions:

= ™" = (H=F) = [Xexul + | xexul
U= = (H'F") = [ xeXsl (1.54)

where xg is the unoccupied atomic orbital of the F atom. For simplicity we
consider all the occupied orbitals of the F atom to form an inner effective
core for the unoccupied orbital. With this basis set, we can write the total
wave function as

V= Ciy + Gy (1.55)

and obtain the ground state energy, E,, from the lowest eigenvalue of the
secular equation,

H,-E H,,

H, H,-E|~ 0 (1.56)
where we have neglected the overlap integrals S;, and assume that their
effect on the problem can be absorbed into the parameterization of H,,.

The potential surfaces E,, H,;, and H,, of the HF molecule are described
in Fig. 1.6. These potential surfaces provide an instructive example for
further considerations of our semiempirical strategy (Ref. 5). That is, we
would like to exploit the fact that H,, and H,, represent the energies of
electronic configurations that have clear physical meanings (which can be
easily described by empirical functions), to obtain an analytical expression
for the off-diagonal matrix element H,,. To accomplish this task we
represent H,;, Hy,, and E, by the analytical functions

H, =& =M(D,R"+38, a)
= D(exp{—_Za(R —R"—8)} —2exp{—a(R—R’-6)})
H,,=g,=1— EA-332/R+ Aexp(-bR)+ CR™’
E,= M(D, R’, a)= D(exp{—2a(R — R°)} —2exp{—a(R— R")}) (1.57)

where now the energies and distances are given, respectively, in kcal/mol
and A. The potential surfaces of &, and E, are described by the same Morse
potential function used in eq. (1.52), but with different parameters in each
case (e.g., the R® for M is taken as the R® of M plus the increment 8). The
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FIGURE 1.6. The VB potential surtace for the HF molecule.

ionic potential surface &, is described by a function that represents the sum
of the Coulombic attraction between the ions and their short-range hard-
core repulsion. The term (I-EA) is the energy of forming H* and F~ from
H' and F' at infinite separation, where I and EA are, respectively, the
ionization potential of H and the electron affinity of F. The parameters in
eq. (1.57) can be obtained from experimental information by the following
procedure. The parameters D and R, of M are obtained by using the
observed bond energy and bond length for D and R, respectively. The
parameter a is calibrated by adjusting its value to reproduce the observed
vibrational frequency of the given bond [with the vibrational force constant
from the second derivative of M(R) one obtains a = 0.12177 oV u /D],
where w is the vibrational frequency of the given bond and u is the
corresponding reduced mass. (In this expression a is given in A7, pin au,

Dincm™, and @ in cm ') The parameter D in M is obtained through the
relationship

Dyy =(DyyDyy)'"? (1.58)

where the Dy, is the dissociation energy of the indicated homonuclear
diatomic molecule (e.g., H,). The parameter & is usually taken as 0.05 A.
The parameters A and C in the ionic term H,, can be estimated by requiring
that the dipole moment obtained from the ground-state wave function
reproduces the observed dipole moment (see exercise below) and that the
minimum of &, corresponds to the sum of the ionic radii of X and Y.
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TABLE 1.1. Parameters for typical X—Y Bond Hamiltonians”

Morse Potential

21

X Y D D R® a
H H 104 104 0.74 1.9
o) 0 54 54 1.32 2.32
N N 58 58 1.40 2.30
C C 88 88 1.54 1.60
F F 36 36 1.42 2.98
al cl 58 58 1.99 2.03
Br Br 47 47 2.28 1.94
1 I 36 36 2.67 1.85
S S 51 51 2.08 1.83
H 0 102 75 0.96 2.26
H C 106 96 1.09 1.80
H N 103 78 1.00 2.07
H F 134 61 0.92 2.27
H cl 102 78 1.28 1.90
H Br 89 70 1.41 1.82
H I 74 61 1.60 1.75
H S 81 73 1.32 1.87
C o 92 69 1.43 1.87
C F 105 56 1.39 1.81
C cl 78 71 1.80 1.51
C Br 66 64 1.94 1.58
C I 54 56 2.14 1.56
Ionic State Potential

X* Y™ A b C I, EA,
H” O [C,H, O] 250 2.5 12 312 40
C'[CH.]’ O~[CH,0]° 5200 2.5 100 175 36
C*'[C,HIT® 07[C,H,07]° 5200 2.5 100 170 40
H* F~ 640 2.5 20 313 83
H* cl 1000 2.5 25 313 87
H* Br~ 2000 2.5 30 313 82
H' I 1950 2.5 6400 313 76
H" ST[SH™]® 100 2.5 975 313 48
H* NT[NH; ] 10 2.5 50 313 6

“Energies in kcal/mol, distances in A, all values are for a single bond (e.g., O-O not 0=0).

br - . P
- "The corresponding molecular ion is in brackets.
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With the approximated functions for &, and &, and with a Morse
potential, M, that describes the observed properties of E, we can solve eq.
(1.56) and obtain ‘

Hy,=((g, — M)(e, — M))1/2 (1.59)

This gives a useful analytical approximation for H,,.

Table 1.1 gives the parameters for ¢, €,, and E, for representative
bonds. With these parameters and eqs. (1.57-1.59) we can describe the
bonding properties of many molecules, and more importantly (as will be
demonstrated in the next chapter), we can consider bond-breaking reactions
in solutions.

1.3.4. Molecular Dipole Moment

The charge distribution of neutral polar molecules is characterized by a
dipole moment which is defined classically by p =X g;r;, where the molecu-
lar charge distribution is defined in terms of the residual charges (g,) at the
position r,. The observed molecular dipole moment provides useful informa-
tion about the charge distribution of the ground state and its ionic character.

In order to compare calculated and observed dipole moments, we should
replace the classical expression of the dipole moment by its quantum
analogue p = | ¥*pn¥ dr where g is the dipole moment operator (given by
p=-X,er,+X% eZR, with i and j running over the electronic and nuclear
coordinates, respectively, and —e the electron charge). The actual calcula-
tion of a VB dipole moment is described below.

Exercise 1.7. Evaluate the dipole moment for the HF molecule using the
parameter of Table 1.1, and examine the change of the calculated dipole
moment with the change of A (e.g., A =640 and 2000).

Solution 1.7. Using the given H;, H,,, and H;, at R= R°=0.92A we
construct the H matrix, send it to the diagonalization subroutine DIAG, and
obtain the eigenvalues £, and &, [where &, is the lowest eigenvalue (E,)] and
the corresponding eigenvectors C; and C,. The ground-state dipole moment
can now be evaluated by

B, = f Vv, dr
= Cfﬂlu + Cizllzz + 2C11C123—’~12
=0+ CLu(H'F)+0
= C2eRYk (1.60)

where p is the dipole opérator and ;= [ ¢y dr. Here we use the fact
that i, is a covalent state with a zero dipole moment and , is a fully ionic
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state with plus and minus electron charge (e) on the centers of H and F
respectively. The integral p,,, which is related to the overlap between
and ¢, is assumed to be negligible. The dipole moment is usually given in
units of Debye (D), where the dipole formed by a positive and a negative
¢harge, of 1au each, which are separated by 1 A, has the value of 4.803 D.
The observed dipole moment of H-F is 1.82D. This value should be
obtained using the parameters of Table 1.1.

It is instructive to consider the effect of an external charge on the HF
molecule. This is conveniently done by evaluating the interaction between
the ion pairs and an external charge at site C.

e,= €+ 1/Ryc—1/Rpc =€, — my& (1.61)

where u, corresponds to the u,, of eq. (1.60) and &, is the field from the
charge on this dipole. We note that the external charge at R. does not
change the energy of the covalent ¢, state and we further assume that H,, is
unperturbed by the external charge (this assumption is justified if we neglect
the overlap between orbitals on C and the orbitals of our molecule). Thus,
all that is required to estimate the interaction of the HF molecule with an
external charge is to rediagonalize eq. (1.56) with the new &,. In the case
where |e, — ;| > |H,,| and |e, — &,| > | n,£.| we obtain

l !
E(«; = ) [(e5+ &) —((e5— 31)2' + 4H§2)1/2]

=& - (Hfz/(gé —&))=¢ — (Hiz/(gz —e))(1— (g5— &,)/(g, — €,))
= Eg - (H1z/(52 - 51))2,“250 = Eg - C%z#zfe = Eg - :“gé:c (1.62)

where we use simple perturbation expansions (V1+x=1 +x/2) and
1/(A+x)=A'(1-x/A) and use the fact that C,, can be approximated
by H,,/(e, — ) when &, — &, >|H,,|. This derivation demonstrates that the
incorporation of the interaction between i, and the external charge in ¢, is
approximately equivalent to the consideration of the interaction between the
ground-state dipole moment and the external charge.

Exercise 1.8. Plot E, as a function of R for the HF molecule in the
presence of an external charge 10 A from the F atom.

Solution 1.8. See Program 1.C.

-1.4. SMALL POLYATOMIC MOLECULES

The approach described above for diatomic molecules can be extended to
polyatomic molecules. We will outline here VB treatments and consider MO
approaches only in a few selected cases in subsequent chapters.
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While rigorous VB treatment for polyatomic molecules is quite compli-
cated, one can exploit simplifying approximations quite effectively. In
particular, it is simple to describe the energies of various VB wave functions
by the “perfect-pairing” approximation which is a generalization of egs.
(1.47) and (1.49). This approximation describes the energies of a given
bonding arrangement or resonance structure (ys,) by

Hnn = En = 2 A? + 2 Jij + 2 CZKU (163)
i ij ij

where A is the atomic energy of the ith atom, while J; and K; are the
Coulomb and exchange integrals for the interaction between the i and j pair
of atoms. The coefficients Cj; that scale the exchange integrals reflect the
correlation between the corresponding spins. For antiparallel and parallel
spin, the C’s are +1 and —1 respectively. This accounts for the correspond-
ing J + K and J — K bond energy contributions in eqs. (1.47) and (1.49).
When the spins are uncorrelated, there are three possible spin wave
functions with parallel spins and only one with antiparallel spins. The
corresponding exchange contribution (}[K + 3(—K)] = —3K) is reproduced
by C=—3. The J’s and K’s in eq. (1.63) can be determined semi-
empirically from eq. (1.53). The off-diagonal elements for interaction
between different resonance structures are determined by more complicated
diagramatic approaches which are outlined elsewhere (Ref. 4). Here we will
simply use the results obtained by this approach for our specific demon-
stration.
As a demonstration of the VB approach, consider the reaction

CH, + C1— CH, + HCI (1.64)
This reaction can be described by the two VB resonance structures

Y, =[C-H Cl P]

»,=[C H-Cl P] ' (1.65)
where we added here a fourth “phantom atom” P so that the problem can
be treated first as a formal four-electron problem, and then converted to a
three-electron problem by removing P to infinity and setting to zero all the

integrals that involve P. The atom C designates here a carbon atom with
three attached hydrogens. The corresponding diagonal energies are

1 1 1 1
: H11=51=J+K12+K34_§K23"2'K13_§K14_§Kz4

1 1 1 1
H22=52=J+K23+K14‘§K1z_§K13_§K24_—K34 (1.66)

2
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where J = J, + J;3 + Jyy + Jp + 5, + J5,. The indices 1-4 refer to the four
atoms in the order of eq. (1.65) while the K’s and J’s are given in eq. (1.53).
Using the diagramatic approach described elsewhere (e.g., Ref. 4), we can
also obtain

1
H,= D) (J+ K, + Ky + Ky + Ky —2K5 ~ 2K,,)
S$,=1/2 (1.67)

Diagonalizing the corresponding 2 X 2 secular equation and some algebraic
manipulation gives the four-electron ground-state potential surface

=1 (L (@=BY+(B—v)+(v-a))) (1.68)

where a = K, + K, B =K, + K,;, and y = K;; + K,,. Taking the phan-
tom atom to infinity gives the potential surface for our reaction

E, = [112"' Syt Jis

1
1+8°
(1.69)

B {% (K, — Kz3)2 +(Ky — K;;) + (K3 — KU)Z]}UZ]

where the S term [which represents the effective overlap of eq. (1.48)] is not
obtained from the treatment described above but is needed for a consistent
semi-empirical treatment (see, for example, Ref. 6). The value of S = 0.424
provides a good approximation for the potential surface at the transition
state region.

Equation (1.69) can be expressed analytically using the semi-empirical
approximation of eq. (1.53) for J and K. The resulting surface for the
colinear reaction with r, + r,; = r;; (where 1, 2, and 3 describe our three
reacting atoms) is shown in Fig. 1.7. The main features of this surface can be
discussed in terms of the regions in the figure. At the reactant region r,; is
very large and the surface is given approximately by E, =~ &, = M(r,,) where
E, is the ground-state energy relative to the reference energy of the
CH, + H + Cl fragments. Similarly in the product region, the surface can be
approximated by the Morse potential of the HCl molecule. In region b the
nonbonded interaction between the C—H fragment and the Cl atom start to
contribute due to the M*(r,;) term of ¢, and finally at region ¢, which is
~called the transition state region, €, =~ ¢, and the potential surface is given
approximately by E,= 3(&, + &,) — H,,. The behavior of our semi-empirical
surface at the transition state region is only an approximation of the true
surface. However, this semiempirical surface gives a very reliable approxi-
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FIGURE 1.7. The potential energy surface of the CH, + Cl supersystem for the collinear
hydrogen abstraction reaction: CH, + Cl— CH, + HCI. The counter lines are given in spaces of
10 kcal/mol and the coordinates in angstroms.

mation for the exact Born—Oppenheimer surface at the asymptotic regions
(a) and (e). With this in mind, we can improve the surface by treating H,, as
an adjustable function that is fitted to the available experimental informa-
tion about the transition state region.

Exercise 1.9. Evaluate the potential surface for the H+ H,—H, + H
exchange reaction and determine the energy of the transition state obtained
with 7, = r,; = 1.4 A relative to the minimum energy of the system when
one hydrogen atom is at infinity.

Solution 1.9. Use Program 1.D.

The same type of approach presented here can be used to describe
chemical reactions of much larger molecules as long as the reaction region is
restricted to only a few atoms. This point will be emphasized in subsequent
chapters.
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1.5. APPENDIX A—MOLECULAR ORBITAL TREATMENT OF
MANY-ELECTRON SYSTEMS

The brief discussion of molecular orbitals given in this chapter is not
sufficient background for actually applying the molecular orbital method in
studies of molecular forces. This appendix supplies additional advanced
material which will allow the reader to compare our VB examples to
reasonable MO treatments.

The MO wave function for 2n electrons in n molecular orbitals is given by
the following Slater determinant:

PO = |¢1J’1dfz‘/-/z"' lffn‘/_fn| (1.70)

where the i, are expressed as a sum of n atomic orbitals , = ¥, C,, x,,. The
Hamiltonian in the many-electron case involves the electron—electron repul-
sion term and is given by

H=-2 V2= 2 2 Z,/ry+ 2 Ur;=2 h(i)+ 2 1/r, (1.71)
i i A

i<j i i<j

where i runs over the 2n electrons of the system and A runs over the nuclear
cores. The exact treatment of the many-electron problem is quite involved
and is not essential for following the arguments of this book (see, for
example, Ref. 2 for more complete derivations). Thus, we only give a
summary of results which will be useful for various considerations presented
in later stages.

The total energy associated with the Slater determinant of eq. (1.70) is
given by (see Ref. 2)

E=2X ¢+ (2J,-K,) (1.72)
i i,j

where & is the energy of the molecular orbitals in the zero-order single
particle Hamiltonian A(i) which does not include the (1/7;) term

= [ wh(iyw, dr, = Cilhli) (1.73)

where we introduce the useful Dirac ({ | )) notation for our integral.
The quantities J and K are called, respectively, the Coulomb and
exchange integrals and are given by

Io= | 01 OB 6 @Y d i,

K= | 07w v @) dr, dr, (1.74)
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Minimizing the total energy E with respect to the MO coefficients (see
Refs. 2 and 3) leads to the matrix equation FC = SCE (where S is the
overlap matrix). Solving this matrix is called the self-consistent field (SCF)
treatment. This is considered here only on a very approximate level as a
guide for qualitative treatments (leaving the more quantitative considera-
tions to the VB method). The SCF-MO derivation in the zero-differential
overlap approximations, where overlap between orbitals on different atoms
is neglected, leads to the secular equation

FC,=¢,C, (1.75)
where the relevant matrix elements are given by
__ pycore 1 2
FM—HW ) wnYaa T < PppYan
core 1 1
F;LV:H;LV - —2— ;LV'YP.V=B#V— _2— Pp.)l’Yp.V

o= [ 6 OPF3 @) dry (1.76)

core

here the x’s are the indicated atomic orbitals, H
(1.71) and

is the operator 4 in eq.

Hp = (p|h|p) (1.77)

pe

v is called the electron—electron repulsion integral and P is referred to as the
bond order and is given by

P, =2nC.C
B v
PBBZEF; P, (1.78)

where n, is the number of electrons in the ith orbital and P, is the total
bond order on atom B. Equation (1.75) is an iterative SCF equation since
F,, depends on P,,, which in turn depends on the C vector.

The integral H} , can be written as

H=U,, —§ (ulVelp)=U,, —;vAB (1.79)

where —Vj is the potential due to the nucleus and inner shells of atom B,
while U, is the one center term,

1
Uy = (| = 5 V2 = Vil ) (1.80)
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and is essentially an atomic quantity. Approximating V,, by Zpy,, gives
1
F,=U,+ [PAA -5 PW]'yAA - %} Q5Yan (1.81)

where Qj is the net charge on atom B given by Qp=(Z, — Pyp). The
potential surface of eq. (1.72) is now given by

1 core -

3 g} +F,,)+ A§>)B Z,ZyR,y (1.82)
where the first term is the electronic energy of eq. (1.72) and the last term is
the nuclear interaction term. The potential E can be also written as

E= ZE + 2 E,p (1.83)

A<B

where E, and E,, are, respectively, the one- and two-body interaction
terms, given by

E:

A

1
Pp-p- Up-p- +3 2 (PMLPW - E Pi‘-V)yAA

1 -
Eyy=23 <2P B PwyAB> + A§<)B 0.QsR%p  (1.84)

where we use the appr0x1mat10n Yap = R, (which is a good approximation
for large values of R, ).

To simplify the dlscussmn we consider only the first two iterations of eq.
(1.75), starting with P( =6, , and then solving once to obtain the coeffici-
ents C. We then use them w1th eq. (1.78) to construct PS) and to evaluate
eq. (1.81), which is then resubstituted in eq. (1.75) to give P(z) which is
then used to evaluate the energy of eq. (1.84).

To simplify the exercises in the book, we will write the energy in the form

E= ZPMFMJr 2 Z,ZsR, 5+ E = Eng + D, Z,ZsR,L+E'
A<B (1.85)

where E’ includes all of the remaining terms. Examining E — E' rather than
the total energy E will give us a qualitative description of the corresponding
‘potential surfaces in terms of the orbital energies & which are directly
obtained from eq. (1.75).

As an example of the MO treatment, let us consider the case of a
_ diatomic molecule (AB) with two electrons in the presence of a bare
proton. For our specific example, we will neglect the resonance interaction
between the molecule and the ion using B, = By =0, where C designates
an atomic orbital on the proton site.
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The ¢, for our two-electron system are obtained now by

ay = QcYac— ¢ Bas
Bap ap— QcYpe—

Foo— ¢ Bag
Bas Fpp—¢

where a, =U,, + ¥44/2. Here we use the fact that the first iteration of the
present appr0x1mat10n gives Q9 = Q) =0, since P°=1and Z =1 for the A
and B atoms. The interesting new feature in our model is the fact that the
effective ionization potential «, is modified by the potential from the
external charge (see Fig. 1.3 for a related problem). This leads to further
polarization of the charges Q4 and Q' [obtamed by solving eq. (1.75) and
using the solution to evaluate P(l) and P{)] relative to their value at the
absence of Q.. The correspondmg lowest ¢ is given by the standard solution
of a 2 X 2 secular equation:

.|=0 (186

& = (1/2)[(FAA + Fpp) — ((FAA - FBB)2 + 43313)1/2] (1;87)

and for @, > a, we obtain from (1.85) a ground state of the type described
in Fig. 1.4.

The interaction between the proton charge Q. and the molecule follows a
simple physical trend; the positively charged ion polarizes the molecule by
changing the ionization energ1es and then 1nteract1ng with the resulting polar
molecule through the (Q QR 6+ Qz0Rze) term of eq. (1.84).

Exercise 1.10. Evaluate the charge Q ,, for @, = —13.6 eV, ay = —15.5¢V,
Bap=—6¢V, v, =12V by solving the equation FC = £C with the F of eq.
(1.86). Use the ¢, of eq. (1.87) to obtain the C’s vector and then use eq.
(1.78) to evaluate P, , (placing two electrons in orbital 1, i.e. n, =2).

Exercise 1.11. Evaluate a simplified potential surface of the form shown in
Fig. 1.4 using the term E — E' of eq. (1.85). To do this, consider our
diatomic molecule in the presence of a proton using a, = —13.6 €V a5 =
~15.5¢eV, B, = —6exp[—2R] eV (R in A) y,, = 1/R. Solve eq. (1.86) for
R=1.5, 2.0, and 3.0 and plot the E — E’ of eq. (1.85).

Solution 1.11. Use Program 1.B with the SCF rather than the Huckel
option.

The MO approach described above can give useful qualitative insight.
However, it encounters major problems in describing the electron pairs that
form chemical bonds. For example, when we break the H, molecules to two
radicals, we obtain the SCF energy of (H- - H). This energy is very different
than the correct energy of two isolated hydrogen atoms (2a) since the
correlated motion of the electrons is not described correctly. The electron-
correlation problem can be corrected by configuration interaction (CI)
treatment, which is not considered here, but this is done at the expense of
simplicity and physical insight.
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1.6. SOME RELEVANT COMPUTER PROGRAMS

1.A. An Example of Using a Diagonalization Subroutine

10

Here we simply solve a 2x2 matrix so that the solution can be
verified by the reader. But subroutine DIAG can be used for
much larger matrices.

implicit real*8 (a-h,0-z)
dimension h(20,20),c(20,20),ev(20)
n=2
h(1,1)=10.
h(2,2)=20.
h(1,2)=2.
h(2,1)=2.
call diag(h,c,ev,n)
write(6,*) "eigenvalues eigenvectors’
doi=l,n
print 10,ev(i),(c(ij).j=1.n)
enddo
format(2x,f10.4,7x,610.4)
end

o0

o 0 00

subroutine diag(h,c,ev,n)

Using the cyclic Jocobi’s method for eigenvalues of symmetric matrix.
See G. Dahlquist and A. Bjorck, Numerical Methods, Prentice Hall, Inc. 1974.

h The matrix to be diagonalized
n The order of the h matrix
c The eigenvectors of the matrix
ev The eigenvalues of the h matrix
implicit real*8 (a-h,0-z)
dimension h(20,20),c(20,20),ev(20)
dimension ht(20,20),ct(20,20)
I=n-1
doli=l]1 ! Initializes of the ¢ matrix as a unity matrix.
ia=i+1
c(i,i)=1.0
do 1 j=ia,n
¢(3,i)=0.0
c(ig)=c(iii)
c(n,n)=1.0 -
do3i=11
ia=i+1
do 3 j=ia,n
if(dabs(h(i,j)).ge.1.d-8) then
d=-h(i)
uu=(h(i,i}-h(.j)y*.5
w=dsqrt(d*d+uu*uu)
b=d/dabs(d)
ad=dabs(5.e-1-(b*un)/(2*w))
si=dsqrt(ad)
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ae=dabs(1.0-ad)
co=dsqrt(ae)
d=h(i)
uu=h(i,i)
w=h(j,j) . )
dodk=1,n ! Updates the ith column and the jth row
if(k.ne.i.andkne.j) then !ofthe Hmatrix.
aa=h(k,i)
ab=h(k,j)
sa=c(k,i)
sb=c(k)
h(k,i)=aa*co-ab*si
h(ik)=hk,i)
h(k,j)=aa*si+ab*co
h(jk)=h(k.j)
c(k,i)=sa*co-sb*si
c(k,j)=sa*si+sb*co
endif
continue
ac=si*co
h(i,i)=uu*ae+w*ad-2*d*ac
h(jj)=uu*ad+w*ae+2*d*ac
h(j,i)=0.0
h(ij)=h(,)
sa=c(i,i)
sb=c(ij)
c(i,i)=sa*co-sb*si
c(ij)=sa*si+sb*co
sa=c(j,i)
sb=c(j,j)
c(j,i)=sa*co-sb*si
c(jj)=sa*si+sh*co
endif
continue

a=0.0
doSi=1)1 1 Checks the convergence of

! the cyclic Jacobi's method.

! Evaluates the eigenvalues.

! Evaluates the eigenvectors

ia=i+1

do 5 j=ian
a=a+dabs(h(i,j))
ab=.5*n*(n-1)
a=a/ab
if(a.gt.1.d-8) goto 2
dg gf)tj:l ,n) g ! Arranges the eigenvalue

emx=-10000. ! according to their magnitude
do3li=1n ! ( the largest first ).
et=h(i,i)
if(et.gt.emx) then
1t=i
emx=et
endif
continue
ht(j)=emx
hilt,ilt)=-100000.
do 33k=1,n
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33
30

40

etk )=c(kilt)
continue
do40i=1n
it=i
ev(it)=ht(i,i)
do 40 k=1,n
c(k,it)=ct(k,i)
retum
end

1.B. Molecular Orbitals Calculations by the Huckel
(or the SCF) Method

o

oo n 6660 OO0

This program calculates potential surfaces by the Huckel or the SCF approximations.
The calculations are done with one orbital per atom.

h The Huckel matrix ( or the SCF matrix )
natom The number of atoms

The order of the h matrix

The bond order matrix ( p0 and pl are used for updating this matrix )

The coordinate vector
. The eigenvectors of the h matrix

The core charge
nn The number of electrons in each MO
code The mode of calculations ('SCF’ or "huckel’)
implicit real*8 (a-h,0-z)
character code*8
dimension h(20,20),c(20,20),p(20,20),r(20,20),q(20),ev(20)
dimension p1(20,20),p0(20,20),hs(20,20)
dimension nn(20),et(100),x(30,3)
common fpann/a]fO(ZO),z(ZO),beta,d,fmu,p
common /ind/xplol(3000,3) fpol(3000,3),vq(30),x0(3),npol
read (5,*) code ) ! See data at the end of this program.
read (5,¥) natom
n=natom
read (5,%) a
read (5,%) cc
read (5,*%) aa
read (5,%) ((x(ik),k=1,3),i=1,natom)
read (5,*) (alf0(k).k=1,n)
read (5.*¥) (z(k).k=1.n)
read (5,%) ((p1(i,k).k=1,n),i=1,n)
read (5,*) beta,d, fmu
read (5,*) (@an(k).k=1.n)
read (5,%) isol
do i=1n 1 pO(i,j) is the initial value of p1(ij).

do j=1,n
pOGi=p1(i,)
enddo

enddo

N O X'u o
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Calculates the energy as a function of the interatomic distance.
do 1000 ii=1,20

do i=ln : I Sats p1(ij) to its initial value after

do j=1n | @ach iteration.
p1G)=pOGis)
enddo
enddo

x(1,1)=x(1,1)-0.3 ! Changes the bond length.
do i=1,natom ! Calculates interatomic distances.

do j=1,natom
12=0.
do k=13
r2=r2+(x(i,k)-x(j k))**2
enddo
r(i,j)=sqrt(s2)
enddo
enddo
nloop=12
emin=1000.

do i=1,natom ! Sets the initial charges to zero.

q()=0.
enddo
do 1=1,nloop
if ( code.eq.’huckel’) then
call huckel_mat(h,r,q,n,a)
else
call scf_mat(h,r,q,n,a)
endif
if(l.eq.nloop) then
print 101
doi=1,n
print 102,(h(i),j=1.0)
enddo
endif
do i=1n
do j=1n
hs(ij)=h(i,j)
enddo
enddo
call diag(h,c,ev,n)
call pmat(c,pl,q,nn,n,aa)
if(l.eq.nloop) then
print 104
do j=1,n
print 102,(c(i,j),i=1,n)
enddo
print 100
doj=ln
print 102, (p(i),i=1,n)
enddo
endif
if(code.eq.’huckel’) then
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etot=0.0
do i=1,n
etot=etot+nn(i)*ev(i)
do j=i+ln
de=14.4*z(i)*2()/r(i,j)
& -14.4%p(i,i)*p( jd+r(i))
etot=etot+de
enddo
enddo
else
etot=0.0
do i=l,n
etot=etot+p(i,i)*alf0(i)
do j=i+l,n

! Calculates the total energy by
| the Huckel approximation.

| Calculates the total energy by
| the SCF approximation.

de=14.4%p(,)*p()-0.5*p(A,))*2)/(2.0%d)
+2.%h5(i,j)+ 14.4%q(0)* () )+d)
+14.4%p(i,j)**2/(d+1(i,))*0.5

[

+ee/(r(ij)*exp(fmu*r(i j)))
etot=etot+de
enddo
enddo
endif
if(etot.1t.emin) then
emin=etot
endif
et(l)=etot
enddo
write(6,117) x(2,1) - x(1,1)
write(6,116) emin-alfO(1)-alf0(2)
continue
format(2x,’the p matrix’)
format(2x,’the huckel matrix’)
format(2x,3f10.3)
format(2x,’the MO eigenvectors’)
format(2x,’R12’ £12.6)
format(2x,’total energy’ f12.6)
end

1 Shifts the energy to zero at infinity.

subroutine huckel_mat(h,r,q,n,a)
c Constructs the elements of the Huckel matrix.

implicit real*8 (a-h,0-2)
dimension h(20,20),r(20,20),q(20),p(20,20)
common/parm/aif0(20),z(20),beta,d fmu,p
do20i=1n
do10j=ln
if(i.eq.j) then
h,i)=alfOG)-a*q(i)
doSk=ln
if(i.ne.k) h(i,i)=h(i,i)-14.4*q(k)/(d+r(i,k))
continue
else ’
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h(i,j)=beta*exp(-fmu*r(i,j))

endif .
continue

continue

retum

end

subroutine scf_mat(h,r,q,n,a)
Constructs the elements of the SCF matrix.

implicit real*8 (a-h,o0-z)
dimension h(20,20),r(20,20),q(20),p(20,20)
common/parm/alf0(20),z(20),beta,d fmu,p
do20i=1,n
do 10 j=1,n
if(i.eq.j) then
h(i,i)=alf0(i )+ 14.4*p(i,i)/(2.*d)
do5k=1,n
if(i.ne k) h(i,i)=h(,i)-14.4*q(k)/(d+r(i,k))
continue
else
h(i,j)=beta*exp(-fmu*r(ij))-14.4*P(ij)/(r(i,j)+d)*.5
endif
continue
continue
return
end

30
40

50

51

subroutine pmat(c,pl,q,nn,n,aa)
Constructs the elements of the bond order matrix

implicit real*8 (a-h,0-z)
dimension ¢(20,20),p(20,20),q(20),nn(20)
dimension p1(20,20)
common/parm/alf0(20),z(20),beta,d.fmu,p
do40i=1,n
do40j=1n .
p(i)=0.
do 30 k=1,n
pGid)=p(i jy+nn(k)*c(ik)*c(X)
continue
continue
do5li=1n
do50j=1,n ! Here we change P in a gradual way
p(ig)=p1(@i,j)+aa*(p(ij)-p1(ij)) ! to obtain a good SCF convergence.
p1(i.j)=p(i.j)
continue
q(@)=20)-p(i,i)
continue
retumn
end
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C

subroutine DIAG
use the subroutine from 1.A

Data for (1.B) the Huckel calculations of H2 molecule

*huckel’

2 natom

40 a

0. «cc

0.01 aa

00 00 00 coordinates(x,y,z for each atom)
035 0.0 00

-13.6 -13.6 alfo

1. 1. z

1.0 0.0 initial bond order matrix
00 1.0

-9.5 03 1.0 beta d mu

02 nn electronic occupation
0 isol

Data for (1.B) MO calculations of H, in the presence of Li*

"huckel’
3 natom

40 a

0. cc

0.01 aa

0.00 00 00 coordinates

143 0.0 00

443 0.0 00

-13.6 -13.6 -6. alfd

1. 1. L z

1.0 0.0 0.0 initial bond order matrix
0.0 1.0 0.0

0.0 0.0 0.0

-95 0.3 1.0 beta d mu

002 nn electronic occupation. Note that the last orbital is the one with the lowest energy
0 isol

1.C. A Simple VB Program

PRt RS I o B o ROH o Nl o T Y

Evaluates potential surfaces for bond breaking reactions.

el The energy of the pure covalent state,

e2 The energy of the pure ionic state.

e The total energy

dc The dissociation energy of the purely covalent resonance form.
0 The gas-phase equilibrium bond length for the x-y molecule.

r The x-y bond length.

i Ionization potential.

ea Electron affinity.
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d The dissociation energy of the real bond.
delta The shift in the minimum of the pure covalent state.
real de,r,10,a,el.e2,i,ea,d,al,mh12 e delta
print* ’input dc,r0,a,i,ea,c,d,al’
read*dc,r0,a,i,eacd,al
r=0.5
delta=.1
print10
do1=1,50
el=dc*(exp(-2.*a*(r-r0-delta))-2.*exp(-a*(r-r0-delta)))
e2=i-ea-332./r+al*exp(-2.5*)+c*r**(-9)
m=d*(exp(-2.*a*(r-10))-2.¥exp(-a*(r-10)))
h12=(((e1-m)*(e2-m)))**0.5
e=.5*%((el+e2)-sqri((el-e2)**2+4.*h12%*2))
write(*,20) r,el,e2 e
r=r+0.05
enddo
format(2x, distance el  e2 Eg’)
format(2x,£10.6,3(4x f16.6))
stop
end

Data for 1.c

61. 0.92 2.27 313. 83. 20 134. 640

1.D. VB potential Surface for the A— B+ C— A + B — C Reaction

o6 o606

10

This program calculates the VB potential energy surface
for the three atoms four electron problem.
] The integral obtained from Morse and anti-Morse functions.
k The integral obtained from Morse and anti-Morse functions.
real j(3),k(3),r(3),Eg(10,10)
common/codefiac(3)
print*,’input the bond codes for A-B, B-C and A-C respectively’
print*’(these codes are between 1 and 22 according to the sequence’
print*,’in subroutine morse)’
read* (iac(i),i=1,3)
do 5 ir=1,10
do 5 jr=1,10
r(1)=0.80+0.2%(jr-1) 1 Adjusts the bond lengths.
r(2)=1.00+0.2*(ir-1)
r(3)=r(2)+r(1)
do 10m=1,3
call morse(rk,j,m)
continue

fkk=0.5*((k(1)-k(2))**2+(k(2)-k(3)**2+(k(3)-k(1))**2)
Eg(irjr)=1./(1.+.18)*G(1)+j(2)+j(3)-sqri(fkk)) ! Evaluatés the potential surface.
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5

25

20

continue

write(6,25)

format(5x,” Energy surface’)
write(6,20) (( Eg(ir,jr),jr=1,10),ir=1,10)
format(10(£7.2, 1x))

end

EeTE cHEE e HEK P RN o R o BE S TR ot

subroutine morse(r.kt,jt,m)

d The bond dissociation energy

Iz The bond length

fm The Morse function

fms The anti Morse function

The iac code selects potential parameters according to the bond

type by assigning iac values between 1 to 22 to the following

bonds, H-H, O-O, N-N, C-C, F-F, CI-Cl, Br-Br, I-], S-S, O-H, C-H,

N-H, H-F, H-Cl, H-Br, H-I, H-S, C-O, C-F, C-Cl, C-Br, C-I

real jt(3),kt(3),d(22),rz(22),aa(22)

real dd(3),r0(3),fa(3),r(3)

common/codefiac(3)

data d/104.,54.,58.,88.,36.,58.,47.,36.,51.,102.,108.5,103.,134.,
& 106.5,89.,74.,81.,92.,105.,81.,66.,54./

data rz/0.74,1.32,1.40,1.54,1.42,1.99,2.28,2.67,2.08,0.96,1.09,
& 1.00,0.92,1.28,1.41,1.60,1.32,1.43,1.39,1.78,1.94,2.14/

data aa/1.99,2.32,2.30,1.60,2.98,2.03,1.94,1.85,1.83,2.26,1.81,
& 2.07,2.27,1.85,1.82,1.75,1.87,1.87,1.81,1.72,1.58,1.56/

dd(m)=d(iac(m))

r0(m)=rz(iac(m))

fa(m)=aa(iac(m))

dr=r(m)-r0(m)

ex1=exp(-fa(m)*dr)

ex2=exl*ex1

fm=dd(m)*(ex2-2*ex1)

fms=0.5*dd(m)*(ex2+2*ex1)

jt(m)=0.5*(fm+fms+0.18* (fm-fms))

kt(m)=0.5*(fm-fms+0.18*(fm+fms))

retum

end
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CHEMICAL REACTIONS IN
THE GAS PHASE AND IN
SIMPLE SOLVENT MODELS

2.1. REACTION RATE IN THE GAS PHASE
2.1.1. Equilibrium Constant and Rate Constants

In order to consider the relationship between potential surfaces and chemi-
cal reactivity we start by reviewing the relevant concepts To do this we
examine the reaction

A+B SC+D (2.1)

k_y
The rate of change of the concentration of A can be expressed as
d{A)/dt=—k,[A][B] + k_,[C][D] (2.2)

The constants k; and k_, are, respectively, the forward and backward rate
constants and their ratio can be expressed by the law of mass action as

k\/k_, = ([CI[D)).,/([Al[B))., = K., (2.3)
40
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where K., is the equilibrium constant and ( )eq designates the value of the
quantity in brackets at equilibrium. To explore the relationship between the
reaction potential surface and the rate constant we start by considering a
section of the potential surface of the CH, + Cl— CH, + HCI (Fig. 1.7)
along its least-energy path which is taken as the reaction coordinate. This
section shown in Fig. 2.1 is characterized by the height of the transition state
and the corresponding barriers AU and AU”,, which are called the
forward and backward activation barriers. Intuitively it appears that k, and
k_, are determined, respectively, by the AU and AU Z, activation barriers.
In fact, one can guess a Boltzmann-like dependence of the rate constant on
the corresponding barriers, that is,

k,~ Aexp{—AU7 B) (2.9)

where B = (kzT) ™" and k,, is the Boltzmann constant. The reason for this is
apparent from the figure; that is, as long as the kinetic energy along the

95 |__ _
— BB —
’\ — -—
S -100 |
g
N~
3 i
Q
@ -
2 4
g
Q —
R 105 ]
-110

Reaction Coordinate

FIGURE 2.1. The least-energy path of the CH, + Cl— CH, + HCI reaction. This one-dimen-
slonal curve is obtained by cutting the two-dimensional surface of Figure 1.7 along the
4= b—c— d— e path, which is taken here as the reaction coordinate.
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reaction coordinate is lower than AU, the colliding CH, + Cl fragments
will be reflected back and stay on the reactant side of the barrier.

To evaluate the rate constant in a more rigorous way (as is done in detail
in Ref. 1), let us consider first the average behavior of many reacting
systems with a one-dimensional surface of the type described in Fig. 2.1. We
will try to determine what fraction of the systems that pass the reactant
region toward the barrier would react. The number of systems in a path
length Ax, which have a momentum between p and p + Ap, is given by (see
Ref. 1b)

C(p)=Zz' eXP{ . B} Athp 2.5)

where Z, = (\/2wmkyzT/h) [*7, exp{—UB} dx is the so called classical parti-
tion function for the reactant (R) state. The number of such systems which
pass a given point in the reaction path per second will be C(p)p/(m Ax)
[since p/(m Ax) is the inverse time for passing the length Ax] and their
contributions to the rate constant will be

Ak = F(p)C(p)

m Ax (2.6)

where F is the transmission factor which expresses the fraction of systems
that reach the transition state and react. Now k is obtained by integrating
Ak and is given by

k= Lm F(p) eXp{— % B}p Ap(mhZg)™ (2.7)

where we have considered only positive p. Using F =0 for £ 2 <U” and
F=F for £ > U7, we obtain

=)

2
- )4 -
k=F mexp{——ﬁ}pAp(thR) !

F(k,TIh)(e "1 Z,)
=% F(2ky T/7rm)1/2< v "/f Uk dx)
1

= F|x ( v B/j e VP dx) (?.Sa)

2 is the average of the

where we use the fact that the factor (2k,T/mm)
absolute value of the velocity x.
Our rate constant can also be expressed in the alternative form

#

- o 1 _
k:%FT_1<Ax# e Y ﬁ/j_ e VP dx)=§ Fr 1(2#/21?)) (2.8b)
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where 7 is the time needed to cross the transition state region, Ax™, with a
velocity X (this time will be used in subsequent sections).

The relatively simple expression of eq. (2.8) and related derivations (Ref.
1) provide useful insight about gas phase reactions, although more sophisti-
cated treatments are needed to obtain the exact reaction cross section.
Nevertheless, the general form of eq. (2.8) appears to provide a quite
rigorous framework for describing reactions of molecules with more than a
few degrees of freedom and in the condense phase (where the energy
distribution between the different degrees of freedom follow the simple
statistical mechanical disttibution rules). The treatment of rate constants in
many-dimensional systems in condensed phases will be considered below.

2.1.2. The Rate Constants for Many-Dimensional Systems

In considering the equivalent of eq. (2.8) for multidimensional systems we
will start by defining the relevant reaction coordinate, X, and the probabili-
ty, P(X), that the system will be at different points, along X. The reaction
coordinate can be taken rather arbitrarily as any well-defined parameter
[e.g., X =(ry; — ry,) in Fig. 1.7). Once X is selected we can obtain P(X) by
dividing the coordinate space into subsets according to the specific value of
X and evaluating the one-dimensional function.

X+AX/2 -

Cays, X exp{-UB} / fm ds fw dX exp{—UB}
(2.9)

P(X)AX = j: ds f

X

where s is the subspace of 3n — 1 coordinates orthogonal to X (e.g., if X is
taken as r,; — r,, in Fig. 1.7, then s = ri» T ry3). This probability function
defines the many-dimensional equivalent of the potential of Fig. 2.1 which is
Now expressed as a free-energy function or a potential of mean force

Ag(X)=—B " In[P(X)/P(X})] (2.10)

where X9 is the point that maximizes the P(X) at the reactant state. The Ag
of eq. (2.10) and the corresponding P(X ) can be used to evaluate the rate
constant in a many-dimensional reactive system. That is, in cases of signifi-
cant activation barriers, the reactant system spends most of its time encoun-
tering ineffective collisions. However, once in a long time the kinetic energy
stored in the many degrees of freedom of the system is converted into a
motion along the reaction coordinate, producing a reactive trajectory that
reaches X™. Thus, the rate constant can be expressed in terms of the
probability that the system will be within a range AX”™ around X”™ and the

average time, 7, it takes a reactive trajectory to cross that region, as (Ref.
2):
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po SXOPXT) T (P(XT) AXT)
¥, P(x) dx [*7 P(X) dX

e [ (- as0py ax /[ exp(-0s(0)) ax

X*—AX7/2

~7 exp{—Ag(X#)B}<AX#/I—w exp{~Ag(X)B) dX)
e (-AG7B) (2.11a)

where (X, ) is the average velocity along X for trajectories that arrive at X”
from the reactant and continue to the product region without -being de-
flected backward. The magnitude of AX”™ is usually determined by the
relationship ([Ag(X™)— Ag(X™ —AX™/2)]=B""), but different values of
AX” can also be used (this will give different values of 7~' and AG” but a
similar value of k).

In deriving eq. (2.11) we introduced the notation AG”™, which can also be
expressed as

exp{—AG”B} =AX"P(X") / f_Xw P(X)dX=2z"/z, (2.11b)

where z is the configurational part of the classical partition function, Z, that
has been introduced in the one dimensional case of eq. (2.5). Note the
distinction between AG™ and Ag”™ when these terms are used in subsequent
chapters. It is also important to note that the time 7 is not much different
from the time it takes a productive trajectory to move from the reactant
region to the transition state. The value of 7' is similar for many types of
reactions in condensed phases and can be approximated at room tempera-
ture by

X,)” A
7= [ <A)+(i ]z 10" sec™ (2.12)

where AX” is of the order of 1A.
Equation (2.11) is frequently expressed in the form of eq. (2.8) as

k=3 KX PCe) [ [ Poey ax =1 F(IK1) 87271z,
‘ (2.13)

Here, as before, the transmission factor F expresses the fraction of the
trajectories which continue to the product state after arriving at X” (see Fig.
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rzs(H-Cl)

ri2(C-H)

FIGURE 2.2. A schematic description of the evaluation of the transmission factor F. The figure
~describes three trajectories that reach the transition state region (in reality we will need many
more trajectories for meaningful statistics). Two of our trajectories continue to the product
Tegion X,, while one trajectory crosses the line where X = X™ (the dashed line) but then
bounces back to the reactants region Xy. Thus, the transmission factor for this case is 2/3.
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TABLE 2.1. The approximated relationship
between Ag™ and k' :

Ag* (kcal/mol) k™' (sec) Typical Times
0-2 107" picoseconds
5 107° nanoscconds
10 10°°¢ microseconds
15 107? milliseconds
18 10° seconds

2.2). When F is equal to unity, the equation reduces to the rate expression
of the well-known transition state theory. In most of the cases considered in
this book, we will deal with reactions in condensed phases where F is not
much different from unity and the relation between k and Ag”™ follows the
qualitative role given in Table 2.1.

2.2. VB POTENTIAL SURFACES FOR REACTIONS IN SOLUTIONS
2.2.1. General Considerations

Extending the considerations discussed above to chemical reactions in
solutions requires one to evaluate the effect of the solvent on both Ag”™ and
7. While the effect of the solvent on 7 is not a major one (this effect will be
considered in Chapter 3), its effect on k through the change of Ag™ can be
enormous. For example, let us consider the heterolytic bond cleavage
X-Y—X" + Y of Fig. 2.3 in a polar solvent. As illustrated in the figure,
the potential surface in solution is drastically different from the correspond-
ing gas phase potential. The excited ionic state is now stabilized by the
solvent and becomes a ground state when the bond is broken to two
solvated ions. The simplest way of treating this effect by the VB formalism
is to add the solvation energy of the ionic state to the corresponding
diagonal matrix element, while leaving the off-diagonal element in its gas
phase value. That is, we can write

51:H11=H21
o .1 o
52=H22=H22+§ Us,

H,=HY, (2.14)
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FIGURE 2.3. The energetics of a heterolytic bond cleavage reaction in a polar solvent. The
specific example shown corresponds to the CH,OCH,— CH. + CH,O" reaction in water. The
energy of the covalent state does not include the effect of the solvent on this state, but a more

consistent treatment (e.g., eq. (2.21) should account for the polarization of the solvent toward
the charges of the ionic state. This would result in destabilization of H,

where U is the solute—solvent interaction potential of the ionic state (the
factor half reflects the assumption that half of the energy gained from
polarizing the solvent by the ionic state is invested on solvent—solvent
interactions). This is basically the approach we took in treating the inter-
action of the H, molecule with an external charge (Chapter 1), but now we
deal with a solvated state. The present case, however, involves many solvent
configurations where we should consider the free energy, Ag(R), that
corresponds to the ground state surface obtained by mixing H,, and H,, at
different solvent configurations. The simplest way to accomplish this task is

to consider the average value of H,, over all the configurations of the
solvent

Hy=Ag® = ng +4g8)

sol (215)
(where Agl) is the solvation free energy associated with U$)), and then to
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take the ground state obtained by mixing Ag® with H,, as the approximate
ground-state free energy. '

Ag(R) =5 [(Hy, + Ag™) ~ (Hyy — Ag®Y +4HDL)] (2.16)

Thus, our task is reduced to estimating the solvation free energy of the ionic
state. This solvation energy should be estimated, however, using the charge
distribution of the ground state obtained by mixing ¢, and ,, rather than by
the pure ionic state i, (since the solvent configurations are determined by
the ground-state charges). The simplest way to estimate this energy is to use
a continuum model where the solvation energy of the dipolar state is given
(in kcal/mol) by the product of the field from the solvent, &, and the solute
dipole p‘?,

Ag2) = —1665 - u® (2.17)
The field £® is the so-called “reaction field” which is due in the present
case to the ground state dipole of the solute, n'®, and is given (in A~ and
electron charge units) by (Ref. 3)

£9 =2(p®a*)(d - 1)/(2d + 1)) (2.18)

Here, a is the radius of the cavity around the solute (given in A), the dipole
w is given in A and au, and d is the macroscopic dielectric constant of the
solvent. The crucial problem, however, is that the cavity radius is an
arbitrary parameter which is not given by the macroscopic model, making
the results of eq. (2.18) rather meaningless from a quantitative point of
view. A much more quantitative model is provided by the semimicroscopic
model described below.

Exercise 2.1. Evaluate the ground-state potential- surface for the
CH,OCH,— CHj + CH,O reaction using the reaction field model, with a
cavity radius a= R/2+1.5.

Solution 2.1. The parameters and functions that should be used for the
gas-phase matrix elements are given in Chapter 1 [eqgs. (1.57) and (1.59) and
Table 1.1]. Thus the only additional step for the evaluation of eq. (2.16) is
the estimate of Ag?) of egs. (2.17) and (2.18). Usually u'® is a function of
Ag®) (see subsequent sections), but here we use for simplicity u® =
p® (1 —exp{—R}). After calculating Ag) and the corresponding Ag(R) for
several values of R and trying to construct the equivalent of Fig. 2.3, you
will find your results to be very disappointing (the correct results are given

in Fig. 2.5). This will be the case for other reasonable choices of the cavity
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radius. Thus, we conclude that the macroscopic estimate of eq. (2.18)
should not be used in quantitative studies of chemical reactions in solutions.

To restate the conclusion from the above exercise and related studies;
regardless of the wide appeal of the reaction field formulation (i.e., the
elegant study of Ref. 8) it should not be used in realistic studies of chemical
reactions in solutions. The reason for this is quite simple, a method for
calculation of charge transfer or charge separation in solutions is as good as
its ability to evaluate solvation energies of the relevant fragments. An
approach that cannot give reliable solvation energy will not give quantitative
results, regardless of the accuracy of the quantum mechanical method used
to evaluate the gas phase Hamiltonian matrix elements.

2.2.2. The Langevin Dipoles Model

The evaluation of the solvation energies of ionic states presents a major
challenge; the traditional macroscopic models (Ref. 3) depend on the
unknown cavity radius of the solute [ in eq. (2.18)]. Fully microscopic
models, on the other hand, require us to include explicitly a huge number of
solvent molecules and involve major convergence problems. An alternative
approach that overcomes some of the convergence problems of the fully
microscopic model, yet treats the solvent explicitly in a simplified way, is the
Langevin dipoles model (Ref. 4). This model represents the time average
polarization of the solvent molecules by a cubic grid of polarizable dipoles.
The model is constructed in three steps (Fig. 2.4). (a) A cubic grid (typically
with 3 A spacing) is placed around the solute atoms. (b) Each grid point
which is within a van der Waals distance, r*, from a solute atom is excluded.
(c) The remaining grid points are then replaced by point dipoles whose
polarization should mimic the average polarization of the solvent molecules
at the same region in space. This is accomplished by using a Langevin-type
relationship,

W =[coth(X7) — 1/X"| m,£r /&7
X"= Cupé Ik T

£ =E +&, (2.19)

where £ is the field on the ith dipole from the solute charges and £, ; is the
field on the ith dipole from all other dipoles. The index n indicates that we
are dealing with an iterative procedure starting from §2’i =(. The parame-
ters in this model (C and p,) can be obtained (Ref. 4) by using an explicit
all-atom solvent model and molecular dynamics simulation to evaluate the
field-dependent polarization of water molecules around ions and then fitting
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FIGURE 2.4. A schematic description of the Langevin Dipole model. The figure illustrates the
three steps involved in constructing the model.
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TABLE 2.2. Parameters for the LD Model

Parameter” Value
o 0.35
C 1.00
o 2.40
ro- 2.60
ry ’ 1.80
N 3.00
rk 3.00

“w, is given in A electron charge units, r* is the closest
distance (in A) between the grid points to the indicated
solute atom.

eq. (2.19) to the corresponding results of the simulation. The free energy of
the Langevin dipoles (LD) model is simply given (in kcal/mol) by (Ref. 4)

Agly = —166 2 w'E] (2.20)

where the units used are the same as those used in eq. (2.17). This
expression reflects the fact that half of the energy gained from a dipole-field
interaction is spent on polarizing the dipoles. Note that the dipole p” reflects
both the fields £€° and &, (see Ref. 4). Finally, the parameters of the LD
model are given in Table 2.2.

Exercise 2.2. Implement the Langevin Dipole method in a computer
program. Use this model to evaluate the solvation energy of the CH,O™
ion.

Solution 2.2. See Program 2.A.

2.2.3. 1D Calculatioris of VB Potential Surfaces

Although the LD model is clearly a rough approximation, it seems to
capture the main physics of polar solvents. This model overcomes the key
problems associated with the macroscopic model of eq. (2.18), eliminating
the dependence of the results on an ill-defined cavity radius and the need to
use a ‘““dielectric constant” which is not defined properly at a short distance
from the solute. The LD model provides an effective estimate of solvation
energies of the ionic states and allows one to explore the energetics of
chemical reactions in polar solvents.

In order to clarify the implementation of the LD model in VB calcula-
tions, it is useful to apply this model to the heterolytic bond cleavage of
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Section 2.2.1. Our previous attempt to evaluate the relevant potential
surface using eq. (2.17) encountered a major difficulty in trying to estimate
the solvation energy of the ionic state Ag'?). Now with the LD model W€ can
try to obtain a reliable estimate of the ground-state free energy Ag(R) of eq.
(2.16). To accomplish this we need to evaluate the solvation energy of the
ionic state ¢, as a function of R. This is done by fixing R and building a grid
around the given solute (see Program 2.A). After excluding grid points
which are within a van der Waals distance from the solute atoms, we
evaluate the interaction between the ionic state and the self-consistently
polarized Langevin dipoles, situated at the remaining grid points. Now,
however, we must introduce a complication; the Langevin dipoles should be
polarized by the charge distribution of the ground state obtained by mixing
H,, and H,,, rather than by the purely ionic charge distribution of ,. Thus
we solve the secular equation HC = EC in an iterative way using

H(lri“rl) HO 2 Q(")V(n) HO + Ag(l)

sol,n

2 Q(”)V('l) ng + Ag(z)

sol,n

HE'™ = Hy + 2 gV =5

('l) - (C('l))2 (2)

V= 2rm(Q) I (2.21)
7

where r; =r; — by and V" is the potentlal on the ith solute atom from the
solvent dlpoles in their nth iteration, q'* and Q are, respectively, the atomic
charges of i, and of the ground state ©n(Q™) demgnates the solvent dipoles
[polarized by the given Q™]; C is the ground-state eigenvector of the

secular equation obtained with H{? 10 and C( is the 2nd component of this
vector. The term (—4 I Q(")V(")) reﬂects the energy invested in polarizing
the solvent dipoles. Once we obtain converging results for H,,, we use the
ground state of the H matrix [as given by eq. (2.16)] as our ground-state free
energy. The best way to follow this discussion is by performing the following
exercise and examining its solution.

Exercise 2.3. Use the LD model and eq. (2.21) to evaluate the potential
energy surface for the CH;OCH,— CH; + CH,O" reaction in water. Treat
the two fragments as two effective atoms whose solvation free energy is
similar to that of the actual fragments. Typical, solvation energies are given
in Table 2.3.

Solution 2.3. Use Program 2.B (the corresponding results are plotted in
Fig. 2.5).
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By the
unreliable
approximation
of eq.(2.18)

E(kcal [mol)

AGE=-42 AGZ) =-67
FIGURE 2.5. The results of LD calculations of the dissociation of CH,OCH, to CH; and
CH,O" in water. The figure shows H,, and H,, and the corresponding ground state E, obtained
from their mixing. The lower part of the figure illustrates schematically the change in the LD
polarization upon increase in the C—O bond length (R) and gives the corresponding calculated
solvation energies of the ionic state. The figure also illustrates the very unreliable result
obtained by using eq. (2.18). The solvation energy of the covalent state is given for simplicity
with the same approximation used in Fig. 2.3 rather than eq. (2.21).
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TABLE 2.3. Solvation free Energies of
Typical lons’

Ion AG,,, ,, (kcal/mol)
Cl- =75
Na* : —102
Ca®* —380
OH"™ -110
H,O" -110
HCOO™ —80
CH,0" -95
CH,NH; —75
Imidazole™ -62
CH; -90

‘AG,,,,, designates the solvation free energy of the given ion
in water. The corresponding observed information is com-
piled and analyzed in Ref. 4.

2.3. MO POTENTIAL SURFACES FOR REACTIONS IN SOLUTIONS

While the VB approach is more effective than the MO approach in treating
reactions in solutions, it is useful to be familiar with both approaches. Here
we outline a simple and general procedure that incorporates solvent effects
into MO calculations.

As demonstrated in Section 1.2, it is quite simple to incorporate the
effect of a single external charge in MO calculations. The same approach
can be extended to a collection of external charges writing

~H) — 2 Qcry (2.22)
C

where H’ is the H matrix of the reacting molecule in a vacuum and the
second term represents the potential at the site of the atom v from the
external charges (the Q’s). This seemingly oversimplified treatment is in fact
consistent with the zero differential overlap approximation for the all-
valence electron MO problem. Since eq. (2.22) is quite general it can be
used with the charge distribution of any solvent at any given configuration.
Thus, we can use the dipole approximation and write

HVV = HSV - % p"CrCV/rSCV (2'23)

where r., =r, —r. and the second term reflects the potential from the
solvent dipoles at the site of the solute atom. The total energy is now given
by
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E=E"+22 0.Vca (2.24)
A C

where Vi, 18 the potential from the Cth solvent dipole at the site of the Ath

solute atom.
In general we have to use eq. (2.24) iteratively, starting with the

gas-phase charge distribution of the solute, evaluating the polarization of the
solvent dipoles in the presence of these charges, substituting these dipoles in
eq. (2.23), and obtaining new H and new charges, which are then used to
obtain new solvent polarization. This can be expressed by

H® =H, - > p(Q" )re,Ire, =HY, -V (2.25)
C

where V" is the potential from the solvent, in the nth iteration, at the site
of the vth solute atom. This procedure converges much more slowly than

eq. (2.21).

Exercise 2.4. Repeat Exercise 1.6 with the LD solvent model instead of the
external charge.

Solution 2.4. Evaluate the V,’s of Eq. (2.25) using Program 2.C (these V’s
are called Vg in the program).

2.4. PROTON TRANSFER REACTIONS AND THE EVB MODEL

2.4.1. VB Potential Surface for Proton Transfer Reactions in Solutions

A very useful example of treating solvent effects is provided by considering
the proton transfer reaction

RXH+Y—>RX +HY" (2.26)
This reaction can be déscribed by the three resonance structures

$,=RX —H Y:

$,=RX:™ H—Y"

$=RX:" H" Y: (2.27)
‘The electrons involved in the actual reaction (which are designated here by
dots and referred to here as the active electrons) can be treated according to

the general prescription of the four-electron three-orbital problem with the
VB wave functions (Ref. 5)
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@, =N, {XHYY| - [XHYY[} x; = é1.x:

P, = N2{|X>_<HY] - |XXHYI}X2 = dyx,
@, = N,|XXYY| x, = $sxs (2.28)

where X, Y, and H designate atomic orbitals on the corresponding atoms,
The N’s are normalization constants and the y’s are the wave functions of
the inactive electrons moving in the field of the active electrons. The three
resonance structures @, ®,, and P, can be treated by the approach detailed
in Appendix B and can be reduced to an effective two-state problem, where
one state is mostly @, and the other is mostly ®,. The corresponding matrix
elements can be evaluated by standard quantum chemical methods, but this
evaluation is very tedious. Instead, we can exploit the simple physical
picture of @, and ®, and describe H,, and H,, by simple potential functions
that can be calibrated by both experimental information and accurate
quantum mechanical calculation. That is, the function H,, will be given, at
the range where the X-Y distance is large as compared to the X—H bond
length, by a Morse potential function that depends on the distance Ry_j,.
When the H atom approaches Y, we have a repulsive van der Waals
interaction between these atoms. We can describe both of these forces using
analytical potential energy terms (see discussion below). The same argument
applies to H,,. As far as H,, is concerned, we can approximate it by an
exponential term and fit the parameters in this term to the experimental
information on the gas-phase potential energy surface of the reaction or, if
needed, to accurate gas-phase calculations.
Thus, we describe the gas-phase potential by

ey =HY = AM(b,)+ U + (K/2)(6, - 6°) + UL,
8(2) = ng =AM(b,) + Uﬁ) —332/ry + ag + UG

inact

H(l)z = Aexp{—pn(r; - rg)} (2.29)

where b, b,, and r, are, respectively, the X-H, H-Y, and X-Y distances,
6, is the R-X-H bond angle, AM is a Morse potential function taken
relative to its minimum value (AM(b)= M(b) — D), and U%) is the repul-
sive nonbonded interaction in the given configuration. The parameter a
expresses the difference between the asymptotic energies of ¢, and ¢, (the
energies evaluated at the configurations where the fragments of each
resonance structure are at infinite separation). The potentials U{), . repre-
sent the interaction within the inactive region of the reacting system and also
the interaction between the active and inactive regions (see Appendix B).
These potentials are described by

U

inact

=122 K (b - b))

+ 1/2 Z K((;,zn(em - Bg,)m )2 + Uglig,inact + Uixib),inactfact (230)
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where the b’s and @’s are, respectively, the bond lengths and bond angles in
poth the inactive region and the connection between the active and inactive
regions. The K,, Ky, b, and 6, are force field parameters which will be
discussed in Chapter 4, while the U, terms represent the nonbonded
interactions in the indicated regions.

The effect of the solvent on our reaction Hamiltonian is obtained by
using the approach formulated in eq. (2.21), writing

s _ _ 170 1
51_H11"H11+_Ag()

sol

S _ g 2
fz_sz_sz‘*'Ag()

sol

H12=H?2 (2.31)
where Ag®) is the solvation energy of the ith state obtained by the iterative
approach of eq. (2.21). The ground-state potential surface for the reaction is
then obtained by solving the secular equations HC = E,C. A typical surface
for proton transfer in water is shown schematically in Fig. 2.6.

-50

-82

ENERGY (kcal/mol)

-4

FIGURE 2.6. An EVB-LD potential surface for proton transfer between an acid R"COO H
and an RO,R’ molecule in solution. The independent coordinates r, and r, are the distances
between the proton and O, and O, respectively. Regions of the potential surface that have
more than 50% ionic character are dotted (see Ref. 6 for more details).
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2.4.2. The EVB Calibration Procedure

The approach presented above is referred to as the empirical valence bond
(EVB) method (Ref. 6). This approach exploits the simple physical picture
of the VB model which allows for a convenient representation of the
diagonal matrix elements by classical force fields and convenient incorpora-
tion of realistic solvent models in the solute Hamiltonian. A key point about
the EVB method is its unique calibration using well-defined experimental
information. That is, after evaluating the free-energy surface with the initial
parameter ay, we can use conveniently the fact that the free energy of the
proton transfer reaction is given by

AGp; =AG[(A—H+ B)—(A™ + HB™)]
=2.3RT[pK,(A— H)—pK,(B* - H)] (2.32)

Now we can adjust e until the calculated and observed AG,, coincide. This
calibrated surface can then be used with confidence for studying the reaction
in different solvents (and different environments), since «) remains un-
changed and only Agi’o)1 is recalculated. In this way, the error associated with
the evaluation of H, does not affect the calculations of the relative effects of
different solvents.

In general, when one deals with a more complicated reaction, for which it
is hard to obtain gas phase estimates of a!, it is convenient to use solution
experiments from aqueous solutions to obtain the first estimate of . This is

done by using

& (00) - 81(00) = a + (Agsol W - Ag:(;:w) a + AAgsol w = (Asz)obs
(2.33)

where ¢,() is the energy of the ith resonance structure when the relevant
fragments are held at infinite separation and Agsol » is the corresponding
solvation energy in water. Similarly (AG7 ), is the free energy involved in
forming the ith configuration from the first configuration where the frag-
ments in each configuration are held at infinite separation. This leads to the
useful estimate

AAgSD1 ” (2.34a)

obs

a;=(AG},)

sol w Z AGsol w (234b)

where AG;{‘IW is the solvation energy of the kth fragment of the ith
resonance structure, which can be easily estimated from observed solvation
energies (e.g., the information compiled in Table 2.3) or by LD calcula-

tions. Since it is quite simple to obtain reliable estimates of the AG,, ,, and
the corresponding Agso1 w» We can start with the estimate of eq. (2. 34) In
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the next step we can calculate the actual AG;, of the different configura-
tions and refine the «; ? until it reproduces the corresponding observed value.

The EVB approach described in this chapter provides a convenient way
for estimating the energetics of chemical reactions in various solvents.
However, the approximation involved in eq. (2.21) cannot be justified
without detailed studies by more rigorous models. Such models will be
described in Chapter 3.

2.5. APPENDIX B—THE FOUR ELECTRONS/THREE ORBITALS
VB TREATMENT

Many reactions can be described qualitatively by considering only three
orbitals with four electrons. This includes proton transfer reactions
(A—-H+B —A +H- B)andSNZreactlons(X Z+Y =X +Z-Y).
The VB descrlptlon of these reactions requires in principle the six states
depicted in Fig. 2.7, which considered the typical case of the X~ + CH,-
Y—>X-CH; +Y SN2 reaction.

However, a qualitative consideration of the relevant energetics (Table

TABLE 2.4. “Back of the Envelope” Estimation of the Energies of
Valence-Bond States of the X~ + CH,X— XCH, + X~ 5,2 reaction®

Parameter Value® Abbreviation
Ionization potential of X 250 1P,

Electron affinity of X 70 EA
Tonization potential of CH, 230 IPgy,
Electron affinity of CH,4 =0 EA cy,
Carbon—halogen covalent bond 60 D._x

4.0-A halogen—halogen bond 0 Dq_«

4—— Charge distribution energy —60 Upo(+—7)
—+— Charge distribution energy —180 Uyo(—+7)

Approximate Valence—Bond State Energies

E(1) = reference state energy =0
E(2) = reference state energy =0
E(3) = Upg(—+-) + IPey, — EAx + Doy = +40
E(4) = Uo(+——) + IP EACH + Doy = +250
E(5) = Upg(+——) + IPx — EA oy, + D x = +250
E(6)=IPX_EACH3+DCX Dy _x =+310

" “A rough estimate of the gas phase energy (in kcal/mol) of the states described in Fig. 2.7. The
X-C and C-X' distances are both 2.0 A and the X-X' distance is 4 A. The notation X
desrgnates an average halogen.

"The sources of the various energy values are listed in Ref. 7.
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Nucleophile _ Carbon Leaving Atom
b _ C
? @ ? State 6
+ @ © | staws 500 State 6

State4  State 5

Q O - State 4
200
@ - State 3
o——0 @ State 2 100
O —o State 1 . State 3
State I State 2
Energy (kcal/mole)

FIGURE 2.7. (a) Three active p, orbitals that are used in the quantum treatment of the
X:" +CH,-Y—>X~-CH, +Y:™ S,2 reaction. (b) Valence-bond diagrams for the six possible
valence-bond states for four electrons in three active orbitals. (c) Relative approximate energy
levels of the valence-bond states in the gas phase (see Table 2.4 for the estimation of these
energies).

2.4) indicates that the reaction can be described by three resonance struc-
tures

@ =RX+Z Y:~
®,=RX:"Z+Y
®,=RX: Z* Y:~ (2.35)

The electrons involved in the actual reaction, referred to here as the
active electrons, can be treated with the VB wave functions [Refs. 5 and 7]:
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D, = N1{|XZYY| - |XZY?|}X1 = by

®,= N2{|XXZ‘_(| - lXXZY”Xz =Xz
@, = N3|XXY?|X3 = ¢3X; (2.36)

where X, Y, and Z are the atomic orbitals on the X, Y, and Z atoms,
respectively, while the N’s are normalization constants and the y’s are the
wave functions of the inactive electrons moving in the field of the active
electrons. This requires that the Hamiltonian be of the form H=H,  +
H.,,. +H where H' represents the interaction between the subspaces of the
active and inactive orbitals and the matrix elements between the basis
wavefunctions are then given by

H;= <q)i|H|q)i> = <¢i|Hact|¢’i> + <Xi|HinactIXz‘> + Hi,i
Hij= <q)i|H|q)j> = <¢i|Hact|¢j> + <Xi|Hinacthj> + Hi,j (2~37)

The active electrons matrix elements are given by (Ref. 5)

(i[H, |¢,) = (1+ 87— 83) " ((AH, 1) + (1H,[2) - (1H,_[3))

($aH | dy) = (1= ST+ 83) "((5[H,e(l5) — (5[H,,[6) + (5H,,|7))

(3 Hoee| 95) = (4]H,|4)

([H,olbs) = (2/(1+ ST+ 57)*(1[H,[4)

($3|H,e | d,) = (2/(1 = ST+ 53))'*(4[H,|7)

($1(Holld,) = (2/(1= (ST~ 83)°)*(1|H,[5) (2.38)

where  1=X(1)Z(2)Y3)Y(4), 2=Z(1)XQ2)Y(3)Y(4), 3=X(1)Y(2)
Y(3)Z(4), 4=X(1)X(2)Y(3)Y(4), 5=X(1)X(2)Z(3)Y(4), 6=X(1)Z(2)
X(3)Y(4), 7=X(1)X(2)Y(3)Z(4), S, =(X|Z), and S, = (Y|Z). This formu-
lation assumes that the overlap and exchange integrals between the orbitals
on the atoms X and Y are negligible.

The matrix elements of the inactive electrons and the interaction between
the active and inactive electrons can be approximated by expressing the
corresponding potential surfaces as a quadratic expansion around the
equilibrium values of the various internal coordinates, and by nonbonded
potential functions for the interaction between atoms not bonded to each
other or to a common atom:
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— @) (i) \2
(X Hipaee xi) + H; = 1/221(' —bg),)

+1/2 2 KD @O-60 V+UD +UD

nb,mact nb,inact—act
(XiIHinacthj> + HII] =O . (239)

where the b’s and 6’s are, respectively, the bond lengths and bond angles in
both the inactive region (the R fragment) and in the intersection between
the active and inactive regions (bonds and angles that connect the two
regions). Similarily, the U,, terms represent both the nonbonded interaction
within the active region and between the active and inactive regions.

The usual EVB procedure involves diagonalizing this 3 X 3 Hamiltonian.
However, here we wish to use a very simple model for our reaction and
represent the potential surface and wavefunction of the reacting system
using only two electronic states. Using a two-state system will preserve most
of the important features of the potential energy surface while at the same
time provide a simple model that will be more amenable to discussion than
the three-state system. For the two-state system we define the following
states as the reactant and product wavefunctions:

¥ = o (R)®, + B, (R)D,
¥, = &y (R)D, + B,(R)D, (2.40)
The matrix elements of the 2 X 2 active Hamiltonian are then given by
H(1)1 = <¢1|H|‘/’1> = a%(q)1|H|CI)1) + ﬁ%(CI)z'qu)z)
+2a,B,(P,|H|D,)
H(z)z = <‘/’2|H|l/’z> = a%(CI)3|H|CI)3) + ﬁ§<¢zIHi¢z>
+ 2“232<©3|H|q)2>
H(l)zz (4 [H] g ) = o ( @, [H|D,) + B (P, [H|D,)
+ aZBl<q)2|H|q)3> + BlBZ(q)Z,HIq)Z) (241)

These matrix elements are in a form that can be evaluated using standard
quantum chemical methods. This evaluation is tedious and the earlier
assumptions that we made will lead to significant errors in the matrix
elements. On the other hand, we can conveniently use experimental infor-
mation to approximate the diagonal matrix elements.
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2.6. SOME RELEVANT COMPUTER PROGRAMS

2.A. A Simple LD Program

This program performs simple Langevin Dipoles(LD) calculations
¢ and provides an estimate of solvation free energies.

implicit real*8 (a-h,0-z)

dimension iact(150),qt(150),gs(20),x(150,3)
common/ind/xpol(3000,3),fpol (3000,3),vq(30),x0(3),npol
x(1,1)=0.0

x(1,2)=0.0

x(1,3)=0.0

qt(1)=-1

iact(1)=4

natom=1

nat_all=1

call solvate(qt,x,nat_all,iact,gs,natom)

end

subroutine solvate(qq,x,nq,jact,et,natom)

¢ This subroutine evaluates solvation energies using

c the fixed center langevin dipoles (FCLD) method

c fpol is the solvent dipole

c vq The potential at the sites of the solute atoms
c dt The grid spacing

c rg The radius of the system

implicit real*8 (a-h,0-z)
common/par/d(12),dx(12),rz(12),am(12),d1(5),avd(12),bvd(12),cvd(12)
dimension qq(150),x(150,3)xp(3),r1(3),ep(3),em(3),iact(150),ra(10)
common/ind/xpol(3000,3),fpol(3000,3),vq(30),x0(3),npol
datar/1.422272.4222222222222/
doi=1,3

x0(1)=0.0

do j=1,natom

x0(1)=x0(i)}+x(j,i)

enddo

x0(1)=x0(i)/float(natom)
enddo
de=2.7
rg=7.
fnl=rg/dt
fnl=2*fnl
nl=fnl
nl2=nl/2+1
et=0.
fm0=0.35
fv=(dt/2.7)**3
Ipol=0
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do 111=1,nl | Builds the grid.
do 112=1,n1
do 113=1,n1
xp(1)=dt*{11-n12)+x0(1) ! Generates the coordinates of the grid points,
xp(2)=dt*(12-nl2)+x0(2)
xp(3)=dt*(13-n12)+x0(3)
10=100.
rex=0.
do3k=1,3
ep(k)=0.
rex=rex+(xp(k)-xO(k)y**2
continue
rg2=rg**2
if(rex.gt.rg2) goto 1 ! Checks if the grid points are outside the
do4i=1,nq ! system boundary.
12=0.
do 5k=1,3 ! Calculates the distance betwaen the grid
rlk)=xp(k)-x(i,k) ! points and the solute.
R=r2+6(k)**2
continue
rl=sqri(s2) ! Finds the smallsst distance between the solute
if(r1.1t.r0) r0=r1 tand the grid points. Checks if the given grid
if(r0.1t.ruiact(i))) go to 1 ¥ point is within the van der waals distance from
do 6k=1,3 ! any of the solute atoms.
ep(k)=ep(k)+qq(iy*rik)/(r2*r1) | Evaluates the field from the solute.
continue
continue
epl2=0.
do9k=13
epl2=epl2+ep(k)**2
epl=sqrt(epl2)+0.0001
x1=332*fm0*epl/(0.6%(1.+10))+0.0001 ¥ Places the Langevin dipoles at grid points.
yl=exp(xl) ! The (1+r0) term is a distance dependent
y2=1/y1 | dielectric constant for the non iterative LD
cote=(y1+y2)/(y1-y2) ! procedure ( See references 4).
cote=cote-1/x1
do8k=173
em(k)=fmO*fv*cote*ep(k )/epl
xpol(pol+1.k)=xp(k) | Stores the langevin dipoles.
fpol(lpol+1,k)=em(k)
continue
Ipol=lpol+1
if(Ipol.gt.3000) print 1003 1pol
do7k=1,3 | Calculates dipole-field interaction and
et=et-166*em(k)y*ep(k) | the corresponding energy spent on
continue | polarizing the solvent.
print 1000,et
do 100 j=1,nq | Calculates the potential from the solvent
vq(j)=0. 1 dipoles at the sites of the solute atoms.
do 100 i=1 ]pol
2=0.
m=0.

do 101k=13
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i
100
1000

1003
1004

A(k)=xpol(iJ)-x(i k)
mm=m+rl(k *fpol(i k)
12=r2+r(k)**2
x=sqrt(r2)
vq(j)=vq(j)+332*m/rx**3
print 1004 ,(vq().j=1.nq)
format(2x, ’estimate of solvation energy’ f10.2,/)
format(2x,’Ipol too large’)
format(2x,’potential on solutes atoms (kcal/mol)’,5f10.2)/
retum
end

2.B. An EVB Program

o6

o o oTaraTaInTalelinliale an

This program uses THE LANGEVIN DIPOLE MODEL to evaluate

the EVB potential surfaces for reactions in solutions.

dx The dissociation energy of the mixed Morse potential

d The dissociation energy of the pure covalent Morse potential
dl The gas phase energy of the given resonance structure where the fragm
gs The solvation energy

h(i,i) The hamiltonian matrix elements

ibt Defines the bonding in each resonance structure.

ia Defines the atom type

natom The number of atoms

nb The number of bonds

or The number of resonance structures

q The atomic charges

1z The bond length

u The eigenvectors of the h matrix

X The coordinate vector (x,y,z for each atom)

implicit real*8(a-h,0-z)

common/h1/h(20,20),e(20),egas(20) .

common/topol/ib(20,20),jb(20,20),ia(20,20),q(20,150),x(150,3),
16(20,2),ibt(20,20),ipt(20,2),Itt,at(10),att(150)

common/par/d(12),dx(12),rz(12),am(12),d1(5),avd(12) bvd(12),cvd(12)

dimension u(20,20),ex(20),p(20),ev(20),g5(20),g(150)

character at1*3 at2*3 at*3 att*3 at11*3 at22*3

data at/’H’,"0’ N’ "C"’8’,"C’,’Na''F’'Br’,'T’/

1tt=0

read(5,*) at1,at2

print *(2x,a,2x,a)’ at11,at22

itt=iat(at1)

if(atl.eq.”*") go to 2

write(6,*) “iat’,itt

Ite=lte+1

ipt(ltt,1)=iat(at1)

ipt(Itt,2)=iat(at2)

read (5,*) dx(lit),d(ltt) am(lee), rz(ltt), avd(let), bvd(lte),cvd it

gotol

continue

read(5,*) natom,nr -
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nb=0
do i=1,natom-1
do j=i+1,natom

nb=nb+1
Ib(nb, 1)=i
Ib(nb,2)=j
enddo
enddo
write(6,*) '1b’,(1b(1,1),1b(1,2),1=1,nb)
do ii=1,nr
read(5,*) nbt,(ib(i,ii),jb(i,ii),i=1,nbt)
do 3 1=1,nb
ibt(L,ii)=0
do 3 i=1,nbt
if(ib(i,jii).eq.1b(l, 1).and. jb(i,ii).eq.1b(1,2)) then
ibt(Lii)=1
endif
if(ib(i,ii).q.1b(1,2).and. jb(i,ii).eq.1b(,1)) then
ibt@,ii)=1
endif
continue
write(6,*) "ibt” (ibt(l,ii),1=1,nb)
enddo
do4i=lnr

read (5,%) (att(k),k=1,natom)
do k=1 natom
ia(i,k)=iat(att(k))
enddo
continue
do5i=1nr
read (5,¥)(q(i,)),]=1,natom)
continue
read(5,*) (d1(ii),ii=1,nr)
read(5,*) ((x(ik)k=1,3),i=1,natom)
read(5,*) n_ext
do i=1,n_ext
read(5,*) (x(i+natom k) k=1,3), q(1,i+natom)
enddo
do 10ii=1,nr
e(ii)=d1Gi)
ex(ii)=0.
do 11 k=1,nb
ibl=ib(k,ii}
jbl=jblk,ii)
if(ibl.eq.0) go to 11
ial=ia(ii,ib1)
ia2=ia(ii,jb1) .
call rr(x,ib1,jb1,r)
fmt=fm(r,ial,ia2,1)
fmtx=fm(r,ial ia2,2)
ex(ii)=ex(ii)+fmt
continue
call gqq(ii,ii,natom,eq,evd,nb)
e(iiy=e(ii)+eq+evd
gs(ii)=0.

! Finds all possible pairs of bonded atoms.

! Defines the bonding patern
tin each resonance structure.

! Read positions and charges of external atoms.
| This option is used for calculations of reaction in
1 protein.

| Evaluates the diagonal energies of the
! gas phase Hamiltonian.

! Evaluates the bond energies.

| Evaluates the nonbonded energies .
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10

20

33

90

91

1004
1040
1041
1042
1143
1044
1111

egas(ii)=e(ii)}+ex(ii)
nxs=2
nloopl=5
do 40 iloop=1,nloop1
call gsol(nxs,iloop,gs,natom,n_ext,nr,q,qg,x)
do 15 ii=1,nr
print1111,gs(ii)
h(ii,ii)=egas(ii)+gs(ii)
call offdia(nr,nb)
print 1041,(egas(i),i=1,nr)
do20i=1nr
print 1004,(h(i,j)j=1,nr)
continue
call diag(h,u,ev,nr)
do 33 id=1nr
p(id)=u(id,nry*u(id,nr)
continue
print 1042,(ev(id),id=1,nr)
print 1143 (p(id),id=1,nr)
NXSO=NXS$
vt1=0.
do 90 i=1,nr
vt=abs(u(i,nr))
if(vt.le.vt1) go to 90
nxs=i
vtl=vt.
continue
do 91 k=1,natom
qg(k)=0.
do9l i=lnr
qe(k)=qg(k)+q( k) ulinn**2
continue
continue
format(1x,10f10.2) .
format(2x, resonance structures included ’,/,10i110)
format(2x,’ gas phase diagonal energies’./,10{8.1,/)
format(2x,’eigen values’ /,10f8.1)
format(’ ground state wave function’/,10f8.4)
format(2x, the gas phse deltas’ /,10{8.2)
format(2x,’gs=",10.4)
end
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| Evaluatas the LD solvation energy

| of each resonance structure.

| The initial polarization is determined
1 by the charges of the nxs states.

| Evaluates the off-diagonal terms.

t Determines which eigenvector corresponds
1 to the current ground state.

| Evaluates the ground state charges.

subroutine offdia(nr,nb)

Evaluates the off diagonal matrix elements
implicit real*8 (a-h,0-z)
common/h1/h(20,20),e(20),egas(20)

common/topol/ib(20,20),jb(20,20),ia(20,20),q(20,150),x(150,3),

16(20,2),ib(20,20),ipt(20,2),1tt at(10),att(150)

common/par/d(12),dx(12),rz(12),am(12),d1(5),avd(12),bvd(12),cvd( 12)

do 30ii=1,nr
iil=ii+l
do 30 jj=iil,nr
if(jj.gt.nr) go to 30
h(ii,jj)=0.

1 Identifies pairs of resonance structures which

| can be converted to each other by breaking

1a single covalent bond and forming an ion pair.
1 such resonance structures are coupled to sach
1 other by eq. (1.59) ( see ref. 6 for details) -
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ix=0

do 31 k=1,nb
it1=ibt(k,ii)
it2=ibt(k.jj)
is=it1-it2
if(is.eq.0) goto 31
ix=ix+1
if(is.eq.1) ij=jj
if(is.eq.(-1)) ij=ii
ik=ii
if(is.eq.(-1)) ik=jj
kt=k

continue

il=lb(kt,1)

J1=Ib(kt,2)

if(ix.ne.1) go to 33

cql=q(ij,il)-q(ik,il)

if(cql.eq.0.0) goto 33

cq2=q(ijj1)-q(ik,j1)

if(cq2.eq.0.0) go to 33

cq=cql*cq2

94=q(iJ.i1)*q(i) ! Finds the difference in the charge of a given -
ial=ia(ij,il) 1 atom in the two resonance structures.

ia2=ia(ij,j1)
call rr(x,il,jl,r)
el=egas(ik)
e2=egas(ij)
del=d1(jj)-d1(ik)
idpf=1
h(ii,jj)=fl(r.del ial ja2,idpf,.e1,e2,9q)
h(jj,it)y=h(ii,ij)

continue

retun

end

function fnonb(r,ial,ia2,idpf)

implicit real*8 (a-h,0-z)
common/par/d(12),dx(12),rz(12),am(12),d1(5),avd(12),bvd(12),cvd(12)
ic=icode(jal,ia2)

Al=avd(ic)

b=bvd(ic)

ce=cvd(ic)

fnonb=Al*exp(-b*r)+cc*r**(-9)

return

end

function fm(r,ial,ia2,ig)

implicit real*8 (a-h,0-z)
common/par/d(12),dx(12),rz(12),am(12),d1(5),avd(12),bvd(12),cvd(12)
ic=icode(jal,ia2)

dmn=d(ic)
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if(ig.q.2) dmn=dx(ic)
fa=am(ic)

Omn=rz(ic}
dr=r-10mn
ex1=exp(-fa*dr)
ex2=ex1*ex1
fm=dmn*(ex2-2*ex1)
retum

end

subroutine rm(X,i,j,r)

implicit real*8 (a-h,0-z)

dimension x(60,3)

2=0.

do1k=13
2=r2+(x(j,k)x (1 k))**2

continue

r=sqrt(r2)

retum

end

function fl(r,del,ial ia2,idpf,e1,e2,qq)

implicit real*8 (a-h,0-z)
off diagonal bond coupling
fmx=fm(r,ial,ia2,2)
fm1=fm(r,ial,ia2,1)
d1=fm1-fmx
fnon=fnonb(r,ial ia2,idpf)
d2=del+qq*332/r+fnon-fmx
f=d1*d2

f=abs(f)

fl=sqri(f)

return

end

subrontine gsol(iis,iloop,gs,natom,n_ext,nr,q,qg.x)
this subroutine conirols the calculations of the solvation energies.

implicit real*8 (a-h,0-z)
common/topol/ib(20,20),jb(20,20),ia(20,20),qd(20,150),xd(150,3),
1b(20,2),ibt(20,20),ipt(20,2),Itt,at(10),att(150)

dimension iact(150) q&(150),g5(20),q(20,150),x(150,3)
dimension qg(150)
common/ind/xpol(3000,3),fpol(3000,3),vq(150),x0(3),npol
do 1i=1,natom .

iact(i)=ia(iis,i)

qt(i)=qg()

if(iloop.eq.1) qt(i)=q(is,i)
continue
doi=l,n_ext
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qt(i+natom)=q(l,i+natom)
iact(i+natom)=2
enddo
nat_all=natom+n_ext
call solvate(qt,x,nat_all,iact et,natom) ! Evaluates the polarization of the solvent
gext=0.0 ! dipoles in the presence of the ground state
do i=1,n_ext I charges of the solute.
gext=gext+vq(i+natom)*qt(i+natom)
enddo
do 2 it=1,nr
gs(it)=-et+gext
do 2 i=1,natom .
gs(it)y=gs(it)+vq(i)*q(it,i

continue
do 3it=1,nr ! Evaluates the interactions betwean the solute
do j=1,n_ext 1 and the external charges.
do i=1,natom
12=0.
dok=1,3
12=r2+(x(i,k)-x (j+natom J))**2
enddo
rl=sqrt(r2)
gs(i)=gs(it)+332*q(it,i)*q(1 j+natom)/rl
if(it.eq.1) vq(i)=vq(i)+332*q(1 j+natom)/rl
enddo
enddo
continue
return
end

subroutine solvate
The corresponding subroutine is given in 2.A

10

subroutine gqq(ii,id,natom eq,evd,nb)

implicit real*8 (a-h,0-z)
common/topol/ib(20,20),ib(20,20),ia(20,20),4(20,150)x(150,3),
1b(20,2),ibt(20,20),ipt(20,2),1tt,at(10),att(150)
evalutes the charge-cherge interactions between
the nonbonded atoms in each resonance structure.
eq=0. :
evd=0.
do 1 iq=1natom
il=ig+1
do 1 jg=il,natom
if(il.gt.natom) goto 1
do 10kb=1,nb
if(ib(kb,ii).eq.jq.and.jbkb,ii).eq.iq) goto 1 ! Checks whether the given pair of atoms are
if(ib(kb,ii).eq.ig.and.jb(kb,ii).eq.jq) goto 1 ! bonded ta each other.
continue
2=0.
do4k=13 1 Calculates the distance betwaen nonbonded atoms.
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4 2=r2+(x(iq k)-x(jq.k))**2
r=sqri(r2)
eqt=eq
eq=eq+332.*q(id,iq)*q(id jq)/r
eqt=eq-eqt
ial=ia(ii,iq)
1a2=ia(ii,iq)
idpf=1
fvd=fnonb(r,ial,ia2,idpf)
evd=evd+fvd
1 continue
return
end

function iat(att)

implicit real*8 (a-h,0-z)
common/topol/ib(20,20),jb(20,20),ia(20,20),q(20,150),x(150,3),
& 16(20,2),ibt(20,20),ipt(20,2),Itt,at(10),att(150)

character at*3,att*3

doi=1,10 | Determine
if(att.eq.at(i)) iat=i

enddo

retum

end

function icode(il,j1)
implicit real*8 (a-h,0-z)
common/topol/ib(20,20),jb(20,20),ia(20,20),q(20,150),x(150,3),
& 16(20,2),ibt(20,20),ipt(20,2),1tt,at(10),att(150)
character at*3
doi=1,lit
if(ipt(i,1).eq.il.and.ipt(i,2).eq.j1) icode=i
if(ipt(i,1).eq.jl.and.ipt(i,2).eq.i1) icode=i
enddo
retum
end

subroutine Diag
This subroutine is given in 1.A

Data for (2.B) the EVB program
o

92. 69. 1.87 1.43 5200, 2.5 100.
-

2 2  natomnr

112 nbtibjb

0 0 0 nbtibjb

olle s

o

0.1-0.1

1.0-1.0
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0.0 139

0.0 0.0 0.0 coordinates (x,y,2)
143 00 00

0

0

2.C. MO Calculations Combined with the LD Solvent Model

Use here the main program from B.1. The only modification needed is to
insert before calling DIAG the following
if (isol.eq.1) call solvate (q,x,n,Let)
do il=1,n
h(il,il)=h(i1,i1)-vq(i1)/23.06
enddo

subroutine huckel_mat(h,r,q,n,a)
The corresponding subrontine is given in 1.B

C=——===

subroutine scf_mat(h,r,q,n,a)
The corresponding subroutine is given in 1.B

subroutine pmat(c,p1,q,nn,n,aa)
The corresponding subroutine is given in 1.B

subroutine diag(h,c,ev,n) .
The corresponding subroutine is given in 1.A

subroutine solvate (qq,x,nq,tact,et,code)
The corresponding subroutine is given in 2.A

Data for (2.C) MO(scf) calculations in LD solvent model

‘scf?
2 natom
00 a

10 cc
0.01 aa

00 0.0 00 coodinates (x,y,z for each atom)
143 00 00

-10.67 -15.85 alf0

. 1. z

16 00 the initial bond order matrix

00 1.0

-75 1.5 06 beta d mu

0 2 electronic occupation

1 isol
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Data for (2.C) MO(huckel) calcuiations in LD soivent model

*huckel’

2 natom

10 a

0.0 cc

0.1 aa

000 00 0.0 coordinates
143 00 0.0 .
-11.25 -136  alf0

1. 1. z

1.0 0.0 initial bond order matrix
0.0 1.0

-115 16 05 beta d mu
0 2 electronic occupation

1 isol
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CHEMICAL REACTION IN
ALL-ATOM SOLVENT
MODELS

3.1. ALL-ATOM SOLVENT MODELS

3.1.1. Explicit Models for Water Molecules

In the previous chapter we considered a rather simple solvent model,
treating each solvent molecule as a Langevin-type dipole. Although this
model represents the key solvent effects, it is important to examine more
realistic models that include explicitly all the solvent atoms. In principle, we
should adopt a model where both the solvent and the solute atoms are
treated quantum mechanically. Such a model, however, is entirely impracti-
cal for studying large molecules in solution. Furthermore, we are interested
here in the effect of the solvent on the solute potential surface and not in
quantum mechanical effects of the pure solvent. Fortunately, the contribu-
tions to the Born—Oppenheimer potential surface that describe the solvent—
solvent and solute—solvent interactions can be approximated by some type
of analytical potential functions (rather than by the actual solution of the
Schrodinger equation for the entire solute—solvent system). For example,
the simplest way to describe the potential surface of a collection of water
molecules is to represent it as a sum of two-body interactions (the interac-

74
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tions between pairs of atoms) plus three-body corrections (the change in the
interactions between pairs of atoms due to the presence of other atoms).
That is, one can use the potential surface

U= (Ul +UI)+ U, (3.1)
L]

where the two-body terms U" are given as the sum of the contributions (in
kcal/mol)

Uli= 2 (AA/r2 —BB,.IrS.)
k(@)k'(f)

Ul = 2 332q,9,/ry (3.2)

LOLAG)]

Here k runs over the atoms of the ith water molecule and the intramolecular
potential of each water molecule is kept constant (for simplicity we treat the
water molecules as rigid bodies). The g¢’s are the residual charges on the
hydrogen and oxygen atoms (taken, as a first approximation, to reproduce
the observed gas-phase dipole moment of a water molecule), and the A and
the B terms represent, respectively, the hard core repulsion and van der
Waals attractions between the indicated atoms. The distances are given in A
and charges in au. The potential U, , simulates the three-body inductive
effect associated with the polarization of the electrons on each atom in the
presence of the residual charges and induced dipoles of the remaining
system. This complicated polarization effect can be simulated quite simply
by the self-consistent iterative equation (see Ref. 1 for detailed derivation)

w =€
md 1662 p'l i
£ = Z q;5/75 Z [ = 3G i, (33)

where r,; =r;, —r;, the y’s are the atomic polarizabilities, the p,’s are the
molecular induced dipoles, and &, is the field on the oxygen of the ith water
molecule from all the other water molecules. The superscript n indicates
that we are dealing with an 1terat1ve self-consistent procedure, starting the
first iteration with the field, £° due only to the permanent charge dis-
tribution (the q’s), and then including the field from the induced dipoles.
The units in eq. (3.3) are kcal/mol, A and au for energy, distance, and
charge, respectively.
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TABLE 3.1. Parameter Sets for potential surfaces of
liquid water®

Set 1 q A B v
Oxygen —0.82 861.0 26.0 0
Hydrogen 0.42 0.419 0.575 0
Set 2 q A B v
Oxygen —0.6668 830.0 25.6 1.10
Hydrogen 0.3334 0.435 0.585 0.20

“Charges are given in electron charge units, polarizabilities in A°
while A and B are given, respectively in  kecal -
mol " A" and kcalmol ' A% Each water molecule is treated as a
rigid body with O—H bond length of 1.0 A and H-O-H angle of
109.5°.

3.1.2. How to Obtain Refined Potential Surfaces for the Solvent
Molecules

The potential parameters (g, A, B, and y) can be obtained by using eq.
(3.1) to evaluate the potential surface of two interacting water molecules,
and then adjusting these parameters to obtain the best fit between the
calculated surface and the corresponding surface evaluated by performing
accurate quantum mechanical calculations (e.g., Ref. 2). Further refinement
of the parameters is then obtained by fitting calculated and observed
properties of bulk water. This fitting procedure may be augmented by using
the same model to calculate the properties of the various forms of the ice
phase (e.g., Ref. 3). Typical sets of refined parameters are given in Table
3.1.

The parameter sets of Table 3.1 and the potential functions of eq. (3.1)
provide an approximate description of the potential surface associated with
a collection of water molecules.

3.2, EXPLORING THE SOLVENT PHASE SPACE BY THE METHOD
OF MOLECULAR DYNAMICS

3.2.1. Statistical Mechanics and the Relationship Between
Macroscopic and Microscopic Properties

With a-given set of potential functions we can evaluate various average
properties of the solvent. In particular, we would like to simulate ex-
perimentally observed macroscopic properties using microscopic solvent
models. To do this we have to exploit the theory of statistical mechanics
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which tells us that the average of a given property, A, which is independent
of the momenta of the system, is given by (Ref. 4):

(A) =fA(r)P(r) dr =fA(r) exp{—U(r)B} dr/z(U) (3.4a)

z(U) =fexp{—U(r)ﬁ} dr (3.4b)

where dr designates the volume element of the complete space spanned by
the 3n vector r associated with the n atoms of the system. The evaluation of
eq. (3.4) requires us to explore all the points in the entire configuration
space of the system. Such a study is clearly impossible with any of the
available computers. However, we can hope that the average over a limited
number of configurations will give similar results to those obtained from an
average over the entire space. With this working hypothesis we can try to
look for an efficient way of spanning phase space. With present-day
computers, we can span a significant number of configurations by the
so-called Monte Carlo (MC) (Ref. 5) methods or the methods of molecular
dynamics (MD) (Ref. 6) outlined below.

3.2.2. Molecular Dynamics and Simulations of Average Solvent
Properties

In MD simulations we simply solve numerically the classical equations of
motion, expressing the changes in coordinates and velocities at a time
increment At by

r(t+An)=r,(t) +r () At
Fi(t+ AL = F(t) + F(0) At = F () — [(dU/ar)m; '] dt (3.5)
where the dot designates a time derivative and we use Newton’s law:
mi,= F,= —aU/dr, (3.6)

Starting with a given set of initial conditions [e.g. with the values of r,(t = 0)
and F,(t = 0)] we can evaluate r(¢) either by numerically integrating eq. (3.5)
or by using the somewhat more complicated but far better approximation
(Ref. 6)

r(t + Af) = r,(t) + F, At + [47,(t) — #,(t — AD] AL/6
F(t+ Ay =, + [2/( + Ar) + 57,(t) — F,(t — A)] At/6 (3.7

This equation allows one to obtain much more accurate results than those of
eq. (3.5), using the same Af’s.
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The time-dependent coordinate vector r(#) describes the position of each
atom at the time ¢, and is known as a classical trajectory.

Exercise 3.1. Consider a one-dimensional harmonic oscillator with U = 0.5
(X -2), m=1, X(0)=1, X(0) =0 and evaluate X and X for =0, 0.1, and
0.2 using eq. (3.5).

Solution 3.1. The first three steps in the integration of eq. (3.5) are
summarized in Table 3.2. Follow the example of the table for a few more
steps.

The propagation of classical trajectories of the atoms of a given system
corresponds to a fixed total energy (determined by the specified initial
conditions). However, the evaluation of statistical mechanical averages
(e.g., eq. 3.4) implies that the system included in the simulation is a part of
a much larger system (ensemble) whose atoms are not considered in an
explicit way. Thus, in order to simulate a given macroscopic property at a
specified temperature we must introduce some type of a “thermostat” in the
system that will keep it at the given temperature. This can be easily
accomplished by assuming equal partition of kinetic energy among all
degrees of freedom. Since each atom has three degrees of freedom with
kinetic energy of ims’ = 3k, T we obtain:

T=2 m#}/(3nky) (3.8)

where n is the number of atoms in our system. In general, we can adjust the
temperature during the simulation by scaling the velocities. That is, when T
is smaller than the target temperature we can scale I uniformly by (1+ &)
until the target temperature is obtained. If T is higher than the target
temperature, then a scaling of (1 — &) is used.

Exercise 3.2. Write a computer program that solves Exercise 3.1 for any

given time and evaluate the kinetic energy and potential energy as a
function of time.

TABLE 3.2. The First Three Steps in Exercise 3.1°

t X X
0 1 0
0.1 1 0.1
0.2 1.01 0.2
0.3 103 0.299

“Please continue for a few more steps (if you needed this help).
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With a computer program that evaluates r as a function of time for a
given U(r) we can use the ergodic hypothesis (which states that the time
average over a long time is equal to the configuration average) and write

(A)= ﬁ A(t,)IN (3.9)

The desired average is simply obtained by a time average of the given
property. For example, one of the interesting properties of bulk solvents is
the radial distribution function (rdf), which expresses the probability of
finding a given atom type around a reference atom by

8(N) ap = (Ny(r, v+ Ar)) /(4mpyr® Ar) (3.10)

where A and B refers to atom type, N(r, r + Ar) is the average number of
atoms of the B type (e.g., an oxygen atom) found at a distance between r to
r+ Ar from the reference atom, and py is the bulk number density of the
Bth type atom. Such an average for a water model that uses the parameters
of Table 3.1 is compared in Fig. 3.1 to the corresponding experimental g(r)
(for early related studies see Ref. 7). Obviously, one can refine the
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FIGURE 3.1. The oxygen—oxygen radial distribution function of water. The dotted curve
represents the experimental result and the other curves correspond to the results calculated
with the different models considered in Ref. 10.
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parameters in the solvent potential functions by improving the agreement
between the calculated and observed g(r) as well as other properties.

Exercise 3.3. Write a computer program for N dipoles (represented by
pairs of bonded atoms 0.9 A apart with charges of +0.4 and —0.4 au). Use
the potential

dipoles

U= E 332(q,9,/r;) + Upp(ry) + 2 400(rij - 2)2
ij i

U, (r) =40.000r "> — 288r~° (3.11)

where the first sum involves only atoms in different dipoles, while the
second involves only the bonded atoms in each dipole. Run MD simulations
with this potential and evaluate the radial distribution function for this
system.

Solution 3.3. Use Program 3.A.

3.3. CALCULATION OF SOLVATION ENERGIES BY FREE-ENERGY
PERTURBATION METHODS

3.3.1. Direct Calculations of Free Energy Converge Very Slowly

With a realistic solvent model, we can explore the properties of solvated
molecules. As before, we take a classical approach by adding the solute-
solvent interaction term (Ug,) to the potential surface of the system and
write

U=Ug+Ug+ U+ U4 (3.12)

where S and s designate solute and solvent, respectively, and Ug, is
represented by -

Ug,= 2 (UL +US) (3.13)
i(8)j(s)

here the nonbonded potential U,, is represented by the same function as in

eq. (3.2) and the term U, is given by

U}, =3320,q,/r; (3.14)

The term U, is the solvent-solvent interaction term [the U,, and U, terms
of eq. (3.1)] and U, is the induced dipoles three-body term which includes
now the field both from the solute and the solvent. With a potential surface
for a solvated solute we can address the important issue of evaluating
solvation energies. In principle, one can try to evaluate the average poten-



SOLVATION ENERGIES BY FREE-ENERGY PERTURBATION METHODS 81

tial energy of the solvated molecules relative to its energy in the gas phase
by
AU,

solvation

= <USs + Uss + Uind + USS>501 - <USS>gas (315)

where ( ) indicates that the corresponding average is evaluated in

solution. The convergence of such calculations is, however, very slow.
One may also try to evaluate solvation-free energies by using the

corresponding partition function through the formula (Ref. 4)

AG,=AA,,=—B [In{z(V;)/2(U)}] (3.16)

where the z’s of eq. (3.4b) are evaluated by a direct-phase space explora-
tion. Such calculations, however, converge even more slowly than those
based on eq. (3.15).

Note that eq. (3.16) involves the Helmholtz function, A, rather than the
Gibbs function G, but the difference between AA and AG is negligible in
solutions and we will use AG in this book.

Exercise 3.4. Evaluate the free-energy difference between two one-dimen-
sional harmonic oscillators with potentials U; = (X — 1)* and U, = 0.3(X —
1.2)%, respectively.

Solution 3.4. Evaluate the corresponding z(U,) and z(U,) with eq. (3.4b)
using a numerical integration procedure and then use eq. (3.16).

3.3.2. Perturbation Calculations of Free-Energy Changes

Fortunately, calculations of solvation-free energies appear to converge faster
if one uses the so-called free-energy perturbation (FEP) method [also related
to the umbrella sampling method (Ref. 8)]. This method evaluates the free
energy associated with the change of the potential surface from U, to U, by
gradually changing the potential surface using the relationship

U,(A)=U/(1-1,)+U,A, (3.17)

The free-energy increment § G(A,,— A,,.) associated with the change of U,
to U, can be obtained by examining the corresponding change in the
partition function of the system. That is,

z(Um,)/z(U,,,)=fexp{—Um,ﬁ)dr/fexp{—Umﬁ} dr

= [ exp(- (U, - U,)8) dr|exp(~ U8} / | exp(-U,8) ar| (18)

This result is precisely the average of exp{—(U, — U, )B} over phase
space, since the factor in square brackets is the statistical (exp{—UB}/z)
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factor of eq. (3.4). Running classical trajectories on the potential U, ,
samples the space according to the factor in square brackets. Thus we can
use the time average over these trajectories and write

exp{—8G (A, — A, )B} = (2(U,,)/2(U,,)) = (exp{~(U,,. = Up)B})
(3.19a)

where ( ), indicates that the given average is evaluated by propagating
trajectories over U,,. The result of eq. (3.19a) can be expressed for small
changes in A,, by expanding the exponential expression as

6G(/\m—> /\m’) = <Um’ - Um)m
(A, — A, )0 (3.19b)

This means that the free-energy change associated with small perturbations
of the potential U can be evaluated by running trajectors with the initial
potential and calculating the average value of the difference between the
new potential and the initial potential. The overall free energy change is
now obtained by changing A, in n equal increments and evaluating the sum
of the corresponding 8G’s:

n—1

AGU,— Uy)) = 2, 8G(A,,—> A1) (3.20)

m=0
Further clarification of this procedure can be obtained by examining the free
energy associated with changing the charge of a given atom in solution. To
do this, we change the charges gradually using eq. (3.17), where U, and U,
are the potentials associated with the neutral and charged atom, respective-
ly. Equation (3.20) is used then to evaluate the reversible work associated
with the charging processes. A typical example is given in Fig. 3.2. The
result of this charging process [which is also referred to as an ‘““adiabatic
charging” (Ref. 10)] is not much different than that obtained by macro-
scopic approaches where the free energy is proportional to the square of the
charge by the well-known Born’s formula (Ref. 9) '

AG(Q) = —166(Q%a)(1—1/d) (3.21)

where q is the radius of the cavity formed by the macroscopic solvent around
the charged atom and d is the dielectric constant of the solvent [AG, a, and
Q are given in kcal/mol, A and au, respectively]. Note, however, that the
cavity radius and the diclectric constant are not given from microscopic
considerations. :

Apparently the rigorous all-atom FEP approach reflects a rather simple
physics; The solvent polarization responds linearly to the development of
charges on the solute atoms (Ref. 1). This is why the simple LD model gives
similar results to those obtained by the FEP approach (see Ref. 10).
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FIGURE 3.2. A free-energy perturbation calculation of the free energy associated with an
adiabatic charging of an Na™ ion in water (Ref. 10). The parameter A transforms the solute
from it uncharged (A =0) to its charged form (A =1).

Exercise 3.5. Consider the simple case of a positive ion surrounded by 10
dipoles, using for the dipole—dipole interaction the potential of Exercise 3.3
and for the ion-dipole interaction the potential

Ug, = 2 (332Q,q,/ry; + Uy (1)) (3.22)

where U, is defined in eq. (3.11). With this model potential, run MD
simulations, and calculate the free energy associated with changing the ion
charge from 0 to +1.

Solution 3.5. Use Program 3.B.

3.4. COMBINING SOLVENT EFFECTS WITH QUANTUM
MECHANICAL SOLUTE CALCULATIONS

Now knowing how to evaluate solvation-free energies, we are ready to
_ explore the effect of the solvent on the potential surface of the reacting
solute atoms. Adapting the EVB approach we can describe the reaction by
including the solute—solvent interaction in the diagonal elements of the
solute Hamiltonian, using
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— o i ()
Hii—Hii+ st+ Uss+ Uind

H,=H, | (3.23)

Here (in contrast to the approach taken in Chapter 2) we do not assume
that the energy of each valence bond structure is correlated with its
solvation-free energy. Instead we use the actual ground-state potential
surface to calculate the ground-state free energy. To see how this is actually
done let’s consider as a test case an S,2 type reaction which can be written
as

X +CH,Y—=>XCH; +Y (3.24)
This reaction can be described by the three resonance structures

@, =[X"C-Y |x
®, =[X-C Y lx

@, =[X"C'Y x5 \ (3.25)

The relevant Hamiltonian for the gas-phase solute molecules can be treated
by the same three-orbitals four-clectron model used in Chapter 2. Since the
energy of ®, is much higher than that of ®, and @, (see Table 2.4), we
represent the system by its two lowest energy resonance structures, using
now the notation ¢, and ¢, as is done in eq. (2.40). The energies of these
two effective configurations are now written as

1
&) = HYy =AM(b,) + U + Ul + 5 2 Ky (bl — bi5)°

+5 S KO - 60)°

8.m

1
g= Hyp, = AM(b) + U + Ui + a3 + 5 2 K (b1 — b5,

nm

1
LS k0 oy
H12=A6Xp{—y,(r3—rg)} (3.26)

in which the gas-phase energies &, are approximated by analytical potential
functions, similar to those used in Chapter 2. b,, b,, and r; are the X-C,
C-Y, and X-Y distances, the b, ’s are the C-H bond lengths, and the 6 ’s
are the X-C-H, H-C-H, and H-C-Y angles defined by the covalent
bonding arrangement for a given resonance structure. For example, in i,
the 6, is defined by the H-C-Y and H-C-H angles, while the K, for the
X-C-H angles is set to zero. The U', are the nonbonded interactions
between the nonbonded atoms in the ith resonance structure. For ¢, this
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includes the X - - - C repulsion, the X ---H repulsion and the X~ ---Y
interaction. These nonbonded interactions are described by either Ae ™’ or
612 van der Waals potential functions (see Table 3.3). The induced-dipole
terms describe the attraction between the charges of the system (Q) and its
induced dipoles. This term is evaluated for simplicity by neglecting the
interactions between induced dipoles. Finally, the a) parameter is the
energy difference between ¢, and ¢, with the fragments at infinite separation
(this is simply the difference in the free energy of formation of X~ + CH,Y
and Y + CH,;X). As before, we can determine the parameters in eq. (3.26)
by fitting the corresponding ground-state potential surface to ab initio
calculations and relevant experimental information. A reasonable parameter
set is given in Table (3.3).

TABLE 3.3. Parameters for the Potential Functions of the
Cl™ + CH,Cl— CICH, + CI~ 5,2 Reaction

Bonds U, = 1K,(b—by)’ + D[1+ exp{—a(b — b,)}’
c-Cl K, =0 D =60 b,=18 a=2.0
C-H K, =310 D=0 b,=1.102 a=0.0
Bond Angles U,=1K,(0 -6,
H-C-H K,=72 6,=1.911
H-C-C1 . K,=60 6,=1.911
Nonbonded U,=A, exp{—ar}+ A,yr "+ Br ®
c---Cl” A, =0 A,=139x%x10° B =285 a=0
a---c- A, =0 A,=1.26x10" B =8305 a=0
a ---H A, =11297 A,=0 B=120 a=3.6
Nonbonded U= AlAjrA]Z - BiBjrAé
H A=50 B=20
0] A=1793 B=26
o : A =2000 B=25
cl A =1500 B=25
C A=632 B=20
Charges : U,,=332q,4,/r,
V(CIG)CH:« - Clg))(‘/’l) oy, = -1 9c = qu = dci,, =
(Cl(]) - CH3CI(2))(‘/’2) ey, = 0 qdc= qu = dog, =~
Off-Diagonal Parameters
H, AS =3256 r’=0.0 p=1.0

Energles in kcal/mol, distances in A, angles in radians, and charges in atomic charge units.
Unb describes the nonbonded interactions between the solute atoms, while U} is used for the
nonbonded interactions between the solute and the solvent. The solvent charges are taken as
~0.82 and 0.41 for O and H respectively.
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With the gas-phase potential surface we can obtain the solution Hamilto-
nians by eq. (3.23), adding the solvent—solute interaction to the “classical”
part of the diagonal EVB matrix elements. That is, we use

g =H,= H(l}l + Ug;,Ss + Uf'llb),Ss + Ug;c)l + U

g=Hy, = H(z}z + Ug;,Ss + UEbe),Ss + Ui(lfgl + Uy
H,=H), (3.27)
where § and s designate solute and solvent, respectively. U, is the
electrostatic interaction between the solute charges (Q) in the given reso-

nance structure and the solvent residual charges (q). U, is the nonbonded
interaction between the solute and solvent atoms, while U, , is the inter-

b y SO Y 1
€,=M(b,)+Ae™ 24+ U ain+ Uina +U Qq,Ss+U51b,Ss+Uss

-ub 2) 2)
€2:M(b2) +Ae K +Ugtram +Uind +U(Qq ss+ nb sst Uss

FIGURE 3.3. A schematic description of the two low-energy resonance structures used to
describe the S,2 reaction [see eq. (3.26) for more details].



EVALUATION OF ACTIVATION-FREE ENERGIES 87

action between the induced dipoles of the solvent and the solute charges.
The two resonance structures and the corresponding force fields are de-
scribed schematically in Fig. 3.3.

. Exercise 3.6. Write a program that evaluates &, &,, and H,, for the Sy2
reaction CI” Cl-Cl— CI-C CI', neglecting the hydrogens on the carbon so
that the @ term in eq. (3.26) is not needed. Also, neglect the U, term.
Next, surround this “solute” system by 20 dipoles and simulate the resulting
solute + solvent system with the potential U = ¢, (examine the distances
petween the three atoms during the simulation).

_ Solution 3.6. See Program 3.C.

3.5. EVALUATION OF ACTIVATION-FREE ENERGIES
3.5.1. The EVB Mapping Potential

Once the analytical ground-state potential surface is constructed, we can
start to explore the configuration space and evaluate the reaction free-
energy surface and the activation free energy, Ag”. The strategy for this
involves the free-energy perturbation approach described above, but now
we use a mapping potential which is composed of the EVB diagonal
energies and is given by '

g, =¢&(1—A,)+ A, (3.28)

This mapping potential [which is equivalent in many respects to the poten-
tial used in eq. (3.17)] can drive the system through the “non physical”
process of transforming ¢, to ,, which can be considered as changing the
“molecule” X~ CH,Y to XCH; Y . Note that ¢ has a minimum at the
reactant geometry and &, has a minimum at the product geometry. Thus, as
A, is changed from zero to one, the system is forced to change from the
reactant state to the product state. In particular, the solvent is forced to
adjust its polarization to the changing charge distribution on the solute.

The free energy associated with changing ¢, to &, can be obtained by eq.
(3.20), by a complete analogy to the adiabatic charging procedure described
in Section 3.3. The free-energy function AG(A) reflects both the electro-
static (solvation) effects associated with the changes of the solute charges, as
well as the intramolecular effects associated with changing &, to &,. Figure
3.4 demonstrates the dependence of AG(A) on A for an exchange reaction
where X =Y. The figure gives both the total AG(A) and its electrostatic
components.

Obtaining AG(A) with the perturbation procedure described above and
using the mapping potentials £, is not sufficient for evaluating the activation
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FIGURE 3.4. The dependence of the mapping free energy for an S,2 reaction on the
parameter A. The figure shows both the total free energy AG(A) (solid line) and the
electrostatic contribution AG,,(A) (dotted line), demonstrating that the largest contribution to
AG(A) is due to electrostatic interactions (Ref. 11).

free energy, Ag”, which reflects the probability of being at the transition
state on the actual ground-state potential surface. The function AG(A) is
basically used to find the free energy AG(A™) associated with changing &, to
a potential £,~ (e.g., A” =0.5 in the example of Fig. 3.4), that forces the
system to spend the longest time near the actual transition state. However,
one still needs to find the probability of reaching the transition state for
trajectories that move on the actual ground state, E,. The corresponding
procedure is described below.

3.5.2. Obtaining the Free-Energy Functions

In order to obtain the probability of being at the transition state, we have to
define first a reaction coordinate for our system. A general reaction coordi-
nate X (see eq. 2.9) can be defined in terms of the energy gap ¢, — &, (Ref.
11). This is done by dividing the configuration space of the system into
subspaces s” that satisfy the relationship Ae(s”) = X", in which the energy
differences X" are constants and Ae = g, — ¢,. The parameter X" is then
used as the reaction coordinate and the corresponding free energy, Ag(X™),
is given by Ref. 11

exp{—Ag(X")B} = exp{—AG(A,)B}(exp{—(E(X") — &,(X"))B})
(3.29)

This expression relates the probability of find the system at X" on the
ground state E, to the probability of being on the mapping potential ¢, (that
keeps X around X"). The evaluation of Ag(X™) for an exchange reaction is
described in Fig. 3.5.
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FIGURE 3.5. The actual free-energy profile for the ground-state surface as a function of the
energy gap Ae. The calculations are done for the Cl” + CH,Cl— CICH, + Cl~ exchange
reaction (Ref. 11).

Exercise 3.7. Consider the system introduced in Exercise 3.6. Calculate
both the free energy of moving from &, to &, [AG(A)] and the reaction free
energy Ag(Aeg).

Solution 3.7. Use program 3.C.

~ 80 _|
~
S
= 60
~
3
S 40 _
80
~

20 _

T
-150 -50 50 150

A&y (keal [ mol)

FIGURE 3.6. The free-energy functionals Ag, and Ag, as a function of the energy gap Ae for
the C1~ + CH,Cl— CICH; + C1” reaction (Ref. 11).
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In addition to Ag(X"), we can obtain the probability of being at X" oy
g;. This probability defines the free-energy functlons (Ag,(X") =

1

J exp{—¢,(X")B} ds") given by (Ref. 11)

exp{—Ag;(X")B} = exp{—AG(A,,) B} (exp{—(&,(X") — &,(X")B}),,
(3.30)

The evaluation of the Ag,’s for an exchange reaction is demonstrated in F1g
3.6. The Ag, and Ag, curves can be used to estimate the dependence of Ag”™
on the reaction free energy AG,, as will be shown in Section 3.7.

3.6. EXAMINING DYNAMICAL EFFECTS
Following Chapter 2 we write the rate constant of eq. (2.11) as
k=7"exp{~AG™B} =7"exp{—Ag™B) - (3.31)

where Ag” denotes the Ag(X™) of eq. (2.11) and the factor (ax~/
f% exp{—AgB} dX) of eq. (2.11) is approximated here by unity (this is a
reasonable approximation in many cases, while problems where this factor
must be evaluated will be addressed in Chapter 9). As in Chapter 2 we take
T as the average time needed for a productlve trajectory to pass the
transition state region. This time is around 10" sec™" at room temperature,
but it may have somewhat different values in solvents of different viscosity.
In order to examine possible dynamical effects it is important to evaluate 7
by microscopic simulations. This can be done, at least in principle, by
generating equilibrated trajectories of the system at the reactant state and
evaluating the velocity of reactive trajectories. Unfortunately, such an
approach is entirely impractical for processes with large activation barriers,
because it takes an extremely long time until the kinetic energy of the many
degrees of freedom of the system is converted to motion along the reaction
coordinate and generates a productive trajectory that reaches the transition
state. However, one can use a practical trick by preparing an equilibrated
system at the transition state region and then running “downhill” trajec-
tories (Ref. 12). This can be done, for example, by letting the system
equilibrate with the potential £” mentioned above, and then changing £* to
E, at a point in time where the system crosses the transition state (i.e., when
81 &,). Since classical dynamics is invariant to time reversal, we can use
the time reversal of the downhill trajectories to construct the corresponding
very rare “uphill” productive trajectory. The results of such a procedure are
described in Fig. 3.7, which shows the time reversal of typical downhill
trajectories for an S,2 reaction.
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FIGURE 3.7. Showing the time-dependent solute coordinate R in a typical downhill trajectory
for the S, 2 reaction C1™ + CH,;Cl— CICH, + ClI". Such a class of trajectories gives the average
forward velocity (AR, /At) at the transition state (R =0). The average time required for the
trajectories to move from R = R” =0 to R” + AR™ (where the potential energy at R” + AR is
lower than that at R* by 87') is our 7. Note that a more rigorous result will be obtained by
monitoring &, — &, rather than R (see Ref. 11).

The downhill trajectory approach is useful not only for evaluating the
preexponential factor 7, but also for examining the relationship between the
dynamics of the solute and solvent contributions to the reaction coordinate.
That is, as discussed in detail in Ref. 11, the reaction coordinate can be
described in terms of the solute and the solvent reaction coordinates, where
the solvent coordinate [which corresponds to the solvent contribution to the
energy gap (e, — &;)] is related to the solvent polarization. A reaction can be
considered as solvent driven reactions if the solute coordinate changes
towards its transition state value, only after the solvent reaches configura-
tions whose polarization stabilizes the transition state charge distribution.
On the other hand a reaction can be considered as a solute driven reaction if
the solvent polarization changes to its transition state value, only after the
solute coordinate and charge distribution change to their transition state
values (see Fig. 11 of Ref. 11a). Downhill trajectories allow one to explore
the time dependence of the reactive trajectories and to examine in detail the
individual dynamics of the solute and solvent coordinates (see Ref. 11).

_Other related approaches are discussed in Ref. 18.

Exercise 3.7. Use the system of Exercise 3.6 (the three atoms CI- C-Cl
system) and generate a downhill trajectory, starting with b, =1.6 A, b, =
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1.8 A, and the potential surface E,. Estimate the time 7, as discussed in the
caption of Fig. 3.7. You may also -accomplish this by using the potentia]
& = (&, + £)/2, running trajectories on this potential until equilibration,
and then changing ¢ to E .- If you have difficulties generating the potential
E, or its first derivatives, use for simplicity the potential &, (which will give,
however, somewhat too small value for 7).

The possible dynamical role of the solvent coordinate is of significant
interest when one studies enzymatic reactions and views the enzyme as a
generalized solvent (see Chapter 9). This issue can be studied effectively by
estimating the average time dependence of the solvent coordinate (that
would be obtained from many downhill trajectories) using the Linear
response approximation (Ref. 11). This useful approach is not discussed
here and the interested reader is encouraged to read Ref. 11b and Ref. 19,
The corresponding expression for the average time dependence of the
solvent coordinate will be given and used in Chapter 9.

3.7. LINEAR FREE-ENERGY RELATIONSHIPS

Consideration of the relationship between the ground state free energy Ag
of Fig. 3.5, and the functions Ag, and Ag, of Fig. 3.6 gives an interesting
insight about the correlation between the reaction free energy AG, and the
activation free energy Ag”™. That is, using the solution of the 2 X 2 Hamilto-
nian of eq. (3.27) (E, = 3[(¢&, + &) — (¢, — &)’ +4H?,))) at the transition
state where &, = ¢, and at the ground state minimum; X, where (¢, — ¢,)>
H3,, gives the relationships E (X7, 8)=¢,(X",5)— H,(X",s) and
E (X,,s)=H?%,(X,, s)/[e,(X,, s) — &,(X,, s)] where s is the coordinate per-
pendicular to our X [see eq. (2.9)]. Since Ag(X) is related to the thermal
average of E (X, s) over the s space, we can use the approximation

Ag” = Ag(X™) — Ag(X,)
=Ag(X7) — Agy(X,) — Hy(X")+ (Hfz(Xo)/[(‘ez(Xo) = & (X)),
(3.32)
where H,,(X”) is the average of H,, over s at X~ and ), designates an
average over s. We can further manipulate eq. (3.32) by assuming that Ag,
and Ag, can be approximated by paraboli with the same curvatures (see Fig.

3.8). With this assumption, we can evaluate the Ag at the intersection of the
two paraboli by

Agi(X7)=(AG, + a)/4a (3.33)

where a, which is called the reorganization energy, (see Fig. 3.8), is given by
the difference in the value of Ag, at the minimum of Ag, (the reactant state)
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FIGURE 3.8. A schematic description of the relationship between the free-energy difference

AG, and the activation free energy Ag™. The figure illustrates how a shift of Ag, by AAG(that
changes Ag, to Ag, and AG, to AG, + AAG,) changes Ag™ by a similar amount.

and the minimum of Ag, (the product state). The reader can easily verify eq.
(3.33) in the simple case where AG,=0 and Ag,(X™)=a/4. With eq.
(3.32) we can now write the actual activation free energy as

Ag” =(AGy + @)’/4a — H (X7 ) + H},(X,) (o + AGy)
IAG,| < « (3.34)

Outside the range of (JAG,| < @) we have the situation shown in Fig. 3.9, so

_that Ag™ can be approximated by

Ag” =AG,
AG,>a (3.35)
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FIGURE 3.9. A schematic description of thé free-energy functionals at the range where
|AG,| > a.

and Ag” =0
AGy < —a (3.36)
Equation (3.34) without the H,,(X™) and the H2,/a terms is identical to the

Marcus’ equation for methyl transfer reactions (Ref. 13). This equation
predicts, at the range (JAG,| < @), a linear relationship between AAG, and

AAg™ by
AAg™ =~ 6 AAG, = [(AG, + a)/2a] AAG, (3.37)
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where 6 is the correlation coefficient between AG, and Ag”. Linear free-
energy relationships, which date back to Bronsted (Ref. 14) and Hammond
(Ref. 15), have played a major role in physical organic chemistry (Refs. 16
and 17). The problem is, however, that such relationships, including eq.
(3.34), are not exact nor based on a fundamental microscopic principle. In
fact, the Ag curves will not be harmonic if the solvent response to the solute
charges does not obey the linear response approximation [the actual be-
havior of these Ag’s can only be explored by microscopic considerations
(Ref. 11)]. Furthermore, the parameter « is not expected to be reproduced
accurately by macroscopic estimates. Nevertheless, if @ can be estimated
from microscopic calculations, then even an approximate validity of eq.
(3.34) can provide a powerful way of avoiding the actual evaluation of Ag”.

A microscopic examination of the linear free-energy relationship for S,2
reactions is described in Fig. 3.10. The figure presents the calculated
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FIGURE 3.10. (a) Showing the relationship between the activation free energy Ag” and the
reaction free energy AG, for the X~ + CH,Y—XCH, + Y~ system. (b) The dependence of the
“linear” correlation coefficient 8 = d Ag”/d AG, on AG,,.
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dependence of Ag™ on AG, for a hypothetical system where all the potential
parameters are set at thelr values for the Cl° + CH,Cl— CICH, + CI~
reaction except the aj of eq. (3.26), which is varied in a parametrlc way.
This corresponds to a variation of the electronegativity of a Cl~ type atom
while keeping its radius constant. The calculated results support the approxi-
mate validity of eqgs. (3.34), (3.35) and (3.36), where 6 changes from around
one for very endothermic reactions with a product-like transition state, to
0.5 for AG, ~ 0 [see eq. (3.37)], and then to zero [i.e., eq. (3.36)] for very
exothermic reactions with reactant-like transition states. The qualitative
trend of eq. (3.34) is also supported by many experimental studies (Ref.
16). However, the experimental evidences are not conclusive since it is hard
to find experimental systems where only a and AG,, change without a change
of H,, (which also affects Ag™ ) Such an experiment, however, can easily be

performed on a computer, as is demonstrated in this chapter (see also Ref.
11).

3.8. SOME RELEVANT COMPUTER PROGRAMS

3.A. Evaluations of the Radial Distribution Function by the MD
Simulations

c Molecular dynamics of a dipolar solvent with two atoms per solvent molecule.
c crg The charges of the solvent atoms.

c crgs The charges of the solute atoms.

c dt The time step in units of 0.049 pico seconds.

c ekin The kinetic energy.

c epot The potential energy.

c etot The total energy.

c fl The mapping parameters for free energy calculations.
c fmass The masses of the atoms .

c fmu The dipole moment of the solvent molecules.

c iac The type of atoms for the solute molecule.

c nd The number of solvent molecules.

c nr The number of solute resonance structures.

c ns The number of solutes atoms.

c nsolv The number of solvent atoms.

c rad The radius of the solvent sphere.

c temp The target temperature of the system.

c templ The current temperature of the system.

c xs The solute coordinates.

implicit real*8(a-h,0-z)

parameter (ndip=500,natom=2*ndip,ncoord=3*natom)

common/param/crgs(20,4),crg(2),avdw(8),bvdw(8),fmass(8),
& rz(8),am(8),d(8),r12,dt temp,rad

common/cntil/iter,niter,epot,ekin,etot,templ

common/coords/nd,ns,nsolv,nr,iac(20,4),x(3 ,natom),xs(3,20),
& nb(10),ib(10,4),jb(10,4)
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common/mapping/fl(4),emap(4,10000),imap

call readin

fi(1)=1.0 | Equilibration run.
f12)=0.0

iter=0

call trajec

call map

end

o

e o 66

subroutine map

This subroutine performs the free energy perturbation calculations.
Using the mapping parameter lamda that drives the system from
its initial to final state in nmap steps.

emap(1,ll) The potential associated with the neutral atoms.

emap(2,11) The potential associated with the charged atoms.

el The mapping potential for lamda(l).

e2 ‘The mapping potential for lamda(l+1).

implicit real*8(a-h,0-z)

parameter (ndip=500,natom=2*ndip,ncoord=3*natom)

common/param/crgs(20,4),crg(2),avdw(8),bvdw(8),fmass(8),
rz(8),am(8),d(8),r12,dt temp,rad

common/cntrl/iter niter,epot,ekin,etot,temp1

common/coords/nd,ns,nsolv,nr,iac(20,4),x(3,natom) xs(3,20),

nb(10),ib(10,4)jb(10,4)
common/mapping/fl(4),emap(4,10000),imap
real * 8 lamda
nmap=10 ! Here we perform nmap MD simulations, gradually
imap=0 ! changing lamda and the corresponding mapping
delta=1./(nmap+1) 1 potential (1), e(l)=((1-lamda(l))*U1+lamda(l)*U2),
4o Imap=2 nmap twhere U1 and U2 are stored in the emap(1) and
lamda=(Imap-1)*delta ! emap(2) arrays.
f1(1)=1.0-lamda
fl(2)=lamda
call trajec
write(6,*) "l m a p’ lmap
enddo
bem=0=14(0-6"temp/300) ! The mapping free energy is evaluated below.
dg=0.
li=1 ! With the precalculated values of U1 and U2
do 201=2,nmap ! (emap(1) and emap(2)) we evaluate the free
sume=0. t energy difference deltaG ((lamda(1)--> lamda(l+1)).
sums=0.
do i=1,niter
Ui=l1+1
lamda=(l-1)*delta
fI(1)=1.0-lamda
fl2)=lamda

el=emap(1,1)*fl(1)+emap(2,11)*f1(2)
e2=emap(1,1[)*(fl(1)-delta)}+emap(2 11)*(fl(2)+delta)
dv=e2-el

if(mod(i,20).eq.1) write(6,*) *dv’,dv
sume=sume+dexp(-dv*beta)

sums=sums+1
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enddo
dgl=-log(sume/sums)/beta
dg=dg+dgl
write(6,*) "delta g " dg
20 continue
end
c
subroutine readin
c fm The mass of the atoms.
c ibjb The list of bonded atoms.
c nb The number of bonds.
c x The coordinates of the solvent atoms.

implicit real*8(a-h,0-z)
parameter (ndip=500,natom=2*ndip ncoord=3*natom)
common/cntrlfiter,niter,epot,ekin,etot,temp1
common/coords/nd,ns nsolv,nr,iac(20,4),x(3,natom),xs(3,20),
nb(10),ib(10,4),jb(10,4)
common/dynmcs/fm(natom),vn(ncoord),anm 1 (ncoord),an(ncoord)
common/param/crgs(20,4),crg(2),avdw(8),bvaw(8),fmass(8),
z(8),am(8),d(8),r12,dt,temp,rad
data fmass/1.,16.,14.,12.,35.,43.,23.,39./
read(5,*) tspan dt,temp,rad,fmu
write(6,%) 'rad’,rad
read(3,*) crg(l)
read(5,*) crg(2)
r12=dabs(fmu/crg(1))
read(5,*) ns
write(6,*) 'ns’ ns
if(ns.ne.0) then
read(3,*) nr
write(6,*) 'nr’ ,nr
doii=1,nr
read (5,*) nb(ii)
nbl=nb(ii)
doi=1,nbl
if(nbl.ne.0) read (5,*) ib(i,ii),jb(,ii)
enddo
read(5,*) (iac(i,ii),i=1 ns)
read(5,*) (crgs(i,ii),i=1,ns)
write(6,*) crgs’, (crgs(i,ii),i=1,ns)
enddo
doi=1,ns
read(5,*) (xs(k,i)k=1,3)
enddo
endif
icont=0
if (icont.eq.0) call grid
nsolv=2*nd
write(6,*) 'nsolv’ nsolv
doi=1,ns
dok=1,3
if(ns.ne.0) x(k,i+nsolv)=xs(k,i)
enddo
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enddo
ntot=2*nd+ns
do i=1,nd
fm(i*2-1)=fmass(1)
fm(i*2)=fmass(2)
enddo
do i=nd+1 ntot
if(ns.ne.0) fm(i)=fmass(iac(i,1))
enddo
print '(a,i4,a)’,” The system contains’,nd,’ dipoles.’
niter=400 '
print '(a,i6)’,” Number of iterations to be performed: *,niter
retum
end

subroutine g_r

This subroutine calculates the three radial distribution functions for the
solvent. The radial distribution functions provide information on the
solvent structure. Specially, the function g-AB(r) is the average number
of type B atoms within a spherical shell at a radius r centered on an
arbitary type A atom, divided by the number of type B atoms that one
would expect to find in the shell based on the bulk solvent density.

del 1.0/dr

ghist The radial distribution function,

Imax The maximum value of 1.

nhist The actual number of atoms found within the

spherical shell extending from r to r+dr about a central atom.

implicit real*8(a-h,0-z)

parameter (ndip=500 natom=2*ndip ncoord=3*natom)

real*8 dr(3)

common/cntrl/iter niter,epot,ekin,etot templ

common/coords/nd,ns,nsolv nr,iac(20,4) x(3,natom),xs(3,20),
& nb(10),ib(10,4),jb(10,4)

common/mapping/fl(4),emap(4,10000),imap

common/param/crgs(20,4),crg(2),avdw(8),bvdw(8),fmass(8),

& z(8),am(8),d(8),r12,dt temp,rad
common/rdf/ghist(3,250),nhist(3,250),nrdf
data nhist/750*0/ nrdf/0/
del=1.d0
Imax=1+1.5d0*del*rad
do 10 i=1,nsolv-2 | Here we run over the solvent molecules which
mi=1+mod(i-1,2) ! are composed of two atoms (A and B} each.
id=(i+1)2
3020 j=i+1,nsolv
mj=1+mod(j-1,2) | We only wish to collect intermolecular terms in the
jé=G+1)12 . 1 histograms, so we multiply by the filter inc, where
inc=jd-id 1inc=1 for atoms in different molecules, and inc=0
inc=minO(inc,1) ! for atoms in the same molecule.
k=mi+mj-1 1 All three radial distribution functions are calculated
dr(1)=x(1.i)-x(14) 1 within this loop; k={1,2,3} correspond to the

4r(2)=x(2:1)-x(2,) | functions {g-AA, g-AB,g-BB} respectively.
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ar(3)=x(3,i)x(3,)
r2=dr(1)*dr(1)+dr(2)*dr(2)+dr(3)*dr(3)
I1=del*dsqrt(12)
1=min0( Imax)
nhist(k,)=nhist(k,1)+inc*2
continue
continue
nrdf=nrdf+1
if (mod(iter,80).ne.1) return
s=(del*rad)**3/(nd*nd*nrdf)
do 30 1=1,lmax-1
fitl=1
ri=fltl/del
y=tl/rad
=16.40/((y-2.40)*(y-2.40)*(y+4.d0)) ! A scaling correction for spherical systems.
ghist(1,1)=P*s*nhist(1 1)/(3.d0*flt1*(flti+1.d0)+1)
ghist(21)=0.580*f*s*nhist(2,1)/(3.80*flt *(fltl+1.d0)+1)
ghist(3 1)=f*s*nhist(3,1)/(3.80*{lt1*(fltl+1.d0)+1)
continue
write (6,*) 'radial distribution function’
print *(10i7)’ (1,1=1lmax-1)
print *(10£7.3)’ (ghist(1,1),}=1 lmax-1)
retum
end

100
101

subroutine trajec
This subroutine controls the number of MD steps.

implicit real*8(a-h,0-z)
common/cntrl/iter,niter,epot ekin etot temp1
common/param/crgs(20,4),crg(2),avdw(B),bvdw(8) fmass(8),
1z(8),am(8),d(8),r12,dt,temp,rad
do iter=1 niter
call beeman
etot=epot+ekin
if(mod(iter,20).eq.1) then
print 100 epot,ekin,etot
print 101 temp templ
endif
callg_r 1 Calculates the radial distribution functions.
enddo
retum
format(2x, epot,ekin etot’,3f10.2)
format(2x,’temp °,2x,£10.2,’templ *£10.2)
end

subroutine beeman
3rd-order beeman numerical integration algorithm.
x1 The coordinates.

vn The velocity times dt.
an The current acceleration times dtt.
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anml The previous acceleration times dtt.
implicit real*8(a-h,0-z)
parameter (ndip=500,natom=2*ndip,ncoord=3*natom)
common/cntrl/iter niter,epot ekin,etot temp1
common/coords/nd,ns,nsolv,nr,iac(20,4),x(3,natom),xs(3,20),
& nb(10),ib(10,4),ib(10,4)
real*8 x1(ncoord),d1(ncoord)
common/dynmcs/fm(natom),vn(ncoord),anm1(ncoord),
& an(ncoord)
common/force/du(3 natom),dx(3)
common/param/crgs(20,4),crg(2),avdw(8),bvdw(8),fmass(8),

& z(8),am(8),d(8),r12,dt temp,rad
equivalence (x(1,1),x1(1)),(du(1,1),d1(1))
dtt=dt*dt/6.d0
nx=6*nd+3*ns
do i=1,nx

x1(i)=x1(i)}+vn(i)+4.d0*an(i)-anm1(i)
vn(i)=vn(i)+5.d0*an(i)-anm1(i)
anm1(i)=an(i)

enddo

call energy

ekin=0.d0

do i=1,nx
fmi=fm(1+(i-1)/3)
an(i)=-dtt*d1(i)/fmi
vn(i)=vn(i)}+2.d0*an(i)
ekin=ekin+fmi*vn(i)*vn(i)

enddo

ekin=0.530%ekin/(dt*dt)

if(iter.eq.1) sekin=0.0

sekin=sekin+ekin

if(mod(iter,20).eq.1) then
ekav=sekin/(20*nx)
temp1=1006.8*ekav . 1 1006.8=2/Kb, Kb=0.00197 kcal/mol K .
fact=0.08
sekin=0.0
if(temp.1t.temp1) fact=-0.08
do i=1,nx ! Scales velocites to adjust temperature .

vn(i)=vn(i)*(1.0+fact)

enddo s

endif

retum

end

subroutine energy
c Calculates the energy and forces in the system

implicit real*8(a-h,o0-z)

parameter (ndip=500,natom=2*ndip,ncoord=3*natom)
real*8 dr(3)

common/cntrl/iter,niter,epot,ekin etot,temp1
common/coords/nd,ns,nsolv,nr,iac(20,4) x (3 ,natom),xs(3,20),
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nb(10),ib(10,4),jb(10,4)

common/mapping/f1(4),emap(4,10000),imap
common/force/du(3,natom),dx(3)
common/param/crgs(20,4),crg(2),avdw(8),bvdw(8),fmass(8),

rz(8),am(8),d(8),r12,dt,temp,rad

data avdw/200.,200.,600.,600.,1000.,600.,600.,600./
data bvdw/12.,24.,24.,24.,.24.,24.,24. 24,/

data 1z/.74,1.32,1.4,1.54,2.08,1.99,2.28,2.67/

data am/1.99,2.32,2.3,1.60,1.83,2.03,1.94,1.85/
data 3/104.,54.,58.,88.,51.,58.,47.,36./

epot=0.d0

nsolv=2*nd

ntot=nsolv+ns

do i=1,ntot

dok=1,3

du(k,i)=0.d0
enddo

enddo )
do 10 i=1 nsolv-2 ! Calculates the solvent-solvent interactions.

20
10

mi=1+mod(i-1,2)
id=(@i+1)/2
80 20 j=i+1,nsolv
mj=1+mod(j-1,2)
ja=(+1)12
if(id.eq.jd) go to 20
2=0.0
dok=1,3
dr)=x(k,i)-x(k )
=12+dr(k)**2
enddo
nR=1./12
rl=dsqrt(r2)
avd=avdw(mi)*avéw(mj)
bvd=bvdw(mi)*bvdw(mj)
16=12*12%12
cij=332.d0%crg(mi)*crg(mj)
fij=ava*r6**2-bvd*r6-+cij*rl
epot=epot+fij
dfij=-r2*(12d0*avd*r6**2-6*bvd*r6+cij*rl)
dok=13
duk j)=du(k.j)-dfij*dr(k)
du(k,i)=du(k,i)+dfij*dr(k)
enddo
continue

continue
fk=400.40

doi=1,nd | The solvent intramolecular interactions.

I=l+1
dok=1,3
Sr(k)=x(k.Dx(k }+1)
enddo
12=dr(1)*dr(1)+dr(2)*dr(2)+dr(3)*dr(3)
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rl=dsqrt(r2)
epot=epot+0.5d0*fk* (r1-r12)**2
dfij=fk*(r1-r12)
dfij=dfij/rl
dok=1,3
dutk =du(k })+dfij*dr(k)
du(k 1+ D=du(k,1+1)-dfij*dr(k)
enddo
I=1+1
enddo
imap=imap+1
emap(1,imap)=0.
emap(2,imap)=0.
do 50 i=1ns " 1 The solute solvent interactions .
do 50 j=1nsolv
mj=1+mod(j-1,2)
2=0.
dok=1,3
dr(k)=x(k,i+nsolv)-x(kj)
2=r2+dr(k)**2
enddo
rl=dsqrt(r2)
r1=1.d0/r1
2=rl**2
16=12%*3
doii=1,nr
aij=avdw(iac(i,ii))*avdw(mj)
bij=bvdw(iac(i,ii))*bvdw(mj)
crgt=332%crgs(i, ii)*crg(mj)
fij=crgt*rl+aij*r6**2-bij*ré
emap(ii,imap)=emap (ii,imap)+fij ! Stores the Evb energy of each state .
fij=fij*fl(ii)
epot=epot-+fij
dfij=-12*(12d0*aij*r6**2-6*bij*ré+crgt*rl)
dfij=dfij*fl(ii)

dok=1,3
duk.j)=du(k j)-dfij*dr(k)
du(k,i+nsolv)=du(k,i+nsolv)+dfij*drk)
enddo
enddo
50 continue
call solute
retum
end
c subroutine solute
c This subroutine evaluates the solute intramolecular contributions
c to the energy.

implicit real*8(a-h,0-z)

parameter (ndip=500,natom=2*ndip ncoord=3*natom)
common/cntr]fllér,niter,epol,ekin,elot,lmp1
common/coords/ng,ns,nsolv nr,iac(20,4),x(3,natom),xs(3,20),
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& nb(10),ib(10,4),jb(10,4)
common/dynmcs/fm(natom),vn(ncoord), anm ! (ncoord), an(neoord)
common/force/du(3,natom),dx(3)
common/mapping/{1(4),emap(4,10000),imap
common/param/crgs(20,4),c1g(2), avdw(B),bvdw(8),fmass(8),

& rz(8),am(8),d(8),r12,dt temp,rad
do ii=1,nr

do 10 i=1,ns-1
il=i+1
do 10 j=il,ns
nbl=nb(ii)
inon=1
dok=1,nbl
if(i.eq.ib(k,ii).and.j.eq.jb(k,ii)) inon=0
enddo
il=i+nsolv
jl=j+nsolv
2=0.
dok=1,3
dx)=x(kil)x(k,jl)
2=r2+dx(k)**2
enddo
rl=sqrt(r2)
if(mod(iter,80).eq.1.and.inon.eq.0) write(6, *) 'b=",ij,r1
c=332*crgs(ii,i)*crgs(iij)
aij:avdw(iac(i,ii))"‘avdw(iac(_i,ii))
bij=bvaw(iac(i,ii))*bvdw(iac(j,ii))
10=0.5*(rz(iac(i, i)+ rz(iac(,ii)))
fa=0.5*(am(iac(i,ii))+am@ac(,iD)))
d1=dsqrt(d(iac(i,ii))*d(iac(,ii))
call fintra(f,df r1,d1 fa,r0,c,aij,bij,inon)
epot=epot+f*fl(ii)
df=df+fl(ii)
emap(ii,imap)=emap(ii imap)+f
dok=1,3
duk,il)=du(k,il)+df*dx(k)rl
dugk,j1)=du(k,j1)-df*dx(k)/rl
enddo
10 continue
enddo
retum
end

subroutine fintra(f,df r1,d,fa,10,c,a,b,inon)
implicit real*8(a-h,0-2)
if(inon.eq.0) then
ex=exp(-fa*(r1-10))
f=d*(ex*ex-2.*ex)
df=-2*fa*d*(ex*ex-ex)
f=f+ 10%(r1-10)**2 t Quadratic constraint to keap bonded atoms
i 3f=df+20*(r1-10) 1 within a reasonable distance.
else
2=1/(11**2)
r6=12**3
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r12=r6*r6
f=a*r12-b*r6+c/rl
df=-12.*a*r12+6.*b*r6-c/rl
df=df/rl

endif

return

end
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subroutine grid
c This subroutine generates the initial grid of solvent molecules .

implicit real*8(a-h,0-z)
parameter (ndip=500,natom=2*ndip,ncoord=3*natom)
parameter (ngrid=8)
real*8 dx
real*8 xt(3,ngrid*ngrid*ngrid),xsum(3),x1(3)
real*8 theta,phi,pi,e(3)
common/coordslnd,ns,nsolv,nr,iac(20,4),x(3,natom),xs(3,20),
& nb(10),ib(10,4),jb(10,4)
common/param/crgs(20,4),crg(2),avdw(8),bvdw(8),fmass(8),
& rz(8),am(8),d(8),r12,dt,temp,rad
data xsum/3*0.d0/
dx=3.0
n=0
do 30 i1=1ngrid
do 30 i2=1,ngrid
do 30 i3=1,ngrid
n=n+1
xt(1,n)=il*dx
xt(2,n)=i2*dx
xt(3,n)=i3*dx
dok=13
xsum(k)=xsum(k)+xt(k,n)
enddo
30 continue
dok=1,3
xsum(k)=xsum(k)/n
enddo
doi=1,n
dok=13
xt(k,i)=xt(k,i)-xsum(k)
enddo
enddo
rad2=rad*rad
write(6,*) ’rad’,rad,rad2
nd=0
nst=ns
if(ns.eq.0) nst=1
doi=1n
do j=1,nst
rmin=1.d6
2=0,
do k=13
xl(k)=xs(k,j)
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if(ns.eq.0) x1(k)=0.
2=+ (x1(k,i)-x1(k))**2 -

enddo
if(rmin. gt.r2)rmin=r2
enddo
if (rmin.le.rad2.and.rmin.gt.5.0) then
nd=nd+1
dok=1,3
xt(k,nd)=xt(k,i)
enddo
endif
enddo
format (2x,3f10.3)
pi=dacos(-1.d0)
1=0
doi=1,nd
1=1+1

theta=pi*randm(ir)
phi=2.d0*pi*randm(ir)
e(1)=dsin(theta)*dcos(phi) 1e(1), (2), 8(3) are unit vectors.
e(2)=dsin(theta)*dsin(phi)
e(3)=dcos(theta)
dok=1,3
x(k,1)=xt(k,i)+0.5*r12*e(k)
x(k,1+1)=x1(k,i)-0.5%r12*e(k)
enddo
I=1+1
enddo
retum
end

function randm(i)
double precision a,p,x
data a/16807.0d0/, p/2147483647.0d0/, c/4.6566129¢-10/
x=i

x=a*x
x=dmod(x,p)+.5d+0
=X

randm=x
randm=c*randm
return

end

Data for 3.A (evaluation of the radial distribution function)

1.1 .005 200. 6.0 0.3

+0.4

04

0 ns (for pure solvent calculations)
0 or

0 b
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3.B. Calculations of the Free Energy Associated with Changing
the Ion Charge from 0 to +1

Use program 3.A

Data for 3.B (the free energy calculations)

1.1 .0005 200. 6.0 0.3

+0.4

04

1 ns

2 nr

0 nb

4 iac
00 crgs
0 nb

4 iac
+1.0 crgs
0.0 0.0 0.0

3.C. S, 2 Free Energy Profile »

Use program 3.A

Data for 3.C

1.1 .01 200. 6.0 0.3
+0.4 .
-04

3 ns

2 nr

1 nb

23 ibjb

64 6 iac
-10 0.0 0.0 crgs
1 nb

12 ib jb
646 iac
0.0 0.0 -1.0 crgs
0.0 0.0 0.0

3.0 0.0 0.0

4.8 0.0 0.0
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POTENTIAL SURFACES AND
SIMULATIONS OF
MACROMOLECULES

4.1. BACKGROUND

Macromolecules are formed from many fragments of smaller molecules
which are connected to each other by covalent bonds. For example, protein
molecules are assembled from amino acids which are interconnected by
peptide bonds (see Fig. 4.1). Typical amino acids are given in Fig. 4.2.

A folded protein might look like an extremely complicated object in
comparison to the small molecules considered in the previous chapters. Yet,
the fragments of proteins and other macromolecules are assembled by the
same type of bonds that connect the atoms in small molecules. This fact can
be exploited in constructing potential surfaces for macromolecules and
representing them in a way not much different than that used in Chapter 3
for solvent molecules. That is, we will see below that a macromolecule can
be described as a collection of balls connected by springs, while interacting
with nonnearest neighbors through charge—charge Coulomb interactions and

- short-range repulsions.
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a peptide
bond

HCNO
°o Q0O

FIGURE 4.1, A protein is assembled from amino acids connected to each other by peptide
bonds. Each amino acid contributes an identical group to the backbone plus a distinguishing
residue (R) as a side chain. '

Phenylalanine Histidine Tryptophan

Glycine Alanine Valine

Cysteine

Aspartic Acid

FIGURE 4.2. Some commonly occurring amino acids.
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4.2. FORCE FIELDS FOR LARGE MOLECULES

4.2.1. The Forces in Macromolecules Can Be Described
by Simple Functions

A reliable evaluation of the Born—Oppenheimer potential surfaces of large
molecules by quantum mechanical treatments is impractical even with the
current generation of computers. Alternatively, one can look for a simple
and yet reliable empirical approximation for the Born—Oppenheimer surface
of polyatomic molecules. At first sight it might seem hopeless to approxi-
mate an unknown multidimensional surface by some empirical function.
However, the molecular potential surface is not really so complicated.
Apparently, the variation of the potential as a function of bond stretching or
bond angle bending depends mainly on the neighboring atoms. Thus, if one
deals with a long-chain molecule, the proper representation of the potential
is not by an arbitrary function of the Cartesian coordinates, but rather by a
sum of contributions from subspaces of bonded atoms and contributions
from interactions between nonbonded atoms (which represents the coupling
between the subspaces). In general, it is possible to write the potential
surface as a sum of short-range interactions between atoms bonded to each
other or to the same atom (1-2 and 1-3 interactions), intermediate interac-
tions between atoms separated by two atoms (1-4 interactions) and nonbon-
ded interactions between other atoms. Such a potential can be given in the
following form: '

U(s) = U, 4(b,0) + U,(d) + U(r) 4.1)

where s is the vector of internal coordinates composed of b, 9, ¢, and r,
which are, respectively, the vectors of bond lengths, bond angles, torsional
angles, and nonbonded distances. The first three terms define a very deep
potential well, and since the molecule stays in most cases inside this well
(except in the extreme case of bond dissociation), it is reasonable to
approximate this part of the potential surface by its quadratic expansion,
which is given by

1 1
U,,(b,0)= 3 2 K, (b, — bo’i)2 +3 2 K, (6, — 190,,.)2 + cross terms
’ (4.2)
where U is usually given in kcal/mol, b in A and 6 in radians. The torsional

potential U(¢) is a periodic function, which can be described by the leading
terms in the Fourier expansion of the potential

U,(d) = % 2 K, (1= cos ng,) (4.3)
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The nonbonded potential can be described by an atom-atom interactiop
potential of the form used in eqgs. (3.1) and (3.2).

U,, = 2 Ayr;? = Bury® +332q,q,/r; + Uyy(r) ' (4.4)
Yy

where U, is given in kcal/mol, r; in A, and ¢ in au. Potential surfaces of
the form used in eq. (4.1) are frequently called “force fields” (see Refs. |
and 2). _

4.2.2. Refining the parameters in Molecular Force Fields

The parameters in molecular force fields (e.g., K,, K,, A, and B) can be
determined by using them to calculate different independent molecular

TABLE 4.1. Some Simplified CFF Parameters for Hydrocarbons and
Amides®

Bond-Stretching

Parameters Angle-Bending Parameters
Bond IK, b, Angles 1K, 6, iF,’ rS,
CH 286.0 1.099 HCH 40.0 1.911 2 1.8
CC 110.0 1.490 CCH 25.0 1.911 43 2.2
C'N 403.0 1.278 CCC 18.0 1.911 55 2.5
Cc'O 595.0 1.200 C'NH 26.0 2.094 27 2.0
CN 201.0 1.457 C'NC 54.0 2.094 10 2.4
NH 405.0 0.980 HC'O 48.0 2.094 90 2.3
NC'C 41.0 2.094 52 2.4
Torsional
Parameters ) Nonbonded Parameters®
Angle iK, n Nonbonded £ CrE q a
CCCC 1.2 3 H ,0.05 3.4 0.1 0.1
CC'NC 12.0 2 C 0.42 3.6 —-0.1 1.2
C'NCC’ -1.5 3 C’ 0.40 3.6 0.5 1.2
NCC'N 0.5 3 N 0.36 3.6 -0.4 1.2
O 0.42 3.2 -0.5 1.2
H(N) 0.10 0.4 0.3 0.0

“Energies in kcal/mol, lengths in A, angles in radians and ¢ in au. C’ and H(N) are,
respectively, the carbonyl carbon and hydrogen of the amide bond. See Ref. 1 for more details.
*Cross terms for the angle terms are introduced by adding the Urey-Bradley term 3 F, (r, —
ry Y, where the given angle is formed by the atoms 7, j and k.

“The parameters A and B are defined here by A4, = sij(r;‘ )2, B, = 2£,.j(r;!'.‘ ) where g;= (g :3].)”2
and r;} = (rf+r¥)/2.
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roperties (e.g., energies, structures, and vibrations) and then fitting the

calculated properties to the corresponding observed properties by a sys-
tematic change of the potential parameters in a least-squares procedure. In
eneral the parameters b, and 6, are sensitive to structural information and
 the parameters K, and K, are sensitive to molecular vibrations, while the K,
are determined by information about torsional barriers (that can also be
obtained effectively by quantum mechanical calculations of such barriers).
The parameters A and B of the nonbonded potential are obtained by fitting
properties of molecular crystals (e.g., sublimation energies, crystal struc-
_ tures, and lattice vibrations). Nevertheless, all properties depend in one way
Qr another on all parameters; thus it is important to perform the fitting
_ procedure simultaneously for different properties. Such a simultaneous
_ fitting is the basis of the so-called consistent force field (CFF) approach (Ref.
1) (for related widely used methods see for example Ref. 2). A typical
parameter set is given in Table 4.1.

4.3. ENERGY MINIMIZATION
4.3.1. The Steepest Descent Method

With analytical potential functions we can try to evaluate the molecular
equilibrium geometries and the vibrations around these configurations. This
task can be accomplished in the simplest way using the Cartesian representa-
tion(Ref. 1.)That is, the potential surface for a molecule with n atoms can be
expanded formally around the equilibrium configuration r, and give

U(r, + 8r) = U(r,) + 2 (3Uldr,, )ér,,

1
+ 5 'Ejﬁ (aZU/armé‘er)ﬁriaser 4. (45)

where the indices i and j designate atoms while @ and 8 run over the x, y,
and z coordinates of each atom. The first term in eq. (4.5) is just the energy
of the system at equilibrium. The second term represents the deviation from
equilibrium and the 3n set of equations (for i=1,2,...nand a =1x, y, 2)

gU/ar,, =0 (4.6)

represents the condition that r; is an equilibrium configuration. This set of
equations can be solved approximately by the steepest descent method,
. where the nth step toward the minimum is obtained by

n _ n—1 (aU/aria)
ia = Tia g IZ]'B ((9U/(9rj3)2|1/2

r (4.7)
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here g is a scaling factor which is changed in an iterative way to preven;
r from overshooting the minimum [g is increased in every iteration as long
as U(r")<U("" ') and decreased if U@")> U(x" ")]. This approach is
demonstrated in Program 4.A. '

Exercise 4.1. Use the K, (b — b,)’ term in the potential of eq. (4.2) (with
K, =100 and b,=1.5A) as the molecular potential for a ring of three

carbon atoms and find an equilibrium geometry using eq. (4.7) and Program
4.A.

Solution 4.1. The potential for our system can be written as U = 50{(b,, —
1.5)> + (by, — 1.5)> + (b4, — 1.5)%}. Next we should express the bond lengths
b and the derivatives of U in terms of the Cartesian coordinates of the
system. This is done with b}, = {%._, (r,, — rja)z} and dU/dr,, =%, (dU/
db;)(db;/dr,,) with dU/db; = K(b; — b,) and db;/dr,, = (ry, —r;,)/b,.
Now we can start with an initial guess of coordinates r'" and then use eq.
(4.7) and Program 4.A to change r and minimize U(r).

4.3.2. Converging Minimization Methods

The steepest-descent method converges. very slowly and is not very effective
in searching for minima. A much more reliable and efficient approach is the
modified Newton—Raphson method. This method is based on expanding the
gradient as a Taylor series around the given r and finding the ér that leads
to r, where the gradient is zero (i.e. r, =r + 8r). This gives

dU(ry)/dr,, = dU(ry + 81) /01, + 2 F,y 5 87,5 =0 (4.8)
ie
where F is the matrix of second derivatives, i.e., F, ;= 8*Ular,, Irig.
Then, solving eq. (4.8), one obtains
rp=r+dr=r—-F'VU(r) (4.9)

where VU is the gradient vector [with (VU), = dU/dr,, ] and F* is the
generalized inverse of ¥, which is constructed by ‘‘filtering” the zero
eigenvalues of F before inverting this matrix. This is done by diagonalizing F
with A =S'FS, constructing the matrix A with A, = A, for A,70 and
A, = for A, =0 and then obtaining F* by F* = S(A~")S". The reason for
introducing this special inversion procedure is that U(r) is invariant to rigid
rotation and translation of the molecule so that the F matrix has zero
eigenvectors which prevent its regular inversion (Ref. 1).

It is instructive to note that both the steepest-descent and the Newton—
Raphson methods lead in the direction of —VU; however, the steepest-
descent method is unable to tell us how far to go in each step and therefore
we have to search for the minimum in a very ineffective way (see Fig. 4.3).
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V Steepest Descent

Newton Raphson

FIGURE 4.3. Illustrating the effectiveness of different minimization schemes. The steepest-
descent method requires many steps to reach the minimum, while the Newton-Raphson
method locates the minimum in a few steps (at the expense, however, of evaluating the second
derivative matrix).

Exercise 4.2. Use the Newton—Raphson method to minimize the function
u=(x—1)>+ (y —2)° (Hint: in the present case F" is simply the inverse of
F)so that F' F=F'F=1

Solution 4.2. The matrix F is given by F,, =(3°Uldx*)=2, F,=2,
F,,=(0°Uldxdy) =0, F,, = F,,. The inverse of F is given by (F'),, =
(F),=1%; (F "), =(F"), =0 (this can be easily verified by evaluating
F 'F and seeing that the product is indeed the unit matrix). Now we
just use eq. (4.9), getting x =x — F;; (aU/dx) =x—(1/2)- (2(x = 1)); y =
y—F5 (8Ulay) =y —(1/2)- (2(y —2))-

Exercise 4.3. Use the Newton—Raphson method to minimize the system in
Problem 4.1.

Solution 4.3. Use Program 4.B.

Equation (4.9) requires the evaluation of the second derivative matrix F,
which is quite involved. Alternatively, one can use the conjugated gradient
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methods where an approximation of F™ is being built while searching the
minimum using only the first derivatives vector VU (for a description of
these powerful methods and related approaches, see Ref. 3). ‘

Energy minimization methods that exploit information about the second
derivative of the potential are quite effective in the structural refinement of
proteins. That is, in the process of X-ray structural determination one
sometimes obtains bad steric interactions that can easily be relaxed by 3
small number of energy minimization cycles. The type of relaxation that cap
be obtained by energy minimization procedures is illustrated in Fig. 4.4. Iy -
fact, one can combine the potential U(r) with the function which is usually
optimized in X-ray structure determination (the “R factor””) and minimize
the sum of these functions (Ref. 4) by a conjugated gradient method, thus
satisfying both the X-ray electron density constraints and steric constraint
dictated by the molecular potential surface.

Although the conjugated gradient and related methods are very effective
in finding local minima, they do not overcome the problems associated with
the enormous dimensionality of macromolecules. That is, in systems with

FIGURE 4.4. The relaxation of steric interactions by energy minimization. The figure shows
the result of an energy minimization of the Gly 12— Ala mutant of BPTI from the native
geometry (light) where it has bad steric contacts, to a relaxed geometry (dark). The mutani
Alanine residue is drawn as a sphere. -
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many degrees of freedom we expect to find a very large number of local
minima and it is not clear, for example, how to find in an efficient way the
Jowest minimum. For this purpose one must use much more computer time
and different types of search procedures (Monte Carlo or molecular
dynamics), generating different configurations and minimizing at different
regions of the conformation space of the given molecule. Such methods
were, however, useless until the emergence of supercomputers in the early
1980s and even at the present time they do not allow for a complete
configuration search in proteins.

44 NORMAL MODES ANALYSIS OF LARGE MOLECULES
Finding a local minimum by a convergent minimization method allows one
{0 exploit the third term in eq. (4.5) for evaluation of the vibrations around

that minimum. That is, the potential for infinitesimal vibrations around the
local minimum r, can be written

1
8U(ry) = 3 or'F(r,) ér (4.10)
The kinetic energy for the system can be written as

1 1 .
8T = 5 8¥'Méi = 5 2 m, 8i,, (4.11)

where M is the diagonal matrix of the atomic masses (M,, ;; = M,6,0,,).

The. expression for the potential energy can be greatly simplified if we
transform the Cartesian coordinates to a new set of coordinates called
normal coordinates using

sr=M""’LQ (4.12)

where the matrix L is constructed from the column vectors L° that are
obtained by diagonalizing the mass weighted F matrix

M 'PFMTHL = AL (4.13)

With this transformation matrix we can express the kinetic and potential
energies in the simple form

sU =3 3 A0

sT=13 0> (4.14)
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Using the Lagrange’s equation of motion (Ref. 6) (the Lagrange’s equation
{d[o8T/9Q,]/dt+ ¢ 6U/dQ,} =0 may be considered as an alternative
form of Newton’s equation of motion) and Q (¢) = A, cos(2my,t) gives

As = (27”/5)2 (415)

where v, is now identified as the vibrational frequency associated with the
normal mode Q,. Thus we obtain from eqs. (4.12) and (4.13) the vibrations
of the molecule in terms of the ér, vector.

The treatment described above (which was introduced in Ref. 1) is much
simpler than the standard treatment (which uses internal coordinates b, 6,
¢) (Ref. 5) and it can be conveniently implemented in studies of large
molecules or small proteins, evaluating the second derivative matrix F
numerically, using analytical first derivatives.

Exercise 4.4. Take the minimized structure of the three-carbon ring of
Exercise 4.1 and evaluate its normal modes.

Solution 4.4. At the minimized structure of the ring (r =r,) you have to
obtain the matrix F. This can be accomplished by numerical derivative of
the vector VU, evaluated analytically in Exercise 4.1. The expression to be
used is

F,, = lim (VU(r, + £ 1,,) ~VU(r,))/e (4.16)

where dr,, is a vector whose elements are set to zero except the iath
element which is taken as 1. The parameter £ should have a finite value
larger than the numerical precision of the given computer (typically,
107° A). Once you construct the matrix F just diagonalize the matrix
M "’FM™""? and obtain the frequencies v, from the eigenvalues A, (by eq.
4.15) and the normal mode vectors which are simply the eigenvectors L,.
The corresponding Cartesian displacement for each mode is obtained from
eq. (4.12). You will obtain three modes with non-zero frequencies that
correspond to intramolecular vibrations, and six with zero frequencies that
correspond to translation and rotation of the molecule (for these modes the
change in potential energy is zero and therefore A, =0). The three in-
tramolecular normal modes obtained from our exercise are shown in Fig. 4.5
(see Program 4.C, for a hint).

The harmonic normal mode description is quite useful for approximated
evaluation of various molecular properties. For example, one can use this
description in a convenient way to evaluate the average thermal atomic
motion. This is done by using the normal mode vector L, in eq. (4.12),
which can be written as

3n
=m; 22 L0, (4.17)
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FIGURE 4.5. The normal modes of the CCC ring.

From this expression we obtain the thermal average
(Ar Ar)r=m' 2 (Li,)(Q))

(Q)r= (h/(4772cﬂs))[% + (exp{hu,/ky T} - 1)‘1] (4.18)

where 7 is the frequency expressed in cm .
The harmonic approximation can also be used to provide an estimate of
the vibrational free energy, using (Refs. 1 and 6).

AG,, = > hv,/2+ kT In[1 — exp(—hv,/kyT)] (4.19)

This estimate should, however, be used while keeping in mind the availabili-
ty of many minima in macromolecules and the fact that the AG ;, should in
principle be averaged over these many minima. Furthermore, the effect of
free energy associated with the solvent molecules is not included in AG ;.

4.5. MOLECULAR DYNAMICS AND PHASE SPACE EXPLORATION
4.5.1. Thermal Amplitudes

With the powerful computers, that are now starting to emerge, one can use
MD in the same way as outlined in Chapter 3 and explore the configuration
space of large molecules. Using the potential functions of Section 4.2 and
the procedure of Section 3.2.2, we can propagate trajectories of proteins at
a given constant temperature. The results of such trajectories can be used to
evaluate various average properties. For example, the average thermal
_atomic amplitudes can be expressed through eq. (3.4) as

(Fatp) = [ rury exp(-U®B) dr [ exp(-U®B) dr= (1.t
(4.20)
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where we use the ergodic hypothesis to replace the Boltzmann average over
the coordinates by time average over a long tra]ectory Typical results for
BPTT are given in Ref. 7.

4.5.2. Diffusion Constants and Autocorrelation Times

Various ligands “bind” to their protein sites in a diffusive motion. Similarly,
the distance between different ends of a folded macromolecule changes in a
way which can be described as a diffusive motion in the presence of a
constraint potential (that keeps the parts of the molecule near their folded
configurations). Brownian-type diffusive motion in the absence of a restric-
tive potential is characterized by a diffusion constant (Ref. 6)

D =lim 6_ {Je(t) = r(0)}?) (4.21)

The diffusion constant can be evaluated by a microscopic simulation using
the relationship (Ref. 6)

= % L ) (#0)-#(£)) dt (4.22)

where the function (#(0)- (£)(¢)) is called the velocity autocorrelation func-
tion. The diffusion constant is related to the corresponding friction constant
v by the Einstein equation

D=k,Tly (4.23)

In order to evaluate the autocorrelation function we again exploit the
ergodic hypothesis and replace the average over phase space {( ) by a time
average writing,

C(t")= (r(O)i(¢")) = % LT r()e(t+ ¢').dt (4.24)

In calculating eq. (4.24) we divide the time axis to N equal intervals,
evaluating

N
C(m) = % > B + m) (4.25)

i=1
where the time is written here in integers. In order to understand this
equation it is best to try it on a specific example such as that of Fig. 4.6. For
example, in order to evaluate C(z=2) from Fig. 4.6 we have to collect the
product (X(1)x(3) + £(2)%(4) + £(3)%(5) + - - -). The value of C(f) changes
from (%) for {C(0)= %[#(1)%(1) + £(2)%(2) + - -]} to zero for large ¢
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FIGURE 4.6. This illustration shows how to use the time dependance of X to construct an
autocorrelation function C(£) = {¥(0)%(f)). The upper part of the figure shows X(s) and the
corresponding normalized C(¢). The lower part of the figure shows the beginning portion of x(r)
on an expanded scale and illustrates the construction of C(2) by the sum of the products

_ %(6)X(t + 2) (see text for further discussion).
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since in this case the values of % are uncorrelated and their product will
average to zero. The time it takes for C(¢) to drop to (1/e) from its valye at
t = 0is called the autocorrelation time. This is the time after which the given
variable (i.e., ) starts to lose its memory about its initial condition.

Exercise 4.5. Evaluate the autocorrelation function and the autocorrelation
time for the function exp(—1¢) cos(2¢).

Macromolecular fluctuations are characterized by correlation times which
are closely related to the underlined relaxation processes. Such relaxation
times can be evaluated by classical trajectory simulations using

_ [(A@A@)dr (T ‘
T, = (A0)A(0)) —fo exp{—t/7,} dt (4.26)

where A is the property under consideration (which is taken relative to its
average value) and it is assumed that the autocorrelation function can be
characterized by a single exponential time-dependent behavior.

From the various autocorrelation times which characterized mac-
romolecular fluctuations, those associated with the fluctuation of the electro-
static field from the protein on its reacting fragments are probably the most
important (see Ref. 8). These autocorrelation times define the dielectric
relaxation times for different protein sites and can be used to estimate
dynamical effects on biological reactions (see Chapter 9 for more details).

4.5.3. Free Energies of Macromolecules

Probably the most important aspects of macromolecular function are not
associated with true dynamical properties but with activation-free energies
and binding free energies. Thus the most important feature of computer-
intensive phase-space exploration by Monte Carlo or molecular dynamics
methods is the ability to evaluate free energies by the free-energy perturba-
tion (FEP) methods described in Chapter 3. Such free-energy calculations
are rather meaningless without taking into account the solvent around the
protein. Effective ways of including the solvent in free-energy calculation of
solvated proteins will be described in the next section. Early FEP studies of
the energetics of proteins are described in Refs. 10-13. More recent studies
are reviewed in Ref. 14 and different applications are considered in sub-
sequent chapters.

4.6. ELECTROSTATIC FREE ENERGIES AND DIELECTRIC EFFECTS IN
MACROMOLECULES

Proteins do not exist as isolated entities in the gas phase. They are always
solvated by water molecules or embedded in membranes. Trying to obtain a
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realistic description of solvated proteins requires one to handle the effect of
the surrounding environment. This is particularly true when one deals with
ionized groups in proteins, since the interactions between such groups are
Jargely screened by the surrounding solvent. For example, the electrostatic
interaction between two ionized groups is given through eq. (4.4) as

U, =332q,9,/1+; (4.27)
This expression gives an energy of 100 kcal/mol and an enormous force
(aU/dr) of about 30 kcal mol ' A™' for two ionized groups of identical
charges which are held 3 A apart. This would “break’ a protein apart in the
absence of other compensating forces. However, other polar groups of the
proteins and/or water molecules are always presented around ionized
groups. This polar surrounding provides a compensating force that can be
_represented by

0nb =332q,q,/(r1,4:2) . (4.28)

where d, is considered a “dielectric constant” and is typically larger than
30, even inside a protein (Ref. 8). With such a large d,, the effective force
between charged groups becomes relatively small (1 kcal mol ' A" for two
charges 3 A apart). Unfortunately, there is no general macroscopic prescrip-
tion for the evaluation of the specific value of d,, as it represents the effect
of the surrounding of the charges, which is different in different cases. Thus
it is crucial to take into account the effect of the solvent around the protein
in any realistic simulation study.

Including the solvent around a protein can be done, in principle, by the
explicit approach of Chapter 3. Such a treatment, however, is very expen-
sive, in view of the large number of water molecules needed to properly
solvate the entire protein. Thus we will consider below two alternative
approaches which allow one to effectively represent the solvent. The
discussion of these models will be focused on electrostatic aspects where the
importance of solvent effects is easily demonstrated.

4.6.1. The Protein Dipoles—Langevin Dipoles (PDLD) Model

The calculations of electrostatic energies in proteins can be formulated using
macroscopic models (Ref. 9), but such models require knowledge of the
protein “dielectric constant,” which cannot be determined from macroscopic
considerations; this “constant” is different in different parts of the protein
(see Ref. 14 for discussion). Fortunately, the use of microscopic approaches
_allows one to avoid the issue of the dielectric constant altogether by
explicitly including all the key electrostatic contributions. A simple and
effective way of doing so is provided by the protein dipoles—Langevin
dipoles (PDLD) model (Ref. 8). This model (which is illustrated in Fig. 4.7)
considers a charge or charges in a reference region (region I) and evaluates
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FIGURE 4.7. A schematic description of the different contributions to the PDLD model. The
figure considers the energetics of an ion pair inside a protein interior. The upper part describes
the protein permanent dipoles, the middle part describes the induced dipoles of the protein,
while the lower part describes the surrounding water molecules and the bulk region, which is
represented by a macroscopic continuum model.
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their interaction with the rest of the protein—solvent system. The protein
atoms around region I (referred to as region II) are described by considering
explicitly their residual charges and the induced dipoles associated with their
atomic polarizabilities. The solvent molecules (region 1IT) are described by
the Langevin dipoles (LD) model of Chapter 2. The electrostatic energy of
the charges in region I is evaluated by

U(Q) = Uy + Uy, + Uy, +AG, (4.29)

where Uy, is the interaction between the charges in region I and is given (in
kcal/mol) by

Upp =332 §, Q.0,/r, (4.30)

Note that we do not use any dielectric constant here since all interactions
are considered explicitly. Uy, is the interaction between the charges in
region 1 and the protein residual charges in region I and is given by

Ug, = 332% Q.4,/r, (4.31)

Uy, is the energy associated with polarizing the induced dipoles of the
protein atoms and is given by [see eq. (3.3) and Ref. 8b]

Up, = —166 2 v/ (4.32)

where, £ is the field on the ith atom. This field is evaluated in a self-
consistent way including the field from the permanent charge of the system,
£° and the induced dipoles (p; = ;£;) of the protein atoms. Finally, AG,,
is the energy of polarization of the Langevin dipoles which represents the
solvation of the system of the surrounding solvent and is given by [see eq.
(2.20)]

AQ,, = —166 2 plE! (4.33)

where the pr are the Langevin dipoles around the protein which are

polarized according to eq. (2.19) and reflects both the field ¢’ from the
permanent charges as well as the field £, from the other Langevin dipoles
(Ref. 8). The contribution should also include the energy of the surrounding
bulk region, which is evaluated by a macroscopic continuum model.

Exercise 4.2. Use the PDLD Model to calculate the energy of a charged
_ Asp 3 in the Protein BPTI, considering only U, and AG,,,,.

A reasonable alternative to the PDLD method can be obtained by
approaches that represent the solvent as a dielectric continuum and evaluate
the electric field in the system by discretized continuum approaches (see
Ref. 15). Note, however, that the early macroscopic studies (including the
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pioneering studies of Ref. 9) have considered the protein as a nonpolar
medium and could not account consistently for the energetlcs of charged
groups (see Ref. 14 for discussion).

4.6.2. Surface-Constrained Solvent Model for Macromolecules

The PDLD model described above is quite useful for evaluating electrostatic
free energies in proteins. However, with more computer power one can use

FIGURE 4.8. A surface constrained all-atom (SCAAS) model for solvated proteins. The figure
depicts the different regions of the model around Asp 3 in the protein BPTL. Region a includes
the solute atoms and the unconstrained protein atoms as well as the unconstrained water

molecules. Region b is the surface constraints region which is surrounded by a bulk region (see
Ref. 10 for more details).
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more explicit solvent models. In particular, one can exploit the all-af
solvent model of Chapter 3 for electrostatic calculations of macromoleci
(Ref. 10). This model, which is illustrated in Fig. 4.8, surrounds a gi
region in the protein by a sphere of water molecules, deleting all molect
that are within a van der Waals distance from the protein atoms. Next,
solvent molecules within the surface region are constrained to have
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Free Energ_y (kcal/mol)
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T
0.0 0.2 0.4 0.6 0.8 1.0
Q=0 Q=-1
FIGURE 4.9. Caclulations of the free energy of charging Asp 3 and Glu 7 in BPTI. The fi
describes the calculated “solvation” free energy [obtained with the use of eq. (3.20)] .
function of the charge of the corresponding acid. The same type of calculations for a charg
water are described in Fig. 3.2 and demonstrated by Program 3.B.
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polarization and radial constraint they would have in the corresponding
infinite system. : ‘

This explicit model is particularly useful for free-energy perturbation
(FEP) calculations in proteins. For example, if we like to evaluate the
energy associated with charging a given group in a protein (see Refs. 10 and
11) we can use eq. (3.20) and perform the same type of calculationg
described in Section 3.3.2, but with the actual protein microenvironment
rather than pure water. Such calculations are described in Fig. 4.9 for the
free energy of charging the residues Asp 3 and Glu 7 in their corresponding
sites in the protein BPTI. The same type of model can be used for
FEP/EVB calculations of chemical reactions in proteins, using the approach
described in Section 3.5 (see Chapter 5).

4.7. SOME RELEVANT COMPUTER PROGRAMS

4.A. Steepest Descent Minimization Program

c d The first derivatives vector ( i.e. the gradient of the potetial energy )
c e The energy of the system

c ibjb The bonded atoms

c nat The number of atoms

c nb The number of bonds

c nsteep  The number of iterations

c X The coordinate vector

real x(nsteep,3 ),d(nsteep,3 ),ens(nsteep),steps(nsteep)
common/topo/nat,nb,ib(20),jb(20)
read* nat,nsteep
do i=1,nat
read*,(x(i,j).j=1,3)
enddo
read* nb
doi=1,nb
read*,ib(i),jb(i)
write(6,*) ib(i)jb(i)
enddo
do ith=1,nsteep
call molec(x,d,e)
call steepd(d,x,e,ith,ens,steps,step)
enddo
end

subroutine steepd(d,x,¢,ith,ens,steps,step)

this subroutine evaluates the coordinate shift
by using a simple steepest descent method.
real x(nsteep,3 ),d(nsteep,3 ).ens(nsteep),steps(nsteep)
cominon/topo/n,nb,ib(20),jb(20)
ens(ith)=e
if(ith.eq.1) then
step=0.005 ! Initializes step size.
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else Lt Cens Cith )gtens(ith- 1)) then
step = 0.3 * step ! 1f energy goss up, decrease step size.
else
step=1.2 * step ! If energy goes down, increase step size.
endif
endif
steps( ith ) = step
s=0.0
doi=1,n
doj=1,3
s =s + d(ij) **2
enddo
enddo
s =step/sqrt(s)
doi=1,n
doj=1,3
x(iJ) = x(@j) - s * d(ij)
enddo
print*,’coordinate’ (X (i.j),j=1,3)
enddo
retumn
end

100

subroutine molec(x,d,e)
Calculates the energy and first derivatives
for the given system
b The bond length
real d(nsteep,3),x(nsteep,3),c(3)
common/topo/nat,nb,ib(20),jb(20)
e=0.
do i=1,n
dok=1,3
d(i,k)=0.
enddo
enddo
doi=1,nb
il=ib(i)
j1=jb()
b=0.
dok=1,3
c(k)=x(il,k)-x(1 k)
b=b+c(k)**2
enddo -
b=sqrt(b)
call ebond(b,eb,df)
e=e+eb
dok=13
d(il,k)=d(i1,k)+df*c(k)/b
d(Lk)=d(1.k)-df*c(k)/b
enddo
enddo
print 100,e
retum
format(2x,’energy’,f10.2)
end
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Czm—==

subroutine ebond (b,f,df)

£=50%(b-1.5)**2
df=100*(b-1.5)
return

end

Data for (4.A) the steepest deacent method

3 100 nat nsteep
0.0 0.0 0.0 x1ylzl
1.5 00 0.0 x2y2z2
00 15 00 x3y3z3

3 nb
12 ib jb
23

31

4.B. A Convergent Minimization Method

o 06000

The modified Newton Raphson method

d The first derivatives vector
ib,jb The bonded atoms

nat The number of atoms
nmin The number of iterations

b 4 The coordinate vector

implicit real*8 (A-H,0-Z)
dimension F(20,20),x(20,3),d(20,3),d2(20,3)
dimension ¢(20,20),ev(20)
integer s,t
common/topo/nat,nb,ib(20),jb(20)
read* nat,nmin
do i=1,nat
read* (x(i,)),=1,3)
enddo
read* nb
doi=1,nb
read*,ib(i),jb(i)
enddo
do ith = 1 ,nmin
s=0
eps =0.02
do j=1,nat
dok=1,3
s=s+1
t=0
dol=1nat
dom=1,3
call molec(x.d.€)
x(Lm)=x(l,m) - eps

1 Caleulates the second derivatives
| by a numerical method.
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1001

call molec(x,d2,e)
x(1,m)=x(l,m) + eps
t=t+1
F(s,1)=(d(jk)-d2(j,k))/eps
enddo
enddo
enddo
enddo
print101,e ‘
format(2x,’energy’ £10.6
n=3*nat
write(6,*) 'F matrix’
do i=1,n
print 1001,(F(i,j)j=1,n)
enddo
format(9f11.3)
call diag(F,c,ev,n)
call newton_min(nnat,x,d,c,ev)
enddo

end

subroutine newton_min(n,nat x,d,c,ev)

This subroutine performs a modified Newton Raphson minimization

c the eigenvectors of the second derivatives matrix
d the corresponding gradient
X the n dimensional coordinate vector

implicit real*8 (A-H,0-Z)
dimension x(20,3),d(20,3),c(20,20),ev(20),d1(20),5(20)
1=0
do i=1 nat
do k=13
1=1+1
s(1)=0.
d1)=d(i k)
enddo
enddo
sumd2 = 0.0
doi=1,n
sumd2 = sumd2 + d1(i)**2
enddo
snmd2 = sqrt(sumd2/n)
stepi=0.1
do i=1,n
if(i.eq.1) then
cr0 = 0.0004*ev(1)
endif
sum=0.0
dok=1,n
sum=sum-+d1(k)*c(k,i)
enddo
if(dabs(ev(i)).ge.cr0) then
write(6,*) ’i ev ’ i,ev(i)

131

ev(i)=1./ev(i) ! Filters small eigenvalues
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shift=sum*ev(i)
if(ev(i).1t.0) shift = (stepi/sumd2)*sum
doj=1,n
s(j)=s(j)-shift*c(j,1)
enddo
endif
enddo
1=0
do i=1,nat
do k=1,3
1=1+1
x(ik)=x(ik)+s()
enddo
enddo
doi=1,nat
write(6,*) "coord. - *,(x(i,j).j=1,3)
enddo
retum
end

subroutine molec(x,d,e)

The corresponding subroutine is given in 4.A.

subroutine ebond(b,f,df)

implicit real*8 (A-H,0-Z)
f=50%(b-1.5)**2
df=100*(b-1.5)

retum

end

subroutine DIAG

The corresponding subroutine is given in 1.A.

Data for (4.B) the Newton Raphson method

23 nat,nmin

0.0 0.0 0.0 X1,Y1,Z1
1.7 0.0 0.0 X2,Y2,72
1 nb

12 ib,jb

4.C. Normal Mode Analysis

6o 600060

d The first derivatives vector
ibjb The bonded atoms

kb The force constant

nat The number of atoms

nb The number of bonds
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¢ x The coordinate vector
¢ y(i) The atomic masses
implicit real*8 (A-H,0-Z)
dimension w(20),y(20),G(20,20)
dimension F(20,20),x(20,3),d(20,3),d2(20,20)

dimension ¢(20,20),ev(100)
common/topo/nat,nb,ib(20),jb(20),kb(20)
mteger s,t
s=0
cons = 1.d3*2.0455/(2.99793%2%3.141592)
read* nat
t=1
do i=1,nat
read* (x(i,j),j=1,3)
read(5,*) y(i)
w()=y(i)
w(t+1)=y(i)
w(t+2)=y(i)
=t+3
enddo
read* nb
do i=1,nb
read*,ib(i),jb(i) kbfi)
enddo
eps=1.0d-3
do j=1,nat I Calculates the second derivative of the
dok=1,3 | potential function.
s=s+1 i
=0
do 1=1,nat
dom=13
x(Lm)=x(l,m) + eps
call molec(x,d.e)
x(L,m)=x(l,m) -2*eps
call molec(x,d2,e)
x(Lm)=x(l,m) + eps
t=t+1
F(s.t)=(d(j,k)-d2(j k))/(2*eps)
enddo
enddo
enddo
enddo
u=3*nat
write(6,*) 'F matrix’
doi=1,n
print 1001, (F(j)=1,n)
enddo
write (6,*) "'mass scaled F°
doi=1n
doj=1,n
8(L)=f(1§)/(dsqre(w(i)y*dsqri(w(j)))
enddo
enddo

doi=1,n
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print 1001,(G(i).j=1.n)
enddo
call diag(g,c.ev,n)
write(6,*) "Frequency’
doi=1,n

ev(i)=dsqrt(dabs(ev(i)))*cons | The frequences ( in cm'1) .
print 1000,ev(i)
enddo
format(2x,f16.4)
write(6,*) '"Normal mode’
doi=1l,u
print 1002,(c(j.i).j=1,n)
enddo
format(918.3)
format(9f8.3)
end

subroutine DIAG

The corresponding subroutine is giveu in 1.A.

C=m===

subroutine molec(x,d,e.kf)

The corresponding subroutine is given in 4.A.

subroutine ebond(b,f,df ki)

implicit real*8 (A-H,0-Z)
f=ki*(b-1.5d0)**2
df=(ki*2)*(b-1.5d0)
retum

end

Data for(4.C)normal modes of water

3 nat

-75 0. 0. x1ylzl
1.0 mass]
075 0. 0. x2y2z2
1.0 mass2
0.0 1.299 0.0 x3y3z3
16.0 mass3

3 nb
1275 ibjb fk
2 3 535

31535



REFERENCES ‘ : 135
REFERENCES

S

B

10.
1.
12.
13.
14.
15.

(a) S. Lifson and A. Warshel, J. Chem. Phys., 49, 5116 (1986); (b) A. Warshel and S.
Lifson, J. Chem. Phys., 53, 582 (1970); (c) A. Warshel, M. Levitt, and S. Lifson, J. Mol.
Spectrosc., 33, 84 (1970); (d) A. Warshel in Modern Theoretical Chemistry, Vol 7, G. A.
Segal (Ed.), (1977), p. 133, Plenum, New York.

N. L. Allinger, Adv. Phys. Org. Chem., 13, 1 (1976).
R. Fletcher, Practical Methods of Optimization, Wiley, New York, 1980.
A. Jack and M. Levitt, Acta Cryst., A34, 931 (1978).

E. B. Wilson, J. C. Decius, and P. C. Cross, Molecular Vibrations, McGraw-Hill, New
York, 1955.

D. A. McQuartie, Statistical Mechanics, Harper and Row, New York, 1976.
M. Levitt, J. Mol. Biol., 168, 595 (1983).

(a) A. Warshel and S. T. Russell, Quarz. Rev. Biophys., 17, 283 (1984). (b) S. T. Russell
and A. Warshel, J. Mol. Biol., 185, 389 (1985). (c) A. Warshel and M. Levitt, J. Mol.
Biol., 103, 227 (1976)

C. Tanford and J. G. Kirkwood, J. Am. Chem. Soc., 79, 5333 (1957).

A. Warshel, F. Sussman, and G. King, Biochemistry, 25, 8368 (1986).

A. Warshel, Pontif. Acad. Sci. Script. Var., 55, 59 (1984).

C. F. Wong and J. A. McCammon, J. Am. Chem. Soc., 108, 3830 (1986).

S. N. Rao, U. C. Singh, P. A. Bash and P. A. Kollman, Nature, 328, 551 (1987).

A. Warshel and J. Aquist, Ann. Rev. Biophys. Biophys. Chem., 20, 267 (1991).

K. A. Sharp and B. Honig, Ann. Rev. Biophys. Biophys. Chem., 19, 301 (1990).



MODELING REACTIONS IN
ENZYMES: AN
INTRODUCTION

This chapter will outline the main principles of modeling enzymatic re-
actions and leave to subsequent chapters the examination of specific en-
zymes and different catalytic factors.

The basic approach of treating reactions in the microenvironment of
enzyme-active sites is identical to the one taken in modeling reactions in
solutions. However, in studying enzymes we will have an advantage over the
calculations of solution reactions; that is, the enzyme potential surfaces will
be calibrated by using solution reactions as reference systems. Thus we will
view the enzyme as another “solvent” and focus on the changes in the EVB
potential surfaces moving from the reference solvent (i.e., water) to the
enzyme-active site. In the actual simulations and discussions we will examine
two approaches: (1) The simplified PDLD method, which evaluates free
energies using the average protein coordinates as obtained from X-ray
crystallography, while modeling the solvent by the LD model, and (2) an
explicit all-atom model for both the protein and the solvent which evaluates
free energies by exploring the phase space of the system.

136
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5.1. ENZYME KINETICS AND FREE-ENERGY SURFACES

5.1.1. Basic Concepts of Enzyme Kinetics

Since a significant part of our discussion will involve comparison of reactions
in solutions and in proteins it is important to establish a link between
experimental kinetic measurements in such systems and the corresponding
free-energy surfaces.

Typical single-substrate enzymatic reactions can be described by the
kinetic scheme (see Refs. 1 and 2 for more extensive discussions).

k kCBT
E+S—=ES-SEP—>E+ P (5.1)

k_y

where S and P are the substrate and product, respectively. Such reactions
are usually monitored in terms of the substrate concentrations [S] and are
analyzed in terms of the velocity.

v =—d[S]/dt (5.2)

The use of the steady-state approximation gives this velocity as a function of
[S] by

v=([SI/([S1+ Ky ) E-]k (5.3)

cat
where E is the total enzyme concentration and the constant K,, is given by
Ky = (k_y + koo ) Ky (5.4)

When k_,, is smaller than k_; we can approximate K,, by the equilibrium
constant K for the dissociation of the substrate from the enzyme

K, = K,=[E][S]/[ES] = k_,/k, (5.5)

The dependence of v on [S] follows saturation kinetics, as shown in Fig. 5.1.

The asymptotic value v,,, provides a convenient estimate of k_,, by
Umax = Kearl E7] (5.6)
At low substrate concentrations the velocity is given by (Ref. 1)
v = (ke Ky E7](S] (5.7)

Thus we can consider (k.,,/K,,) as an apparent second-order rate constant.
This constant is the most critical parameter in determining the specificity of
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v= vmax |
2 |
S=Kn [S] —_

FIGURE 5.1. The relationship between v and [S] in a typical enzymatic reaction.

the enzyme for its substrate. Because the enzyme and the substrate cannot
combine more rapidly than diffusion permits, there is an upper limit on
enzyme catalysis and k_,/K,, cannot be larger than 10°s™' M ",

5.1.2. The Relationship Between Enzyme Kinetics and Apparent
Activation Free Energy

The meaning of k_,/K,, can best be understood by considering the free-
energy diagram of Fig. 5.2. As seen from the figure, the activation barrier

for the reaction, Ag”, is given by

Free Energy

Reaction Coordinate

FIGURE 5.2. A schematic free-energy diagram for a typical enzymatic reaction.
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Ag” =Agl — AG (5.8)

When the condition K,, = K is satisfied, we have [from eq. (5.8), eq.
(3.31), and the relationship K, = exp{—AG;B}]

In(k,/Ky) =In(7"") — (AgZ, — AG,)B
- =In(7"") — Ag”B (5.9)

Thus the apparent rate constant (k_,/K,,) is determined by the apparent
activation barrier Ag”. In fact, both Ag” and AgZ,, should have been written
as AG™ and AG[,,, respectively [see eq. (2.11)], but as long as we do not
have large entropic effects (see Chapter 9), the approximation given above
is reasonable.

For further discussion and for calibration purposes we will have to define
a reference solution reaction which would be sufficiently related to the given
enzymatic reaction. This will help us in removing the problems associated
with concentration effect and in focusing on the actual catalytic advantage of
the enzyme. To do this we describe the reference reaction in solution as

() + (R) 2 (SR e = (PR e (R) + (P) (5.10)

where S, P and R designate, respectively, the substrate, the product and the
reactive groups that participate in the actual chemical reaction in the
enzyme. Here we separate the solution reaction to the stage involved in
bringing the reacting fragments to the same solvent cage and the subsequent
reaction. The free-energy profile associated with this treatment is drawn in

SR’

Free Energy

Reaction Coordinate

FIGURE 5.3. A schematic free-energy profile for a reference reaction in a solvent cage.
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Fig. 5.3. Now the reaction rate is determined by AG_,. and Ag:ge, but
AG,,,. is almost entirely determined by simple concentration factors. Thus a
comparison of Ag7,,. and Ag?., allows one to explore fuidamental catalytic
aspects, including real entropic effects, without preoccupation with the
rather trivial “effective concentration” effect, associated with bringing the
reactants to the same cage.

Exercise 5.1. Evaluate AGSage for the reaction A+ B— AB in water.
Assume that the size of both A and B is the same as that of a water

molecule and that the cage volume is equal to that of six water molecules.

Solution 5.1. As will be explained in Chapter 9, the free energy contribu-
tion associated with confining a molecule that occupies a volume v, to a
volume v, is given by AG® = — 8" In(v,/v,). Since we deal with a standard
condition (i.e., one molar of A and B) we start our problem with one
molecule of A and one molecule of B in a volume v, = (1/N);,,, = 1600 A®,
where N is the Avogadro’s number. Since the molarity of water is 55 we can
also take v, as the volume of 55 water molecules (v, =55v,,). In evaluating
AGgage we can fix B and ask what is the free energy of confining A to a
volume v, =v,,, = 6v,, around B. This gives AGSage = =B ' In(v,/v,) =
—B " In(6v,/55v,) = 1.3 kcal/mol.

5.2. PDLD SIMULATIONS OF PROTON TRANSFER REACTIONS
IN ENZYMES

5.2.1. The His—Cys lon Pair in Papain as a Model System

The class of proton transfer (PT) reactions plays a major role in many
biological processes, including various enzymatic reactions. This class of
reactions will be served here as a general example and an introduction for
more complicated reactions. As a specific demonstration let’s consider a
proton transfer between Cys 25 and His 159 in papain. This reaction can be
formally described as

(Im+R-SH),—» (ImH" +R—-87), (5.11)

where Im designates histidine (or imidazole) residue.
The simplest way to consider the energetics of this reaction is to use the
EVB model for the reacting region and PDLD model for the protein. The

EVB potential surface is formally identical to that used in Chapter 2, where
the reaction is described in terms of two resonance structures,

Y, =Im H-S

g,=Im*—H S~ (5.12)
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where we use the notation ¢ rather than @ [(see eq. (2.40)] since we
implicitly mix the high energy ImH™ S~ state with our two states. The
potential surface of the reactive region (which will be referred to as the
“solute”) is described by

0 0 1) 1 1
e, =H; =AM(,)+ Uf'lb + U(Qé + Ugtr)am

ey=Hy =AM(b)) + U + US) + ad+ UD

strain
Hy, = Aexp{—p(r, ~ 1)) ‘ (5.13)

where b, b;, and r, are respectively the S~H, N-H and S- - - N distances;
AM is a Morse potential (relative to its minimum) and U, is the nonbonded
interaction within the atoms of the given resonance structure. U (’Q is the
clectrostatic interaction between the fragments of the ith resonance form
and is given (in kcal/mol) by

FIGURE 5.4. The two key resonance structures and the corresponding atomic charges for PT
In papain.



142

TABLE 5.1. EVB Parameters for PT from X—H to Im*®

MODELING REACTIONS IN ENZYMES: AN INTRODUCTION

AM = D[1—exp{—a(b - by)}}’

Bonds
O-H D =102 b, =0.96 a=235
S-H D=81 b,=1.32 a=235
N'-H D=93 b,=1.00 a=235
CcC-O D=93 b,=1.43 a=2.06
Cc-S D=170 b,=1.80 a=2.00
Bond Angles U,=3K,(6 - 8,)’
N-H-X K, = 6,=3.141
C-X-H K, =100 6, =1.911
Nonbonded® U,=A4 exp{—ar}
N---H A=150 a=25
O --‘H A=065 a=25
S™---H A =300 a=25
Nonbonded Up=AAr;" —AAr°
C A =632 B=20
0] A=632 B=24
on A =1400 B=24
S A=632 B=24
S A =3000 B=24
N A=T74 B=24
H A=4 B=0
Charges U,, =332q,,/r;
(S—H)(y,) g, = —0.45 gy = 1t0.45
(O_— H)(¢)) g0 =—045 gy = +0.45
(ST)() gs=—10
(07 )(¥) 4o=—10
(Im)(¢,) see Fig. 5.4
(ImH")(¢,) see Fig. 5.4

Off diagonal parameters and diagonal shifts
H, A =140 r°=0.0 pwy =0.6
o, 0.0
a, 148

“Energies in kcal/mol, distance in A, angles in radians and charges in au. Parameters not listed

can be taken from Table 4.2.
*X designates S or O atoms.

“The potential U,,, is used for nonbonded interactions between the indicated EVB atoms, while
U, is used for nonbonded interactions between all other atoms, as long as the corresponding
atoms are not bonded to each other or to a common atom.
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Ugp=332 2. 2 0909 .Ir

m>m' p>p'

(5.14)

mp,m'p’

where m runs over fragments, u over atoms, the Q’s are the atomic charge
in au, and the r’s are the indicated distances in A. U, describes the
bond-stretching potential for the bonds which are not being broken during
the reaction as well as the angle-bending and torsion potentials for the
solute system. The contributions to U, are represented by standard

strain
force-field expressions and are given by
i 1 i i i 1 i i i
U= 3 S KOO0 =500+ 3 S K, 00 - 00,7
+ 2 K, cos(n,) + L KD, (D~ x0,) (515

where the angles and torsion parameters depend on the hybridization of the
atoms in the given fragments. The y term represents the potential for
out-of-plane deformation of sp’ atoms (e.g., the histidine carbons). The
notation for the other terms is the same as before. The charges Q) are
given in Fig. 5.4 and the relevant parameters for the various terms in eq.
(5.15) are given in Table 5.1.

5.2.2. Calibrating the Enzyme Surface Using Solution Experiments

The energetics of the solute state in the protein site can be expressed as

H!=H, (5.16)
where p designates protein and Aggf))l’ , 1 the solvation energy of the charges
Q' of the ith resonance structure by the protein + water system. The only
difference between eq. (5.16) and the corresponding equation [eq. (2.31)]
for the same reaction in water is that Agéi’,’ , replaces Aggf,)l’w. This offers a
unique chance for calibration using the experimental information about the
reaction in water. That is, for proton transfer reactions in water we need to
evaluate the parameter a from the not so reliable gas-phase calculations or
from the frequently unavailable gas-phase experiments. For the reaction in
protein, on the other hand, we can rewrite eq. (5.16) as (Ref. 3)

=’ +(agY , —Ag® Y=¢+(AAgY)

sol,p sol,w sol)w—>p (517)
.8:” can be easily calibrated by using eq. (2.34) and writing

ag = (AG;T,w)obs - AAgZ,w (518)

sol,w
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where we use here the notation A_Agi':;,w to designate the corresponding
(Agts ., —Agir,) and (AG3r.,),s is obtained from the relationship.
(AG71,)obs = 1.38( pK; (SH) — pK; (Im H")) = 6 kcal /mol
(5.19)

This gives a first approximation for a3, without any gas-phase information,
The resulting a5 can be used to calculate AG . ,, which is then refined by
adjusting «) until the calculated and observed values of AG,r,, coincide.
With the calibrated a3 we can now evaluate the protein potential surface in
terms of the difference in solvation free energy, (AAgﬁQ)w_)p, associated
with the ‘transfer of the ionic configuration from a solvent cage to the
protein-active site. To see this point, let us start with the PDLD potential
surface for the reaction in solution. A simplified version of this surface is
shown in Fig. 5.5. The figure presents the so-called potential of mean force
for the reaction, without addressing the probability of moving the proton
donor and acceptor to the same solvent cage. This is, however, sufficient for

10 |-

Free Energy(kcal /mol)

Reaction Coordinate

FIGURE 5.5. A PDLD + EVB potential surface for PT from SH to Im in water.
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the purpose of comparing the reaction in the reference solvent cage to the
corresponding reaction in the active site.

Next we evaluate the PDLD + EVB surface for the enzymatic reaction
using eq. (5.17). The resulting surface is shown in Fig. 5.6. As seen from the
figure, the protein can reduce Ag” by stabilizing the ionic state more than
water. In fact, in the specific case of papain the protein inverts the
stabilization of the covalent and ionic states relative to their order in
solution. ’

An interesting point that emerges from Fig. 5.6 is the relation between
\ Ag” and (AAg,,), ., As seen from the figure, the lowering of the activa-
. tion energy for the reaction is almost linearly proportional to the stabiliza-
_ tion of the ionic resonance form (AAgﬁﬁl))w_,p. An enzyme which is designed
_ to accelerate a proton transfer between A and B will simply stabilize the
(B'—H A") state more than water.

_Exercise 5.2. (a) Use the noniterative PDLD of Program 2.B to evaluate
_ the energetics of a proton transfer reaction Im + CH,SH—Im H" + CH,S~
where the N and S atoms are 3 A apart in water. To simplify the calculations
use only three atoms (N, H and S) as the reacting atoms. Use the
calculations to determine the parameter a that reproduces the observed
proton transfer energetics in water. This parameter will, of course, be
different than the one in Table 5.1 since the Im residue is replaced by a
single nitrogen atom. (b) With the adjusted ) calculate the proton transfer
energy between the same two groups in a naive model of a “protein”
composed of a single, positively charged group 3 A from the S~ ion. (c)
Repeat the same calculations for papain, assigning all the histidine charges
to the proton-accepting nitrogen and including all the protein dipoles whose

=2

Q

g

= 10 L
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S
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®
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R (AAgsol )w —-p
0 L

Reaction Coordinate

FIGURE 5.6. A PDLD + EVB surface for PT from Cys-25 to Im-159 in papain.
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closest distance to the reacting groups is less than 3 A (define these dipoles
by assigning standard residual charges to the protein atoms). Surround this
“truncated” protein system by an LD solvent model.

Solution 5.2. (a) Use Program 5.A. (c) Use Program 5.B.

5.3. ALL-ATOM MODELS FOR PROTON TRANSFER REACTIONS
IN ENZYMES

Although the physical picture of the previous section is quite appealing, one
can argue that use of eq. (5.17) is based on an ad hoc assumption and that a
more rigorous treatment is needed. This can be readily provided by the use
of an all-atom model for the protein—solvent system and the free- -energy
perturbation approach. That is, we now represent the two diagonal energles
by potential functions rather than free energies, using

+U,

P ¢ ©) (
ef=¢g +U ’qsp +URs t+ v p

H!=H; (5.20)
where the notation is similar to that of eq. (3.12) but now the solvent, s is
replaced by the protein p. For example, consider a proton transfer from
Ser 195 to His 57 in the active site of trypsin. The solute EVB potential
surfaces & are identical to those in eq. (5.13), but with the serine OH
replacing the cysteine SH. The potential surfaces &/ are then obtained by
eq. (5.20) and mixed to give the ground state surface (Refs. 3 and 4):

Ef =3 {(Ei’ +e5) —[(ef — e5)’ + 4HT,]"") (5:21)

15—
E $
> 10
2
o> Agj AC‘\'PTp
Q 5 ’

L | | | |

50 40 30 20 10 0 -10
(€,~ €,) (keal/mal)

FIGURE 5.7. A FEP surface for PT between serine and histidine in trypsin (the calculations
are taken from Ref. 4).
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FIGURE 5.8. A downhill trajectory for the proton transfer step in the catalytic reaction of
trypsin. The trajectory moves on the actual ground state potential, from the top of the barrier
to the relaxed enzyme-substrate complex. 1, 2, and 3 designate different points along the
trajectory, whose respective configurations are depicted in the upper part of the figure. The
time reversal of this trajectory corresponds to a very rare fluctuation that leads to a proton
transfer from Ser 195 to His 57.
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This ground state provides an analytical potential surface for the reacting
system in the enzyme-active site.

Exercise 5.3. Construct an EVB potential surface for a proton transfer
from Cys-25 to an active site of water molecules in papain.

The analytical surfaces ¢/ and &7 and the corresponding analytical ground
state surface E, can be conveniently used in FEP studies of chemical
reactions in solutions. Such calculations can be performed in a complete
analogy to the calculations presented in Section 3.5, using eq. (3.29) to
evaluate the free energy surface for the proton transfer reaction. The
corresponding results were evaluated in ref. 4 and are summarized in Fig.
5.7. The calculations appear to give converging results with a rather small
error range. This and subsequent studies (e.g., Ref. 3c) have indicated that
such calculations can be used in comparing the activation energy of the
reaction in the enzyme-active site (Ag”) to the corresponding reaction in a
solvent cage (Ag7,.): '

The analytical potential surface E, can also be used for examination of
dynamical effects. This can be done in the same way as outlined in Chapter
3, propagating trajectories downhill from the transition state and calculating
7 of eq. (3.31). A typical downhill trajectory for our reaction is shown in
Fig. 5.8.

5.4. LINEAR FREE-ENERGY RELATIONSHIP IN ENZYMES

The ability to obtain converging results from all-atom free-energy calcula-
tions should allow. one to examine the linear free-energy relationship
assumed in the simplified PDLD + EVB approach. That is, in using eq.
(5.17) it was assumed that the free energies of the VB states can be
substituted in the EVB Hamiltonian and give an approximated free-energy
surface for the ground state of the reacting system. Obviously, this approxi-
mation is not exact nor can it be proven by any first principle derivation.
However, if computer experiments show that Ag” is linearly related to AG,
we can adopt the simplified approximation of eq. (5.17). Test calculations of
proton-transfer reactions in proteins can be easily accomplished by a
parametric change of ) and evaluation of the corresponding Agr, and
AG,; , (here we use the notation AGpr , in analogy with the corresponding
notation for proton transfer in solution). Such calculations, which are
presented in Fig. 5.9, strongly support the validity of linear free-energy
relationships in proteins (Refs. 3b and 4a). Experimental verifications of this
point are also emerging from recent works (Refs. 5 and 6). This explains
why the simplified model, that only considers the effect of the environment
on the diagonal elements of eq. (5.17), gives similar results to those
obtained by all-atom FEP calculations.
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FIGURE 5.9. The relationship between Ag” and AG for proton transfer reactions in the active
site of trypsin.

The main lesson from the analysis given above is that the activation free
energy of the reaction is strongly correlated with the stabilization of the
ionic resonance structure by the protein-active site. The generality of this
concept will be considered in the following chapters.

5.5." SOME RELEVANT COMPUTER PROGRAMS

5.A. A Simplified EVB Calculation of a Proton Transfer between Cysteine
and Histidine in Water. (The reaction is represented in an oversimplified
way by assigning all the histidine residual charges to a single nitrogen)

Use program 2.B

Data for 5.A

C e Cr

92. 69. 1.87 1.43 5200. 2.5 100 I The potential parameters.
'H °F .

134, 61. 2.27 0.92 640. 2.5 20.
"H* °CI

102. 78. 1.90 1.28 1000. 2.5 25.
"H’ "Br’

89.70. 1.82 1.41 2000. 2.5 30.
VH! 781

81.73.1.87 1.32 100. 2.5 975.
H O

102. 75. 2.26 0.96 100. 2.5 975.
va ,I,
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74.61. 1.75 1.60 1950. 2.5 6400,
woe

106. 96. 1.80 1.09 2000. 2.5 30.
7H’ VNY

103. 78. 2.07 1.00 10. 2.5 50.
N

86.70. 1.45 1.41 2000. 2.5 30.
o oG

70. 60. 1.87 1.7 2000. 2.5 30.

S T

3 3 natom, nr

3

_—— N

2

0

N’ H' 'S’

N’ 'H’°’S?

N’ 'H’ S’

0.000 0.200 -0.200 ! The solute charges
0.800 0.200 -1.000

0.000 1.000 -1.C00

0.000 135. 265

28.376 69.648 23.355 | The solute coordinates
27.716 70.291 22.743

26.297 70.833 21.486

0

0.000

5B. A Slmpllf' ed EVB Calculation of Proton Transfer between Cys 25 and
His 159 in Papain. (The solute is represented in an oversimplified way by
assigning all the hlStldlne residual charges to a single nitrogen)

use program 2.B

Data for 5.B

oo
92.69. 1.87 1.43 5200. 2.5 100.
H R

134. 61. 2.27 0.92 640. 2.5 20.
'H* 'Cr

102. 78. 1.90 1.28 1000. 2.5 25.
H’ "By’

89.70. 1.82 1.41 2000. 2.5 30.
S

81.73.1.87 1.32 100. 2.5 975.
H O

102. 75. 2.26 0.96 1€0. 2.5 975.
7HI 91!

74.61. 1.75 1.60 1950. 2.5 6400.
e
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106 96. 1.80 1.09 2000. 2.5 30.
g N

103, 78. 2.07 1.00 10.2.5 50.
;Cy va

49.70. 145 1.41 2000. 2.5 30.
;Cy 5

70.60. 1.87 1.7 2000.2.5 30,

A

1 3

natom, nr

. p———  27.655 72.604 19.113 0.550 ———> 27.866 67.710 22.545 0.0
18.376 69.648 23.355 28.599 72.840 18.401 -0.550 27.071 67.850 23.786 0.0C
97716 70.291 22.743 26.568 72.013 21.373 0.000 26.368 67.237 24.159 0.0(
26.297 70.833 21.486 25.795 72.475 20.949 0.000 27.688 69.011 24.411 0.0C
'76 26.670 72.381 22.295 0.000 27.665 69.345 25.345 0.0C
31.121 72.151 22.889 0.500 26.251 72.540 18.599 -0.4C0 28.987 68.688 22.530 0.0(
30.905 71.153 22.262 -0.500 25.549 72.325 19.288 0.400 29.278 69.125 21.679 0.0(
30.082 72.683 23.828 -0.834 25.791 72.713 17.189 -0.097 26.605 69.013 18.851 -0.4(
30,237 73.468 24.429 0417 25.974 71.872 16.683 0.097 26.456 69.775 19.511 0.4(
29.199 72.235 23.922 0.417 24.302.72.960 17.211 -0.194 27.007 69.345 17.473 -0.0¢
21.166 73.774 25.252 -0.194 23.827 72.127 17.495 0.097 26.859 70.312 17.307 0.0¢
26334 73.281 25.508 0.097 24.022 73.193 16.280 0.097 28.454 69.074 17.584 0.5°
27.938 73.149 25.187 0.097 23.918 74.102 18.125 0.000 29.067 69.591 18.482 -0.5!
26.959 74.531 24.000 0.550 23.928 74.119 19.632 -0.097 36.501 68.240 24.585 -0.1
25863 74.608 23.543 -0.550 24.085 73.331 20.225 0.097 37.172 68.374 25.315 0.0¢
28.092 75.238 23.352 -0.400 23.662 75.506 20.114 -0.450 36.672 67.348 24.168 0.0¢
29002 75.239 23.752 0.400 23.665 75.825 21.079 0.450 35.127 68.248 25.191 0.
27.850 75.981 22.111 -0.050 28.115 71.109 14.102 0.050 33.855 68.830 24.635 -0.0¢
21.020 76.534 22.186 0.050 28.052 70.216 13.659 0.050 33.763 69.361 23.794 0.0¢
29.051 76.825 21.998 0.050 27.298 71.657 13.923 0.050 32.734 68.474 25.566 -0.4!
28.808 77.722 21.631 0.050 28.316 70.992 15.266 -0.650 31.762 68.747 25462 0.4¢
29.725 76.384 21.410 0.050 29.096 70.329 15.355 0.500
26464 76.927 23.129 0.650 22.243 73.334 22.846 -0.194
30.208 77.624 23.153 0.500 21.956 72.495 23.305 0.097 The coordinates and
21.718 74.966 21.026 0.550 23.178 73.261 22.497 0.097 residual charges of the
26.951 75.230 20.151 -0.550 27.534 66.767 21.487 -0.194 protein atoms around
28.310 73.606 21.286 0.000 - 27.367 65.881 21.926 0.097 the His -Cys pair in Papair
29058 73.533 21.943 0.000 28.306 66.680 20.887 0.097
21,849 72.358 20.599 0.000 26.684 67.591 19.353 0.550
28.549 71.650 20.724 0.000 — 27.034 66.675 18.669 -0.550 —
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6

GENERAL ACID CATALYSIS
AND ELECTROSTATIC
STABILIZATION IN THE
CATALYTIC REACTION OF
LYSOZYME

6.1. BACKGROUND

Hen egg-white lysozyme catalyzes the hydrolysis of various oligosaccharides,
especially those of bacterial cell walls. The elucidation of the X-ray structure
of this enzyme by David Phillips and co-workers (Ref. 1) provided the first
glimpse of the structure of an enzyme-active site. The determination of the
Structure of this enzyme with trisaccharide competitive inhibitors and bio-
chemical studies led to a detailed model for lysozyme and its hexa N-acetyl
glucoseamine (hexa-NAG) substrate (Fig. 6.1). These studies identified the
C-0 bond between the D and E residues of the substrate as the bond which
s being specifically cleaved by the enzyme and located the residues Glu 37
and Asp 52 as the major catalytic residues. The initial structural studies led
to various proposals of how catalysis might take place. Here we consider
these proposals and show how to examine their validity by computer
modeling approaches.
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FIGURE 6.1. The lysozyme molecule and its bound substrate.

In analyzing various proposed catalytic effects we will have to specify an
assumed mechanism and examine its energetics. Comparing the relative
contributions to (Ag:f - Agfage) from different catalytic factors should tell us
which of them are really important. Of course, if the assumed mechanism is
incorrect we will be asking a somewhat irrelevant question.

The commonly accepted mechanism for the catalytic reaction of lysozyme
is the so-called general acid catalysis mechanism.

H,O
ROR' + AH=ROH'R' + A =R* +A™ + R'OH = ROH + AH + R'OH
(6.1)

where in our case R and R’ are sugar residues. The assumed rate-limiting
step of this reaction (shown in Fig. 6.2) consists of a proton transfer from
Glu-35 to O, and a cleavage of the protonated C-O, bond, forming a
transition state with a positively charged carbon atom which is referred to as
a “carbonium ion transition state.”’ To examine the ways the protein
catalyzes this reaction, let us consider several feasible proposals.
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Glu 35

FIGURE 6.2. A schematic description of the rate-determining steps in the catalytic reaction of
lysozyme.

6.2, THE STRAIN HYPOTHESIS AND PROTEIN FLEXIBILITY

In order to change the rate constant of a given reaction, it is crucial that the
enzyme will recognize some change in the reacting system. Such a change

carbonium

FIGURE 6.3. The strain hypothesis for the catalytic reaction of lysozyme. The enzyme is
assumed to destabilize the chair geometry by pushing the ground state substrate toward the sofa
configuration. This ground-state destabilization effect is supposed to reduce AgZ,.
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could involve, at least in principle, the geometrical changes associated with
the formation of the carbonium transition state; the sugar ring assumes a
planar sofa-like form at the transition state and a nonplanar chair-type
conformation at the ground state. If, as suggested in Fig. 6.3, the protein is
designed as a steric compliment of the sofa form and it does not like to bind
the chair form, we will have a ground state which is destabilized by steric
strain. Such a situation will result in a reduction of AgZ,,. This possibility has
been advanced as a major catalytic factor, based on the fact that the native
structure of the enzyme appears to compliment the sofa form of the D
residue much better than that of the chair form. However, the structural
studies cannot tell us what is the energy associated with the deformation
from the chair to the sofa forms in the D subsite. Here the recommended
approach is not to ask whether the strain is a possible catalytic factor, but to
find out its actual contribution to AgZ,. To do this we have to model the
relevant aspects of the reaction. This will be done in the next section by the
full EVB formulation, but in addressing the strain problem we may restrict

8
B isolated
substrate
6 |
1AAg strain
= -
§ o A
s, g !
8 o including the
% intera}cltion
o " with the enzyme
N o y
2
] i 1 i |
-60° -45° -30° -15° 0°

¢Cm -0

FIGURE 6.4. Examining the strain hypothesis by a free-energy perturbation study. The results
are plotted as a function of ¢ rather than A, for simplicity. The AG is given relative to the
reference potential [—K cos(¢c,_o,)]. The figure demonstrates that the strain effect is not
significant.
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ourselves to a much simpler treatment, comparing the free energy associated
with the chair— sofa transformation in water to that in the protein site. This
can be done by a free-energy perturbation method (see Chapter 3), using a
mapping potential of the form

e, =&(1—2,)+[-K COS(¢c1ﬁoj) + gA, (6.2)

where ¢, is the ground state potential of the substrate and its surrounding, K
is a large constant and the —Kcos ¢ term has a minimum at ¢ =0.
Changing the mapping parameter A, from zero to one forces the sugar to
change its structure from the chair to the sofa configuration and gives the
corresponding free-energy change by eq. (3.19). Figure 6.4 summarizes such
a calculation. As seen from the figure, it costs some free energy, AAgZ ...,
for the enzyme active site to deform and accommodate the change from the
chair to the sofa conformation. However, this strain contribution is small
(about 1kcal/mol). The reason for this small effect is intuitively obvious.
That is, as illustrated in Fig. 6.5, the overall atomic displacements associated

substrate enzyme

i

FIGURE 6.5. Illustrating why strain energy is not a key catalytic factor. As argued in the text,
the small Cartesian displacements of the substrate in the chair— sofa deformation (upper part
of the figure) can be distributed over the many degrees of freedom of the protein. This point is
best understood by considering the substrate as a spring with large force constant while
considering the protein as an array of coupled springs with small force constants.
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with the chair— sofa transition are quite small, if one superimposes the two
structures in a way that minimizes the shift in Cartesian coordinates and the
corresponding response of the protein. The protein, with its many bond-
stretching and angle-bending degrees of freedom, can easily accommodate
small Cartesian shifts without storing a large amount of strain energy. This
point can be considered intuitively by describing the protein as a collection
of springs (lower part of Fig. 6.5) that can undergo a significant displace-
ment for a small cost in energy, by distributing a small part of the
displacement over each spring. The same type of conclusions are obtained
from simpler energy minimization studies (Ref. 2). In fact, it one could
build a mechanical model of balls and springs for the enzyme substrate
complex, he would have seen that the flexible enzyme cannot deform the
substrate, nor store a large tension upon substrate displacements.

Exercise 6.1. To illustrate the small cost associated with a total deforma-
tion of 0.5A by a collection of bonds, evaluate the energy involved in
compressing point a of Fig. 6.5 by 0.5 A to the left while distributing the
resulting strain in the three springs, whose energy can be described by
U, = 1K Ab® with K =30 kcal/mol " A7
Solution 6.1. The least-energy accommodation of the 0.5A shift will be
obtained by distributing it equally over the three springs. This gives
AU =3 % (30/2) X (0.166)” = 1.2 kcal/mol. A smaller value would be ob-
tained with more springs.

In view of the considerations given above it appears that strain energy
cannot be a major catalytic factor as long as we deal with regular reactions
where the geometrical changes associated with the formation of the transi-

tion state do not exceed 1 A.

6.3. MODELING CHEMISTRY AND ELECTROSTATIC EFFECTS
6.3.1. A Simple VB Formulation

Inspection of the active site of lysozyme suggests the possibility that
electrostatic effects might be important. That is, the negatively charged
Asp-52 group is situated in a position where it can stabilize the positively
charged carbonium transition state (Ref. 3). However, experiments with
model compounds in solutions (Ref. 4), which are depicted schematically in
Fig. 6.6, show no major catalytic effect due to a properly situated negative
charge. This reason led many to discard electrostatic effects as a major
catalytic factor. However, the strength of electrostatic interaction in the
interior of proteins may be drastically different than the corresponding
strength in solution since the local microscopic dielectric effect could be very
different. An oversimplified macroscopic attempt to estimate the dielectric
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| FIGURE 6.6. The type of model compounds that were used to estimate the electrostatic
stabilization in lysozyme (the only hydrogen atom shown, is the one bonded to the oxygen).
Such molecules do not show a large rate acceleration due to electrostatic stabilization of the
positively charged carbonium transition state. However, the reaction occurs in solution and not
in a protein-active site, and the dielectric effect is expected to be very different in the two cases.

constant inside the protein-active site (see exercise 6.2) from the observed
effect of Asp 52 on the pK, Glu 35 indicated that the effect of Asp 52 on the
transition state is small (Ref. 5).

Exercise 6.2. Chemical substitution experiments have indicated that the
presence of the negatively charged-Asp 52 changes the pK, of Glu35 by 1.1
units. Using the distances between Asp 52 and Glu 35 and between Asp 52
and C, (which are 6.2 and 3.8 A, respectively) and a uniform dielectric
constant, estimate the stabilization of C,” by Asp 52.

Solution 6.2. Using Coulomb’s law for both the Asp---Glu interaction
and the Asp™ ---C’, interaction, we have AG,,, .., =332/(r X &) =332/
(6.2%X e)=1.38ApK,=1.52, which gives £=35. Using this £ for the
Asp---C, interaction we obtain AG,,-cr=—332/(3.8 X 35) =2.5 kcal/
mol. This is a significant effect, but far too small to account for the observed
rate enhancement by the enzyme, which leads to more than 7 kcal/mol
change in the activation free energy.

One may suggest that the enzyme has a smaller dielectric effect than the
one deduced from the above exercise and that this leads to a large
electrostatic effect. Unfortunately, Asp52 would not be ionized in an active
site with a low dielectric constant (charged groups are not stable in low
dielectric environments as demonstrated in Ref. 8a of Chapter 4). Thus, we
may conclude, in agreement with the above exercise, that the dielectric
constant for charge-charge interaction in the active site of lysozyme is large
and that electrostatic stabilization is not a major catalytic effect. However,
the above arguments are based on oversimplified macroscopic considera-
tions and, as was pointed out in Chapter 4, the dielectric effect in proteins
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cannot be assessed by Coulomb’s law type macroscopic models. This ig
particularly true when one deals with the fundamental problem of the
magnitude of the electrostatic contribution to catalysis. The electrostatic
problem is far too important to be left as a macroscopic exercise with ap
assumed dielectric constant and must be addressed by explicit microscopic
molecular models, such as those developed in Section 4.6.

In order to really assess the magnitude of the electrostatic effect i
lysozyme on a microscopic level it is important to simulate the actual
assumed chemical process. This can be done by describing the general acid
catalysis reaction in terms of the following resonance structures:

J,=(A-H R—O—R)
H

I
#,=(A" R—O=R’)

H

I
=(A" R' O—R)

=(A-H R" O—R) (6.3)

In order to construct free-energy surfaces for this system we start by defining
the diagonal matrix elements, or the “force fields”, for each resonance
structure:

—AM(b,)+AM(b) + UY + U, + UL + U + U,
&,=AM(b,) + AM(b,) + U + UG, + UL + a3 + UG + U

e, = AM(b) +UD + UL+ US) +al+UQ + U,

strain

e, =AM(b,)+ UL +UD +USL+al+ UL + U

strain
H;= Hz(')j =A; exp{—p(ryq — r?j)} (6.4)

where b,, b,, b,, and b, are, respectively, the A-H, A-O, H-O, and R-O
bond lengths (see Fig. 6.7). AM is a Morse-type function for the indicated
bond (relative to its minimum value), U, is the nonbonded interaction for
the given resonance structure and U,,,;, is given by

U® == ZK(’) (b(‘) (z) ) + = EK(') 0(’) 08;),,,)2

stram

+ 2 KS}M cos(n(i)¢f,’;)) (6.5)
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€=AM(bs)+A' "™ +Ae™™-332/r,+05+UD .

FIGURE 6.7. The key resonance structures for the catalytic reaction of lysozyme. The &’s
include only the solute contributions and the complete expression is given in egs. (6.4) and
(6.5). The quantum mechanical atoms are enclosed within the shaded region.

where the angles and torsion parameters depend on the given hybridization
of the central carbon atom in the R group (e.g., sp> for ¢,3 and ). This
strain force field keeps the equilibrium structure of the R fragment in the
sofa configuration and that of R in ¢, and ¢, in the chair configuration (see
Fig. 6.7). The terms Ug)Q, > and U are defined in Chapter 5 and the
atom pair k/ used for the off-diagonal element are chosen according to the
specific H;;.
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6.3.2. Calibrating the EVB Surface Using the Reference Reaction
in Solution

In order to make an effective use of the VB formulation we have tq
calibrate the relevant parameters using reliable expenmental information,
The most important task is to obtain the relevant . Since the a’s represent
the energy of forming the different configurations in the gas phase at infinite
separation between the given fragments, it is natural to try to obtain them
from gas-phase experiments. In the case of the catalytic reaction of lysozyme
one can compile the relevant information from the available gas-phase
experiments (Table 6.1) and use it to determine the a’s.
For example, we can estimate a) by

= £5(®) — &](®) =AH — AH (6.6)
where the ¢° do not include any solvent contribution. Using this expression,
we obtain & ~ 167 kcal/mol. However, in many cases it is not simple to find
gas-phase experiments about charged fragments and, as indicated in Chapter
5, it is frequently more convenient to obtain the «’s from solution experi-

TABLE 6.1. Gas-Phase Enthalpies that Can Be Used to Determine the
Energies of the Different Configurations Involved in the Catalytic
Reaction of Lysozyme®

Entry Process Expression Used AH kcal/mol
1 R'OR—>R'O™ +R" D+I-EA 215
2 ROH—-R'O™ +H" D+I-EA 376
3 HCOOH—HCOO™ + D+1-EA 345
4 HCOOH + H,0— HCOO + AH, ¢ 177

H,0"
5 CH OH+H,0—»CH,0™ + AH, ¢ ' 211
H30+
6 HCOO™ + R'OH— HCOOH + AHp. ¢ 44
R'O”
7 HCOOH + ROR' - HCOO ™ + AHp e 147
ROH 'R’
8 HCOOH + ROR’'— HCOO™ + AH,,.+AH 167
R* + ROH
9 ROH'R’'—-R" + R'OH AH 20
10 ROH*R'—-R+R'OH" ‘ AH - Iy + Ipoy 76
11 ROH"R'-RO"R'+H PAgor — Iyt Lxor 97

“Information compiled in Ref. 6, where R and R’ are typical C;H, and C,H; groups. See Ref. 6
for more details about the different notations.
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ments than trom gas-phase studies. That is, one can use eq. (2.34) and write
a = (AGt W) - AAgsol w (67)

. where AAgiOT ,, is the indicated solvation energy (in water) relative to the
solvation gnergy of state 1. This can be conveniently used for the determina-
tion of &) for the proton transfer configuration. The correspondmg proce-
dure is identical to the one used in Chapter 5 and is given here as an
example.

Exercise 6.3. Estimate a from the relevant pK, values and the approxi-
mate solvation energies. Use (pK,(Glu) =4; pK,(R-OH'-R’) = -5

Gy, (GluH— Glu™ ) = —70 kcal/mol

G,,.,,(ROR'—RO’'(H")R’) = —65 kcal/mol
Solution 6.3. Usmg eqs. (2.32), (2.34) and (6.7) we obtain AG; ,~
12 kcal/mol; & = 147 kcal/mol.

In considering &, we note that a is already known (eq. 6.6) and we may
use it to obtain AGj 6 rather than the other way around. With

=167 kcal/mol and the solvation energies of the various fragments, one
obtams (Ref. 6) AGS,, =26+ 5kcal/mol. We also obtain readily

AG;, =AG3, +23RT(pK,(R'OH) - pK,(AH)) =41 +5  (6.8)

and a = 215 kcal/mol.

Finally, we should also exploit one more key experimental fact—the
activation barrier for the dissociation of the R—O bond in the protonated
R-OH"R’ molecule is available from Kkinetic studies of the so-called
“specific acid catalysis” reaction.

k k
ROR’+ H,0" =ROH'R' + H,0=R' +R'OH+ H,0  (6.9)

where the acid is an hydronium ion. An analysis of these studies gives (Ref.
6) k, ~1—10s"", which yields through egs. (3.31) and (2.12) an activation
barrier of about 18kcal/mol. Thus we can use the estimate
(Ag7 ;). = 18 kcal/mol, where the superscript « indicates that A~ is at
infinite separation from the protonated C—O bond. These experimental
estimates are summarized in Table 6.2.

With these AG™ we can estimate the energetics of the key asymptotic
point on the potential surface of the reference reaction in which AH and
R-O-R’ are kept in the same solvent cage. First, we note that (AG,) is
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TABLE 6.2. Experimental Determination of the Energies (in kcal/mol) at
the Asymptotic Points of the Potential Surface of the General Acid Catalysis

Reaction®”

Configuration Notation  Expression Used AG,, AH_
A” + RO"HR’ AG3,, 2.3 RT[pK,(AH) 122 147+5s
- pK,(RO"HR')]

A” +R" +R'OH AG3,, AG,, +(AG,;)., 265 167+5
AH+R"+RO" AGY,, AG;, +23RT[pK,(ROH) 41%2 215+5
- pK,(AH)]

A" +R'---OHR'  (Agl.,), AG;,+(Ag;.s). 29+2

“The gas-phase AH values are based on analysis of gas-phase experiments, which are given in
Ref. 6.
*See discussion in text for the evaluation of the AG’s.

reduced by about 2kcal/mol, when A~ and R-OH'-R’ are brought
together, due to the electrostatic interaction between these fragments. The
activation barrier for the proton transfer step can be estimated by noting
that the reverse reaction (2— 1) is an exothermic reaction and that such
proton transfer reactions are usually diffusion-controlled reactions with
5keal/mol or less activation barriers. Thus (Agy.,), <5 and (AgT_,), =<
AG, ,, +5. The barrier (Ag5.,), is expected to be similar to (Ag3 )%,

giving
(Ag3ls), =(Ag75)n =2 (6.10)

The inequality indicates that if a concerted mechanism (where b, and b,
change simultaneously) gives a Ag” which is much lower than our stepwise
estimate, we will have smaller Agfage. This possibility, however, is not
supported by detailed calculations (Ref. 6). Direct information about Agzzge
can be obtained from studies of model compounds where the general acid is
covalently linked to the R-O-R’ molecules. However, the analysis of such
experiments is complicated due to the competing catalysis by H,O" and
steric constraints in the model compound. Thus, it is recommended to use
the rough estimate of Fig. 6.8. If a better estimate is needed, one should
simulate the reaction in different model compounds and adjust the «
parameters until the observed rates are reproduced.

With the estimates of Fig. 6.8 we are ready to determine the off-diagonal
elements. These elements can be obtained by fitting our four-states gas-
phase potential surface to the more rigorous six-states EVB surface given in
ref. 6 (or to other gas-phase quantum mechanical surfaces) using the
expression given in eq. (6.4).

Alternatively, one can obtain the H,; by forcing the calculated solution
surface to reproduce the observed information about the solution reaction.
The same procedure should also be used for fine tuning the a’s parameter.
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FIGURE 6.8. The energetics for the reference reaction in solution (see text for discussion and
further clarification of the difference between our reference reaction and the actual mechanism
in solution).

The various approximated H, are given in Table 6.3 together with the
parameters for the diagonal matrix elements.

It should be noted at this stage that the reference reaction of Fig. 6.8
does not necessarily correspond to the actual mechanism in solution. That
is, our reference reaction represents a mathematical trick that guarantees
the correct calibration for the asymptotic energies of the enzymatic reaction
(by using the relevant solution experiments). This may be viewed as a
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FIGURE 6.9. Potential surface for a general acid-catalysis reaction in solution; r, and r, are the
O,-H and C-O distances, respectively. Regions of the potential surface with more than 50%
10nic character are dotted (see Ref. 6 for more details).
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TABLE 6.3. Parameters for the Reaction of Lysozyme™”

Bonds AM = D[1 —exp{—a(b — b))}

O-H D =102 b, =0.96 a=2.35
Cc-0 D=92 b,=1.43 a=2.06
Cc-0" D=176 b, =1.43 a=2.06
O*-H D=97 b, =0.96 a=235
Bond angles U, = 1K,(0 - 6,)°

X-C-Y K, =60 6,=1.911
X-C*-Y K, =60 6, = 2.094
X-0-Y K, =60 6, =1.911
X-0*-Y K, =60 © o 6,=2.094
Nonbonded U,, = Aexp{—ar}

O ---H A=65 a=25
O---C* A = 5288 a=25
O --H A=65 a=25
Nonbonded Ul,,=AAr;” —BBr,°

C A=632 B=20
Cc* A=632 B=20
O A =632 B=24
o- A = 1400 B=24
H A=4 B=0
Charges U,,=332q4,/r;

(0,-C-0, - H)(¢,) do,= -0.4 q-=0.4 9o, = -0.4 4y =04
(0,-C-0,) (¥, ¥) do, = =07 q4c=0.4 do, = -0.7

(0. —C—-0,)(¥,) 4o, =02 q4c =02 9o,=0.0

(0. —C—-07)(¥,) do, = -0.2 q.=0.2 qod:0.8 9y =0.2

(O.-CY'(H-0,)(¢;) g0 =02 9c=08  ¢4=05 do,= —05
Off diagonal parameters and diagonal shifts

H, AYY =60 nw=04 r°=0.0

H, A,=00 w=0.0 r°=0.0

A, AP =55 w=0.5 r°=0.0

a, 0.0

a, 147

a, 167

a, 215

“Energies in kcal/mol, distance in A, angle in radians and charges in au. Parameters not listed
can be taken from Table 4.2

*The function U,, is used for interaction between the indicated EVB atoms while U, is used
for nonbonded interactions between other atoms which are not bonded to each other or to a
common atom. The interactions between the EVB oxygens are modeled by the corresponding
6-12 potential.
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practical way for obtaining the gas phase o’s and H,’s while avoiding
elaborated studies of entropic effects in the actual solution reaction (see
Chapter 9).

A calibrated EVB + LD surface for our system in solution is presented in
Fig. 6.9. With the calibrated EVB surface for the reaction in solution we are
finally ready to explore the enzyme-active site.

6.3.3. Examination of the Catalytic Reaction in the
Enzyme-Active Site

After the somewhat tedious parametrization procedure presented above you
are basically an “expert” in the basic chemistry of the reaction and the
questions about the enzyme effect are formally straightforward. Now we
only want to know how the enzyme changes the energetics of the solution
EVB surface. Within the PDLD approximation we only need to evaluate
the change in electrostatic energy associated with moving the different
resonance structures from water to the protein-active site.

RELATIVE ' ENERGY ‘(kcal/mol)

REACTION COORDINATE

FIGURE 6.10. Comparing the energetics of the EVB configurations in solution and in the
active site of lysozyme. The calculations were done by using the PDLD and related models
(Refs. 6 and 7) and they represent a study of a stepwise mechanism. The energetics of a more
concerted pathway (e.g., that of Fig. 6.9) is almost identical to that of the stepwise mechanism
and correlated in a similar way with the electrostatic effect of the protein.
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Exercise 6.4. (a) Calculate the energy of the carbonium ion configuration
i, in the LD solvent model. (b) Repeat the calculations using a simplified
model of the active site composed of a negative charge (that represents
Asp52) 3 A from the C* atom and two fixed dipoles pointing toward the
negative charge, in the way indicated in Fig. 6.11, while all this system s
emersed in an LD solvent model.

The actual calculations that compare the energetics of the EVB configy-
rations in the protein-active site and solutions are summarized in Fig. 6.10,

o

FIGURE 6.11. Comparison of the environment around the transition state of lysozyme in the
enzyme-active site and in the reference solvent cage.
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The calculations described in this figure produce in a qualitative way the
difference in activation free energies between the reaction in the enzyme-
active site and the reference solvent cage (see Refs. 6 and 7 for more
details). The main reason for this catalytic effect appears to be associated
with the stabilization of the positively charged carbonium ion by the
negatively charged Asp 52. The effect of this group is much larger than what
might be deduced from the macroscopic considerations of Exercise 6.2.
Apparently the magnitude of the electrostatic stabilization effect is hard to
assess without simulating the actual microscopic environment. To see this
point it is instructive to view the electrostatic energetics in an alternative
form, including the ionized Asp 52 in the reacting system. This is done in
Fig. 6.11 which compares the transition state in the enzyme-active site to the
transition state of the corresponding model compound in water. As seen
from the figure, we now represent the transition state as a (- +—) arrange-
ment (e.g., Asp 52~ C* Glu357, in the enzyme site). The enzyme manages
to stabilize this system by hydrogen bonds (dipoles) which are specially
aligned towards the two negatively charged acids. This gives a larger
stabilization than that provided by the water dipoles to the corresponding
arrangement in the reference solvent cage. The basic reason for this effect
will be considered in Chapter 9.

Finally, it is important to comment that the enzyme reaction is clearly
accelerated by the general acid catalysis mechanisms, since the protonation
of the substrate by an acid is much more effective than that by a water
molecule. This effect, however; is included in our reference reaction (e.g.,
the lower part of Fig. 6.11). That is, the evaluation of the concentration
effect associated with bringing a glutamic acid to the same cage as the
substrate is rather trivial (see Exercise 5.1) and is not the main issue in
studies of enzymatic reactions. Similarly the difference between a reaction
where the proton donor is an acid and a reaction where the donor is a water
molecule is well understood and fully correlated with the corresponding
pK,/’s. The real problem is the difference between the reaction in the
enzyme and in the reference solvent cage that includes all the reacting
fragments, and it is here where electrostatic effects appear to be of major
importance. '
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SERINE PROTEASES AND
THE EXAMINATION OF
DIFFERENT MECHANISTIC
OPTIONS

7.1. BACKGROUND

The serine proteases are the most extensively studied class of enzymes.
These enzymes are characterized by the presence of a unique serine amino
acid. Two major evolutionary families are presented in this class. The
bacterial protease subtilisin and the trypsin family, which includes the
enzymes frypsin, chymotrypsin, elastase as well as thrombin, plasmin, and
others involved in a diverse range of cellular functions including digestion,
blood clotting, hormone production, and complement activation. The tryp-
sin family catalyzes the reaction:

—NH - (l:H,— y:— NH - (|:H - +H,0—
R R’
~NH - (|:H ~CO,H+H,N— CH - (7.1)
170
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The actual reaction mechanism is very similar for the different members
of the family, but the specificity toward the different side chain, R, differs
most strikingly. For example, trypsin cleaves bonds only after positively
charged Lys or Arg residues, while chymotrypsin cleaves bonds after large
_hydrophobic residues. The specificity of serine proteases is usually desig-
nated by labeling the residues relative to the peptide bond that is being
cleaved, using the notation

H,O+P,-P,—-P,—P,-P|—P, —
P,—P,—P,—P,~OH+H-P; —P,— (7.2)
The sensitivity of the relevant rate constants to the groups at the different

sites is demonstrated in Table 7.1. The cleavage of amides in the active site
of serine protease can be described formally by the two successive steps:

0 0~ 0
|| o o
R—C—X+E—OHk:H +R—(,3—O—Ek:R—C—O—E+HX
1 -2
X
ol 0
k3 l ky “
R—C—O—E+HYk:R—C—O'—E+H+k:R—C—Y+E—OH

. -3 | —4

Y (7.3)

The first step, which is called the acylation reaction, involves a formation
of an acyl-enzyme where the RC(O™ )X group is covalently bound to the
specially active serine residue and the XH group is expelled from the active
site. The second step, which is called the deacylation step, involves an attack
of an HY group on the acyl-enzyme. Here we concentrate on the acylation
step which is the reverse of the second step when X and Y are identical.

The elucidation of the X-ray structure of chymotrypsin (Ref. 1) and in a
later stage of subtilisin (Ref. 2) revealed an active site with three crucial
groups (Fig. 7.1)-the active serine, a neighboring histidine, and a buried
aspartic acid. These three residues are frequently called the catalytic triad,
and are designated here as Asp, His, Ser, (where c¢ indicates a catalytic
residue). The identification of the location of the active-site groups and
intense biochemical studies led to several mechanistic proposals for the
action of serine proteases (see, for example, Refs. 1 and 2). However, it
appears that without some way of translating the structural information to
reaction-potential surfaces it is hard to discriminate between different
alternative mechanisms. Thus it is instructive to use the procedure intro-
duced in previous chapters and to examine the feasibility of different
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TABLE 7.1. Kinetic Parameters for the Hydro!ysm of Different Peptides by
Elastase and Chymotrypsin

Elastase”
k cat KM kcat/ K
Substrate S (mM) (s'M™
Ac-Pro-Ala-NH, 0.007 100 0.07
Ac-Ala-Pro-Ala-NH, 0.09 4.2 21
Ac-Pro-Ala-Pro-Ala-NH, 8.5 39 2200
Ac—-Ala-Pro-Ala-Pro-Ala-NH, 53 3.9 1360
Ac-Pro—Ala-Pro—-Gly-NH, 0.1 22 5
Ac—Pro—Ala—Pro-Val-NH, 6.0 35 208
Ac—-Pro-Ala-Pro-Leu-NH, 3.0 11 270
Ac-Pro-Ala-Pro-Ala-Gly-NH, 26 4.0 6500
Ac—Pro—Ala—Pro-Ala-Ala—-NH, 37 1.5 24700
Ac~Pro—-Ala—Pro—-Ala—-Phe-NH, 18 0.64 28800
Ac-Pro-Ala—-Pro-Ala-Ala—-Ala-NH, — — —
Chymotrypsin®
k cat K M k cat/ K
Substrate ™ (mM) (7'M
Ac-Tyr-NH, 0.17 32 5
Ac-Tyr-Gly-NH, 0.64 23 28
Ac-Tyr-Ala-NH, 7.5 17 440
Ac—Pro-Tyr-Gly-NH, 0.76 15 51
Ac-Phe-NH, 0.06 31 2
Ac—Phe-Gly-NH, 0.14 15 10
Ac—Phe-Ala-NH, 2.8 25 114
Ac—Pro—-Phe-Gly-NH, 0.76 15 51

“From R. C. Thompson and E. R. Blout, Biochemistry, 12, 51 (1973) and C. A. Bauer et al.
Eur. J. Biochem., 120, 289 (1981).
’From W. K. Baumann, S. A. Bizzozero, and H. Dutler, Eur. J. Biochem., 39, 381 (1973).

mechanisms. We w1ll concentrate here on the two most likely mechamsms
which are described in Fig. 7.2.

Mechanism a involves a proton transfer from Ser, to His, and a nu-
cleophilic attack of the ionized Ser, on the carbonyl carbon of the substrate,
forming a negatively charged intermediate which is referred to as the
tetrahedral intermediate (to indicate the sp’ tetrahydral geometry around the
carbon) or the oxyanion intermediate. Here we will designate the tetrahydral
intermediate by the notation ¢ . In the next stage the protonated His,
donates its proton to the amide nitrogen and facilitates the departure of the
H,N-CHR'- group, leading to the formation of the acyl-enzyme. In related
reactions of amide hydrolysis in solution the formation of ¢ is the rate-
limiting step, while in the hydrolysis of esters the rate-limiting step occurs
after the formation of ¢~. In the case of amide hydrolysis by trypsin it is
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FIGURE 7.1. The active site of subtilisin. The residues of the catalytic triad (Asp 32, His 64
and Ser 221 are frequently denoted by the numbers of the corresponding residues in chymotryp-
sin (102, 57 and 195, respectively).

commonly assumed that the rate-limiting step is the formation of t~ and this
will also be our working hypothesis. Mechanism b is referred to as the
charge-relay mechanism or the double-proton transfer mechanism and is
presented in many text books that discuss enzyme mechanism. This mecha-
nism requires that the proton transfer from Ser, to His_ will be accompanied
by a concerted proton transfer from His_ to Asp,. Our analysis begins with
mechanism a and is followed by a comparative study of mechanism b.

7.2. POTENTIAL SURFACES FOR AMIDE HYDROLYSIS IN SOLUTION
AND IN SERINE PROTEASES

7.2.1. The Key Resonance Structures for the Hydrolysis Reaction

" In order to explore mechanism a, or any other mechanism, we have to start
by defining the most important resonance structures and calibrating their
energies using the relevant experimental information for the reference

. system in solution. The key resonance structures for the formation of ™ in

mechanism a are

¢,=Im H-O C=0
,=Im"—H-O C=0
¢, =Im"—H O-C-0O~ (7.4)
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FIGURE 7.2. Two alternative mechanisms for the catalytic reaction of serine proteases. Route
a corresponds to the electrostatic catalysis mechanism while route b corresponds to the double
proton transfer (or the charge relay mechanism). gs ts and ti denote ground state, transition
state and tetrahedral intermediate, respectively.

where Im, H-O, and C=O indicate, respectively, His,, Ser., and the
carbonyl of the substrate.

As before, we have to determine the energies associated with these
resonance structures (i.e., the diagonal matrix elements). This is done
conveniently using the functional forms suggested by the corresponding
bonding configurations (see Fig. 7.3) and writing the EVB matrix elements
in the all-atom solvent model as:

=AM(b,) + AM(b,) + U + UL + UL, + UG +

strain S

=AM(b) + AM(b,) + U + UG, + a3+ US)

strain

+UQP +U,

=AM(b,) + AM(b) + U + US, + af + v +UP +U,

H HO A exp{ “‘(rkl(lj) r?])} (75)
where the notation is the same as that used in eq. (6 4) and the relevant

bonds, as well as the key energy terms, are given in Fig. 7.3. As in the
previous case, the most important step is the calibration of the a? and the
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1 1
= AM(b )+ AM(b,)*+3 zK“’(b“’ bg)*+3 XK(e)(O( -09)2 + Ky (X Xo)?

1
(1 m u(1) u(1) + uf )

+ U
QQ M unb Qq,Ss ‘'nb,Ss ind,Ss

+U ss

1 2 2)_

{2) 21, (2 {2) (2) 2) .
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FIGURE 7.3. The force fields for the three resonance structures that describe mechanism a for

the catalytic reaction of serine proteases.
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A, to reproduce the experimental information about the reaction in so-

lution.

7.2.2, Calibrating the Potential Surface

The calibration of a5 and H,, is straightforward since ; and i, describe a
proton transfer process and the relevant asymptotic points are easily de-
termined using the pK,’s of serine and histidine in water (see Chapter 5).
The calibration of a and A,, are more involved and require some effort in
analyzing the available experimental information about AG;_,and Ag; . in
water, which are considered below.

The value of (AG5._),, can be obtained by writing

(AG;.;)=AG(R—0 +C=0—-R-0-C-07)

=AG,(0O" +C=0+H'-0-H+C=0)

+AG,(O-H+C=0—-0-C-0-H)
+AG,(0-C-0-H->0-C-0 +H") (7.6)

The evaluation of AG,, AG,, and AG, is considered in the exercise below.
Exercise 7.1. Estimate (AG},,),, using only bond energies and pK, values.

Solution 7.1. The value of AG, can be estimated by noting that the
relevant process involves a conversion of a C=O bond to two C-O bonds.
The corresponding bond energies are 172 kcal/mol and 92 kcal/mol for the
C=0 and C-O bonds, respectively, giving AG,=AH,=(-92X2)~-
(=172) = —12 kcal/mol. A more reliable estimate can be obtained using
group contributions (Ref. 3), which take into account the fact that the C=O
bond is partially conjugated to the C=N bond. This correction gives
AH, = —0.5 kcal/mol. Furthermore, since AG, does not involve any charge
transfer processes and has a very similar value in solutions and in the gas
phase, one can use standard semiempirical quantum mechanical computer
programs (e.g., Ref. 4) to estimate the corresponding AH,. The values of
AG, and AG, are much harder to obtain from quantum mechanical calcula-
tions but fortunately can be easily and very reliably obtained from pK,
values. That is, AG, involves the process (RO + H*—R— OH) in solu-
tion and AG, involves the process (O —C-OH—-0-C-0 + H™). Thus
we obtain (Ref. 5)

(AGZ.,)=~AH(R - OH + C=0—R - 0—C— OH)
—2.3RT[pK,(R — OH) — pK,(O — C— OH)]
~ —1 keal/mol (1.7)
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As demonstrated in the exercise above one can estimate the free energy
of quite complicated processes by using bond energies and pK, values.

The value of (Ag;_,). can be estimated from experimental studies of
methoxy-catalyzed hydrolysis of amides. That is, after some literature search
you may find (Ref. 6) that the rate constant for an attack of CH, — O~ on
an amide is around 0.3sec”™’. The corresponding Ag”™ is found in the
exercise below.

Exercise 7.2. Find (Ag;_,). by using the information given above about
the corresponding rate constant (Hint: use some of the equations given in
Chapter 2).

Solution 7.2. Using k=03sec ', eq. (3.31) and eq. (2.12) will give
(Ag>..3);, =17 kcal/mol. This value of (Ag_, )., is expected to be reduced by
~2kcal/mol when the ionized ImH" is brought near the 0>~ C—-0"?
transition state.

The above results give the asymptotic points of the potential surface in
solution. Furthermore, with the use of the calculated solvation energies of
the different fragments we can obtain from eq. (2.34) the asymptotic points
for the gas-phase potential surface. This is done in Table 7.2.

Exercise 7.3. The discussion above gave you all the relevant information
about the solution potential surface. Summarize this information in an
energy diagram.

Solution 7.3. The corresponding diagram is given in Fig. 7.4.

With the estimates of Fig. 7.4 we can now determine a and A, by fitting
the calculated surface for the 2—3 reaction in solution with ImH" at
infinite distance, to the estimates of (Ag;_,), and (AG,_,), . This is done in
Fig. 7.5. The parameters obtained in this way for H,, and the diagonal
matrix elements are given in Table 7.3.

TABLE 7.2. Asymptotic Energy Values for the Reference Reaction in Solu-
tion and in the Gas Phase’

Resonance Forms Notation (AG; ) obs Agin AG7,..
Im HO C=0 ¥, 0 -20 0
Im"—H O"—C=0 ¥, 12 -162 154
Im"—H O —C-0~ VR 11 —149 140

"The gas phase energies are estimated from the corresponding (AG,,,),,, using (AGY ), =
(AG[.), —(Agis ., —Aglr,), where the Aglh . are estimated by eq. (2.34b) from the
solvation energies of the relevant isolated fragments.
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FIGURE 7.4. The energetics of the catalytic reaction of serine proteases in a reference solvent
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TABLE 7.3. Parameters for the EVB Surface of Amide Hydolysis*

Bonds AM = D[1—exp{—a(b — b,)}]*

O-H D =102 b,=0.96 a=2.35
N-H D =93 b,=1.00 a=2.35

. N'-H D =93 b,=1.00 a=2735

c-O D=92 b,=1.43 a=2.06
Bond Angles U,=3iK,(0 -6,
X-C=0(¢,, ¥,) K, =100 0, = 2.094
X-C-0"(¢;) K,=100" 6,=1.911
X-N"-H(¢,, ;) K, =100 6, =2.094
Nonbonded U,, = Aexp{—ar}

O---H A =5288 a=2.5
O ---H A=65 a=2.5
N---H A =150 a=2.5
N---O~ a=2.5
N---C a=25
Nonbonded” U,=AAr"*—BBr°

H A=4 B=0
C A =632 B=20
c* A=632 B=20
O A=T774 B=24
(ol A=1140 B=24
N A=T714 B=24
Charges U,, =332q,4,/r,

(Oa_— H)(¢,) do,~ -0.4 gy =0.4
(07)(%) do'=-10

(C=Ob)(¢ll,_¢2) gc=03 9o, = -0.3
(0,—C~-0,)(¥s) do,~ -0.2 gc=0.2 9o, = -1.0
Im(y,) Taken from Fig. 5.4

ImH" (¢, ¢,) Taken from Fig. 5.4

Off-Diagonal Parameters and Diagonal a’s

H,, A = -140 r*=0.0 wy =08
H,, A=0 r°=0.0 w=

H,, A% = —120 r*=0.0 uos®r =0.4
a, 0.0

a, 120

a; 126

“Energies in kcal/mol, distance in A, angles in radians, and charges in au. Parameters not listed
in the table can be taken from Table 4.2.

*The function U,, is used for the nonbonded interaction between the indicated EVB atoms
while U, is used for the nonbonded interactions between other atoms which are not bonded to
each other or to a common atom.
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FIGURE 7.6. Comparing the potential surfaces for the catalytic reaction of trypsin (upper
figure) to the corresponding reaction in solution (lower figure). The different configurations
that define the corners of the potential surface are drawn on the upper left portion of the figure.
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With the parameters of Table 7.3 and eq. (5.20) we can simulate the
reaction in the enzyme-active site, replacing (Us, + U,,) in eq. (7.5) by
(Us, + U,,) and comparing the resulting free-energy surface to the surface
for the corresponding reaction in a reference solvent cage. Such a com-
parison is presented in Fig. 7.6. As seen from the figure, the enzyme
appears to stabilize the transition state more than water does. The reason
for this stabilization is apparent from Fig. 7.7; that is, the enzyme creates a
network of oriented dipoles around the (- + —) configuration of the transi-
tion state. This network involves two hydrogen bonds near the carbonyl
carbon (which are called the oxyanion hole and stabilize the ~C-O~
oxyanion intermediate) and three dipoles near Asp 102 (which we will call
the Asp hole). This situation is not much different from the one in the active
site of lysozyme (Fig. 6.11).

Exercise 7.4. (a) Use the parameters of Table 7.3 and the LD model to
calculate the activation energy of the 2— 3 step in solution. (b) Repeat the
same calculation in a protein model where a positive charge of +0.5 (3 A
from the carbonyl carbon) represents the oxyanion holes, while a negative
charge of —0.5 near the His" residue represents the somewhat screened
Asp 102. Simulate the rest of the system by the LD model.

Solution 7.4 Use Program 2.B.

FIGURE 7.7. The protein dipoles (hydrogen bonds) that stabilize the (- + —) transition state of
trypsin.
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7.3. EXAMINING THE CHARGE-RELAY MECHANISM

The considerations presented above were based on the’specific assumption
that the catalytic reaction of the serine proteases involves mechanism g of
Fig. 7.2. However, one can argue that the relevant mechanism is mechanism
b (the so-called ‘“‘charge-relay mechanism”). In principle the proper proce-
dure, in case of uncertainty about the actual mechanism, is to perform the
calculations for the different alternative mechanisms and to find out which
of the calculated activation barriers reproduces the observed one. This
procedure, however, can be used with confidence only if the calculations are
sufficiently reliable. Fortunately, in many cases one can judge the feasibility
of different mechanisms without fully quantitative calculations by a simple
conceptual consideration based on the EVB philosophy. To see this point let
us consider the feasibility of the charge-relay mechanism (mechanism b) as
an alternative to mechanism a. Starting from Fig. 7.2 we note that the
energetics of route b can be obtained from the difference between the
activation barriers of route b and route a by

Agy =Ag; +AAgr, (7.8)

If AAg”,, is positive, then route b is practically blocked. As seen from
Fig. 7.2, AAg,, is basically the free energy associated with a proton
transfer from His_ to Asp, at the transition state. This free energy can be
evaluated in two steps. First, we estimate the free energy for this process in
water and then evaluate the change in free energy upon transfer of the
reacting fragments from water to the protein active site. The energetics in
water is estimated in Fig. 7.8a and in Exercise 7.5.

Exercise 7.5. Estimate the free-energy difference between (fs), and (is),
(Fig. 7.8) in water.

Solution 7.5. The relevant thermodynamic cycle involves the electrostatic
work of taking the Asp, His_ ¢ system from the initial configuration in the
solvent cage to infinity, the free energy of proton transfer from His to Asp
at infinite separation, and the electrostatic work of returning the Asp, His,
neutral pair and ¢~ to the same solvent cage. The free energy for the proton
transfer process, AG 7y, can be evaluated easily using the pK,’s of Asp and
His in water. This gives

AG,=AG5;, =1.38(pK,(Im H") — pK,(Asp)) = 4.5 kcal /mol
| (7.9)

The electrostatic free energy associated with the separation of the ion pair
and the recombination of the neutral pair can be easily calculated with
Coulomb’s law and a large dielectric constant. (e.g., ¢ =40, which is the
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FIGURE 7.8. Comparing the energies of the transition states for mechanism @ and b in solution

{upper figure) and in the enzyme-active site (lower figure).

lower limit for £ in water when the two charges are in a close proximity)

‘giving

AG,=-V,,le=-33220,0,/r,40=2
ij

(7.10)
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where VQQ is the interaction between the residual charge on the given
fragments (this energy can also be estimated by representing Asp,, His’
and ¢t~ by point charges). The total energy of this process is noyv
(Ag7.,), =AG, + AG, =T kcal/mol.

The results given above indicate that the charge-relay mechanism js
unfavorable in water. This finding is also supported by experimental studies
with model compounds (Ref. 7). One may still argue that the protein might
make AAg. , negative. This question, however, should not be left as g
major open hypothesis since it can be easily examined by PDLD calculations
of the energetics associated with moving the transition states of a and b from
the solvent cage to the protein-active site. Such a calculation yields an
increase of AAg._, by an additional 6 kcal/mol, giving a total value of
12 keal/mol for AAg._,, (see Fig. 7.8b).

To realize the reason for this result from a simple intuitive point of view
it is important to recognize that the ionized form of Asp_ is more stable in
the protein-active site than in water, due to its stabilization by three
hydrogen bonds (Fig. 7.7). This point is clear from the fact that the
observed pK, of the acid is around 3 in chymotrypsin, while it is around 4 in
solution. As the stability of the negative charge on Asp, increases, the
propensity for a proton transfer from His, to Asp, decreases.

These points are also supported by additional experimental information.
That is, neutron diffraction experiments (Ref. 8) on a complex of the
inhibitor monoisopropylphosphoryl (MIP) and trypsin located on His, the
proton that bridges Asp, and His, (forming an Asp, His_ pair). This finding
is relevant to the situation at the transition state since the inhibited MIP
involves a negatively charged PO; group at the site occupied by the
oxyanion intermediate (although the difference in charge distribution be-
tween the two prevents one from reaching a unique conclusion).

7.4. SITE-SPECIFIC MUTATIONS PROVIDE A POWERFUL WAY OF
EXPLORING DIFFERENT CATALYTIC MECHANISMS

The family of serine proteases has been subjected to intensive studies of
site-directed mutagenesis. These experiments provide unique information
about the contributions of individual amino acids to k_,, and K,,. Some of
the clearest conclusions have emerged from studies in subtilisin (Ref. 9),
where the oxyanion intermediate is stabilized by t.e main-chain hydrogen
bond of Ser 221 and an hydrogen bond from Asn 155 (Ref. 2). Replacement
of Asn 155 (e.g., the Asn155— Ala 155 described in Fig. 7.9) allows for a
quantitative assessment of the effect of the protein dipoles on Ag”.

The FEP and PDLD approaches developed in the previous chapters can
be used conveniently to calculate the effect of genetic mutations. For
example, one can calculate the reaction profile for the native and mutant



FIGURE 7.9. The Asn-155— Ala mutation in subtilisin invoives deletion of a hydrogen bond
between the enzyme and the oxyanion transition state.

185
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enzyme and evaluate the difference in Ag” (AAg™) associated with the
mutation. Such a thermodynamic cycle [which is denoted in Fig. 7.10 by
(AG}— AG,)] can be considered formally as a “mutation” of the substrate
between its ground state and transition state, in the native and mutant
enzymes. This type of calculation will give, as a byproduct, the location of
the transition states in the native and mutant enzymes. Once the transition
states are located we can try an alternative thermodynamic cycle, mutating
the protein at the (ES) and (ES™) states rather than “mutating” the
substrate from its ground to transition state at the native and mutant enzyme
(the AG, — AG, cycle of Fig. 7.10). Similarly one can calculate the effect of
mutations on binding free energy (the AG, of Fig. 5.2) in an indirect way,
mutating the protein at the E + S and ES states and obtaining AAG; , from
the AG, — AG, of Fig. 7.10. ‘

For what is probably the earliest microscopic calculations of thermo-
dynamic cycles in proteins see Ref. 12, that reported a PDLD study of the
pK,’s of some groups in lysozyme. The use of FEP approaches for studies of
proteins is more recent and early studies of catalysis and binding were
reported in Refs. 11, 12, and 13 of Chapter 4.

E+§ —» ES ——> ES’

AG, | AG,

AGy

E'+S

AAG,., = AG, - AG, = AG, - AG,

AAg* = AG) - AG; = AG. - AG,

FIGURE 7.10. Different thermodynamic cycies that can be used to determine the effect of
mutations on activation-free energies and binding-free energies. The figure designates the
native and mutant enzymes by E and E’, respectively. Note that one can either mutate the
substrate between the ground and transition state or mutate the proteins at the ground and
transition state (this, however, requires one to find the location of the transition state).



SITE-SPECIFIC MUTATIONS : 187

The results of a study of several mutation of Asn 155 in subtilisin are
presented in Fig. 7.11. The agreement between the calculated (Ref. 5b) and
observed (Ref. 9) results is almost quantitative, providing a powerful
verification of structure—function correlations against a clear data base
(which does not involve some of the uncertainties associated with com-
parison of enzymatic reactions to the corresponding reactions in solutions).
Moreover, calculations of the effects of point mutations offer much more
than the verification of the given theoretical approach. That is, while genetic
substitution tells us what is the contribution of a given group to Ag”™, it does
not tell us in a direct way what are the energy components of the given
contribution. For example, the substitution of Asp, in subtilisin leads to a
change of 4.6 kcal/mol in Ag” (Ref. 10a) and a similar effect is observed in
trypsin (Ref. 10b). It is not clear, however, whether this is due to elimina-
tion of the charge relay mechanism or to the loss of the electrostatic

#*

Enzymes AAGping AAG cat
exp. calc. exp. calc.
—ewew—. Thr 4.7 5.0
............ Ala -0.6 -0.2 3.7 4.1
——— Leuw ~0. 0.5 3.3 3.7
—— Asn 0. 0. 0 0.

FIGURE 7.11. Calculated and observed free-energy changes for the Asn-155— Thr, the
Asn-155—1Leu, and the Asn-155— Ala mutations. The calculated and observed free energies
are compared in the table in the upper part of the figure.
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stabilization of His] by Asp, in mechanism a of Fig. 7.2. Here one can
calculate the actual contributions to AAg” and analyze their relative mag-
nitude, under the constraint that the total calculated change in Ag™ should
reproduce the corresponding observed value (Ref. 11). Calculations which
are capable of reproducing the observed AAg™ in an extensive number of
test cases are probably sufficiently reliable to tell us which mechanism is
responsible for the given catalytic effect.
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SIMULATING
METALLOENZYMES

8.1. STAPHYLOCOCCAL NUCLEASE

8.1.1. The Reaction Mechanism and the Relevant
Resonance Structures

Staphylococcal nuclease (SNase) is a single-peptide chain enzyme consisting
of 149 amino acid residues. It catalyzes the hydrolysis of both DNA and
RNA at the 5' position of the phosphodiester bond, yielding a free
5'-hydroxyl group and a 3'-phosphate monoester

H,0+5 —~ OP(0,) 0 -3' =5~ OH + (OH)P(0,) 0 -3 (8.1)

The enzyme requires one Ca’* ion for its action and shows little or no
activity when Ca’" is replaced by other divalent cations. A crystallographic
structure at 1.5 A resolution of SNase in complex with the inhibitor pdTp
has been determined by Cotton and co-workers (Ref. 1). The active site
(Fig. 8.1) is located at the surface of the protein with the pyrimidine ring of
pdTp fitting into a hydrophobic pocket while the 3’- and 5'-phosphate
groups interact with several charged groups. In particular, the two arginine
residues, 35 and 87, donate hydrogen bonds to the 5'-phosphate, thereby
partly neutralizing its double negative charge. The Ca*" ion is ligated by the

189
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Phosphate

Glu43

FIGURE 8.1. The structure of the active site of SNase with a bound inhibitor that is used as a
model for the substrate. :

carboxylate groups of Asp2l and Asp 40, the carbonyl oxygen »f Thr4l,
two water molecules, and one of the 5'-phosphate oxygens.

Based on this protein-inhibitor structure, a reaction mechanism for the
enzyme has been postulated (Ref. 1): (1) general base catalysis by Glu 43,
which accepts a proton from a (crystallographically observed) water mole-
cule in the second ligand sphere of the Ca’" ion, yielding a free hydroxide
jon; (2) nucleophilic attack by the OH" ion on the phosphorus atom in line
with the 5'—O—P ester bond, leading to the formation of a trigonal bipyrami-
dal (i.e., pentacoordinated) transition state or metastable intermediate; (3)
breakage of the 5'-O-P bond and formation of products.

The overall catalytic rate constant of SNase is (see, for example, Ref. 3)
Koo ~95s~! at T=297K, corresponding to a total free energy barrier of
Ag?, = 14.9 kcal/mol. This should be compared to the pseudo-first-order
rate constant for nonenzymatic hydrolysis of a phosphodiester bond (with a
water molecule as the attacking nucleophile) which is 2 X 10™'*s™", corre-
sponding to Ag? =36kcal/mol. The rate increase accomplished by the
enzyme is thus 10'°~10'®, which is quite impressive.

The first two steps of the SNase reaction, of which the second one is rate
limiting, can be described by the three EVB resonance structures of Fig.
8.2. Here, ¢? represents the reactant state, with Glu 43 negatively charged
and the 5'-phosphate group in tetrahedral conformation. The state resulting
from the general base catalysis step, where Glu 43 has been protonated by
the adjacent water molecule, is denoted by 7%, and the state with the
pentacoordinated phosphate group formed after nucleophilic attack by the
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FIGURE 8.2. The resonance structures for the proposed mechanism of SNase.

OH ™ ion is denoted ¢%. The atoms depicted in the figure are considered as
our solute system (S) while the rest of the protein—water env1r0nment
constitutes the “solvent’ (s) for the enzyme reaction. Although the Ca’" ion
does not actually “react,” it is included in the reacting system for con-
venience. As before, we describe the diagonal elements of the EVB
Hamiltonian associated with the three resonance structures (1, ¢35, ¥3) by
classical force fields, using:

_ A 1 . ‘ ‘ 1 . ‘ A
e, =H, = % AMPD (B + 5 ; K00 = bih) + 5 ; K (09 - 657 )
+ ; be’;zn cos(nf,{)cbﬁ,{)) + Ug()g
+UD+UQ 5+ UD s + U, +af (8.2)
Qgq, ,Ss S i

where, as in previous chapters, AM ) denotes the Morse potential (relative
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to its minimum value) corresponding to the mth bond in the jth resonance
structure. Bonds which are not included in the EVB list are described by a
quadratic potential (note that K, is set to zero for the EVB bonds). The
third and fourth terms are the bond-angle and dihedral-angle bending
contributions. U (Q’()Q denotes the electrostatic interaction between the solute

charges and U} designates the solute nonbonded interaction (other than
electrostatic). The interaction energy between the solute system and the
surrounding protein-water is contained in U{j) s, the electrostatic part, and
U E,’b)’ s, the rest of the nonbonded interaction.

8.1.2. The Construction of the EVB Potential Surface for the Reaction

The determination of the AG, s depends, of course, on the choice of the
reference reaction in solution. For instance, when one states that the rate
enhancement by SNase is ~10'® one makes the implicit assumption of the
reference reaction being :

H,0 + (CH,0),PO; = (CH,0),P(OH),0" (8.3)

where the attacking species is a water molecule (from now on we only
consider the reactions up to the formation of the pentacoordinated int :r-
mediate—transition state since this is the rate-limiting step). The activation
free-energy barrier for this reaction is 36 kcal/mol. This is, however, not the
mechanism proposed for SNase, which involves an hydroxide ion as the
attacking species. A more useful choice of reference reaction in solution
would therefore be

OH™ + (CH,0),PO, = (CH,0),P(OH)0;" (8.4)

This reaction requires the formation of an hydroxide ion, as in the enzyme
reaction. A proper reference reaction for the first step in the enzyme would
then be simply the proton transfer from a water molecule to a glutamic acid
in solution:

(Glu) — COO ™~ +H,0=(Glu) - COOH + OH"~ (8.5)

The observed reaction free energy for this step is given by
(AG,.,), =2.3RT(pK,[H,0] - pK,[Glu]) = 15.9 kcal/mol, while the acti-
vation free energy is estimated to be (Agi_,), =18.3kcal/mol at 297 K,
using data from the reaction H,O=H" + OH". The free energies and rate
constants for formation of pentacoordinated intermediates for various phos-
phate ester hydrolysis reactions have been calculated and compiled by
Guthrie (Ref. 2). For the hydrolysis of dimethylphosphate by OH™ [eq.
8.4)] the obtained values are (AG,;), = 22(%3) kcal/mol  and
(Agt_,), =33 kcal/mol. We thus have the reference free-energy diagram
depicted in Fig. 8.3 from the experimental solution data. It should be noted
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AG (kcal/mol)

(CHy0) P(OH)Og_

(Glu)=COOH + OH
| 22|

!
/18 - -
16| |oH™ + (cHy0), PO,

..., A A
|
reaction coordlnate

(Glu)=C00~ + H, 0

FIGURE 8.3. The energetics of an hypothetical reference reaction that corresponds to the

assumed mechanism of SNase but occurs in a solvent cage.

that if the reaction proceeds through exactly the same mechanism in solution
as in the enzyme (including the proton transfer to a glutamic acid), the total
free-energy barrier will be almost 50 kcal/mol, corresponding to an enzyme
rate acceleration of 10*°! However, our reference reaction corresponds to a
convenient mathematical trick that guarantees a properly calibrated surface
for the given enzymatic reaction and does not have to represent the actual

mechanism in solution.
Now we are ready to calibrate our EVB surface for the solution reaction.
To do this we start with the first step and consider the two resonance

structures
Y1 =(0-C~-0) (H-O-H)(PO,(OR),)
¢, =(0 — C—~ OH)(OH) (PO, (OR),) (8.6)

The corresponding calibration process is given as an exercise below.

Exercise 8.1. Find «,, a,, and H,, for the proton transfer step by using the
above experimental information and Program 2.B.

After performing this exercise you will get similar parameters to those
obtained by more elaborated free-energy calculations and summarized in
Table 8.1. A similar procedure can be used for the second step where the
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TABLE 8.1. Parameters for the EVB Potential Surface of the Reaction of

Staphylococcal Nuclease®

AM(b)= D[1 - exp{—é(b — b))}

Bonds

C=0 (‘llp s, ‘[lfa) D =120 b0:1.25 a=2.0
(Cn ) (‘/’27 l41’3) D =83 b0=1.36 a=2.0
O-H (¢, ¥, ¥3) D =109 b, =1.00 a=20
P-0O (dlv s ‘IIB) D =383 bo =1.60 a=2.0
P=0 (¢, ,) D =120 b,=1.49 a=2.0
Bond Angles U,=1K,(0 - 90)2

O-P-O (¥, ) K, =60 6, = 109°
O-P-O (¢3)b ](6 =60 90 = 9Q°
O-P-0 (4,)° K, =60 6, = 120°
0O-P-0 (4,)" K, =60 6, = 180°
Nonbonded* Uyp=Aye @

O0---0O(,) A =3600 a=2.5
O---P(y,) A =3900 a=25
Nonbonded U, = AiAjflz - B,-Bjr_ﬁ

H A=4 B=0
0o A=1120 B=24
C A =632 B=24
P A = 1500 B=24
Ca A =345 B=15
Charges U,, =332q,9,/r,

(0-C-0)" () go=-07  g.=+04

H-O-C=0 (¢, ;) qu = 10.4 qo=-04 gc=+0.4

H-O-H (¢,) gy = +0.4 qo=-0.8

(H-0) () = 00  go=-10

5-0O(HO)P(0O07)0-3' (¢;) qu= 0.0  go =4qo,=gdo,= 0.4 ¢p=+1.0

3'-OP(007)O-3" (41, ¥)
Ca™" (‘/’17 Vs ‘/fs)

4o,=490,~ -0.9
o, =qo, = —0.36 g, =+0.99 go,=qo,= —0.635

e, = 2.0

Off-Diagonal Parameters and Diagonal Shifts

H,, AP =10 wol =0.0 ro=0.0
H,, AP =35 psy =0.0 r,=0.0
a; 0.0

a, 22

a, 207

“Energies are in kcal/mol, distances in A, and atomic charges in au. Parameters not listed in
the table are the same as in previous chapters.
>The three different functions correspond to the three possible O—-P-O angles around the

pentacoordinated phosphate.

“The nonbonded interaction term used for the OH™ ---PO, interaction in the EVB calcu-

lation.
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(OH ") attacks the phosphate group, considering the two resonance struc-
tures ¢, and y, of Fig. 8.2 (without the Ca’>" ion). The corresponding
parameters for ¢,, &;, and H,, are also given in Table 8.1 (see Ref. 4 for
more details).

8.1.3. The Ca’* lon Provides Major Electrostatic Stabilization to the
Two High-Enei gy Resonance Structures

After obtaining the EVB parameters for the reaction in solution we are
ready to consider the protein reaction. Here there is one new major element
not considered in the previous chapters—the interaction of the reaction
system with the metal. This might require consideration of the actual
bonding between the metal and these fragments. However, as a zero-order
approximation one can describe these interactions in terms of atom-atom
electrostatic and van der Waals interactions. The corresponding parameters
can be determined by either fitting potential functions to quantum mechani-
cal calculations or by adjusting parameters to reproduce experimental
information about the energetics and structure of the solvent around the
metal in aqueous solution. This approach is taken here and the correspond-
ing parameters are given in Table 8.1 (see Ref. 4 for more details).
Apparently, the main effect of the metal is in providing electrostatic
stabilization to both OH™ in ¢, and the additional negative charge on the
phosphate in ;. This results in a major reduction of the activation free
energy of the reaction, as demonstrated in Fig. 8.4. In the first step of the
reaction the enzyme utilizes the Ca®" charge to stabilize the hydroxide ion in
a very significant way (in solution the proton transfer step costs about

60 [ - / — e

S o]
(=] (@]

(kcal/mol)
)
S

20
@)
<1
10
0
(1,0,0) (0,1,0) (0,0,1)
A

FIGURE 8.4. Calculated free-energy profiles for the reference reaction in solution, Ag,, and
for the enzyme reaction, Ag,.
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18 kcal/mol while the enzyme reduces the energetics of this step by almost
15 kcal/mol). In the second step the enzyme appears to work by providing
an effective electrostatic complimentary to the transition state. That is, the
loss of interaction energy between the Ca”" ion and the hydroxide ion, in
moving toward the pentacoordinated structure, is compensated for by
increased interaction between the Ca’" ion and the 5’-phosphate oxygen
ligand. The accumulating negative charge (—1—>—2) on the phosphate

FIGURE 8.5. Three snapshots from the trajectories that lead from the ground state to the
transition state in the catalytic reaction of SNase.
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group is effectively sta)ilized by closer interactions with Arg35 and Arg 87.
In particular, Arg87 appears to be an important factor, as its hydrogen
bonds interact strongly with two of the phosphate oxygens in the transition
state and not in the reactant state. This is also supported by the fact that a
mutation of Arg 87 leads to a large effect on k_,, for this species.

Exercise 8.2. (a) Use the EVB Program 3.C and construct a potential
surface for the reaction of Fig. 8.2, in the absence of the calcium ion, in
water. (b) Examine the enzymatic reaction by adding the Ca’* to the
calculation of (a).

As emphasized in Chapter 5, we can use the analytical EVB potential
surfaces to simulate the dynamics of our enzymatic reaction. This is done by
propagating downhill trajectories from the different transition states, using
the time reversal of these trajectories to construct the actual reactive
trajectories (which are very rare and cannot be obtained by direct simula-
tions). A few snapshots from our reactive trajectories are depicted in Fig.
8.5. The main point from this dynamical study, which requires more
photographs for a clear illustration, is the fact that the Ca®" ions helps the
reaction by moving with the OH ™ nucleophile toward the phosphate. (A
movie of this reaction can be obtained from the author). This concerted
motion allows the Ca®" to retain the stabilization of the OH ™ ion, while also
helping the transfer of the OH ™ charge to the phosphate oxygens (the Ca®*
also stabilizes the developing negative charge on the phosphate oxygens).

8.2. CARBONIC ANHYDRASE

The approach taken above estimates the effect of the metal by simply
considering its electrostatic effect (subjected, of course, to the correct steric
constraint as dictated by the metal van der Waals parameters). To examine
the validity of this approach for other systems let’s consider the reaction of
the enzyme carbonic anhydrase, whose active site is shown in Fig. 8.6. The
reaction of this enzyme involves the ‘“hydration” of CO,, which can be
described as (Ref. 5)

Zn** +H,0+ CO,=Zn*"---OH +CO,+H" =2zZn*"---HCO; +H"*
(8.7)

where the enzyme-active site uses a Zn*" ion to catalyze the reaction. This
reaction can be described by the VB structures considered in Exercise 8.3.

Exercise 8.3. Write the VB resonance structures for the reaction in eq.
(8.7).
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FIGURE 8.6. The catalytic site of carbonic anhydrase (Ref. 7). The water molecule is 22A
from the Zn>* ion and 2.6 A from the carbon of the CO, which is held 2.5 A from the Zn®* ion.

Solution 8.3. This reaction can be described by
y,=H-O0—-H O=C=0(Zn>)
$,=H-O"H' O=C=0(Zn*")
g, =H* H——o—c|=0(2n“) (8.8)
O

where the H* ion is attached, of course, to a donor molecule (e.g. a water
molecule).

With the valence bond structures of the exercise, we can try to estimate
the effect of the enzyme just in terms of the change in the activation-free
energy, correlating AAg™ with the change in the electrostatic energy of i,
and , upon transfer from water to the enzyme-active site. To do this we
must first analyze the energetics of the reaction in solution and this is the
subject of the next exercise.

Exercise 8.4. Analyze the eﬁergetics of the CO, hydration reaction [eq.
(8.7)] in solution.

Solution 8.4. To accomplish this task we have to find a simple cycle with
easily available energies. Such a cycle is almost always available and indeed
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we note that the first step is a simple dissociation of water with pK, of 15.7
and AG, =21.4kcal/mol. We also note that the second step can be de-
scribed by the cycle

|
0=C=0+0OH +H'—%"0-C-OH+H"
N [s6.
o :
AG,, I
0=C=0+H,0 —3 HO-C- OH (8.9)

with AG,,, =0.1kcal/mol from the standard free energies of O=C=0O

H,0, and H,CO; (-92.2, —56.6, and —148.7kcal/mol, respectlvely)
AG3 =-214 kcal/mol from the pK, of water) and AG; , = 6.1kcal/mol
from the pK, of H,CO, we obtain AG, ,=AG,, +AG,, +AGs, =
—14.8 kcal/mol. Another estimate of AG,, can be obtained from the
klnetlc data of Ref. 6, which glves kz_)3—2 10*s™" and k, ,~2.107*

! (with the notation CO,+ OH" —‘HCO ) which gives through eq.

ks,
(2 3) K, ,;~10° and (AG,.;), =—RTln K, ,,=—11kcal/mol [where
(AG,.,), is the AG, , of eq. (8.9)]. (Agzﬁ) can be conveniently ob-
tained from Ref. 5 using the value given above for k,,, egs. (3.31)
and (2.12), which gives (AgJ.;), =11.5kcal/mol. Thus we obtain the
energetics depicted in Fig. 8.7. -

Once the energetics of the reference reaction are estimated we are ready
to analyse the effect of the enzyme, which reduces the barrier from
~25 kcal/mol to ~9 kcal/mol, with the first step (H,O—H" + OH") as the

0~§
H__oﬂs. ..... C
N H;0" ko»S
AG H;0'+OH +C |_ l
30 Foaren
JR— l*—“.‘—(Agz_ﬂ)w
@ 200 o Mt i 3}
5 / \ YA
S ' AGo,, y l—— H,0" HO—C(i®
SRR N A LU 2 N
S ; 0
S ;
Y1

Reaction Coordinate
2H,0 + 0=C=0

FIGURE 8.7. A schematic free-energy diagram for a stepwise hydration of CO, in water.

1
|
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rate limiting step (Ref. 5). This analysis involves a minor complication since
the transfer of the proton to the water molecule is followed by its transfer to
an histidine residue and to solution, before the nucleophilic attack step.
Thus the initial water splitting process should be considered as a two-step
mechanism, which lowers the reference energy for the nucleophilic attack
step. For this mechanism we will have to consider the pK, difference
between H,O" and histidine. Nevertheless, for simplicity we suggest that
the reader neglect the secondary proton transfer step and follow the exercise

below but remember that the actual situation is somewhat more complicated
(Ref. 16).

Exercise 8.5. Try to estimate the catalytic effect of carbonic anhydrase by
evaluating the energetics of the reactlng fragments in solution and in a
simplified LD enzyme model with Zn®" and three surrounding histidine
residues. Use the geometry of Fig. 8.6 for the reacting system and i 1gnore the
secondary proton transfer step.

Solution 8.5. First, use the LD model to calculate the Agso1 . [the Tesults
should be —25, —220, and —190 kcal/mol for Agy;y s Agsol , and AgSol o
respectively]. Now you should repeat the calculations, modeling the protein-
active site that includes the Zn>" ion as well as the other protein residues by
the PDLD model. ‘

The exercise given above should overestimate the activation barrier in the
enzyme, since it does not take into account the secondary transfer of the
proton from water to histidine. A more complete study (Fig. 8.8) that

[fm H,0H,0-Z0"+CO, | [1mH" H,0 HO =2 +CO, | H\ /0
o—Cc(i®
+ 2‘.’: N

[Im H,O'HO =-2n%'+CO, | ImH' 70 O

2

QS

g

S~

—~

g

X, 20 |-

R0

=

& 10}

N

N~

= ol

Reaction Coordinate
FIGURE 8.8. Calculated free-energy profile for the reaction of carbonic anhydrase. g,,, and
8y designate the states where the proton acceptors are water and histidine respectively.
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considers this transfer reproduces the actual catalytic activity of the enzyme
(Ret. 16).

8.3. GENERAL ASPECTS OF METALLOENZYMES
8.3.1. Linear Free-Energy Relationships for Metal Substitution

The two examples given above indicate that the role of the metal ion can be
captured by considering its electrostatic effect. This, however, must be done
with care, taking into account the specific ionic radius of the metal and its
van der Waals interactions with the nucleofile and the substrate. A useful
way to analyze the trend associated with the metal size is to consider the
effect of metal substitution in SNase. For simplicity we will consider first the
effect of the metal radius on ¢, and s, and examine the effect on ; only in
the final treatment. We will look for the trend in moving from a large ion
(Ba®*) to an intermediate ion (Ca’*) and to a small ion (Mg®"). In
changing the ion size one may expect several basic types of “selectivity”
patterns for the rate constant as a consequence of different dependence of
the two states on the ion properties (see Ref. 8 for general considerations of
ion selectivity). This is considered in Fig. 8.9, which depicts four limiting
cases: in Fig. 8.9a, y; is less sensitive to the ion size than s, over the entire
range of the ionic radius (r,,,) considered. Hence, the larger the ion, the
higher the rate constant will be, k(Ba**)> k(Ca®")> k(Mg>"). If, on the
other hand, i, is less sensitive to the ion radius, we will obtain the opposite
ordering between the rates, k(Ba>") < k(Ca’") < k(Mg’") (Fig. 8.9b). As a
third case, one can imagine the possibility that 4, is more sensitive to larger
ions while ¢, is more sensitive to smaller ions. This case is depicted in Fig.
8.9¢ and would lead to a maximum of the activation barrier for the
intermediate ion, k(Ba®*) > k(Ca’*) < k(Mg’"). The only case which could
give a minimum barrier for the intermediate ion is shown in Fig. 8.9d, in
which the sensitivities of the states in Fig. 8.9¢ have been reversed. Here,
the ordering between the rate constants would be k(Ba’*)< k(Ca®")>
k(Mg>*) and the enzyme could thus be said to be optimized for the
intermediate ion.

Calculations of the actual dependence of the activation barrier, Ag®, on
the metal size in the active site of SNase are summarized in Fig. 8.10. The
results reflect mainly the energetics of ¢, and s, since the dependence on
the ionic radius in ¢, is found to be rather small.

The origin of the dependencies of AAg* on r,,, can be rationalized in the
following way. When the smaller metals are bound to the enzyme, the free
energy of i, will be lowered considerably more than that of the transition
state (as well as ¢5;) since in the former the OH ™ ion is free to interact with
or ligate the metal, while it is becoming partially bound to the 5'-P atom at
the transition state with accompanying charge delocalization. On the other
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FIGURE 8.9. Linear free-energy relationship for the effect of metal substitution on ¢, and &, in
staphylococcal nuclease (see text for details).
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FIGURE 8.10. The effect of metal substitution on AAg’, on the catalytic reaction of SNase.
The observed values of Sr** and Ca®" are denoted by circles and the experimentally estimated
limits for Ba®>*, Mn>* and Mg®* by 1 (see Ref. 15 for more details).

hand, when the metal ion becomes too large it has less ability to perform its
other major catalytic role (besides stabilizing the hydroxide ion in the first
reaction step), namely, solvating the developing double negative charge on
the phosphate group. That is, for the larger ions the state ¢, would be more
sensitive to the ion size than 4, because of the less efficient solvation of the
phosphate group.

By calculating the quantities AAG,(Ca’" —M*"), AAG,(Ca*" —»M™),
and AAgi ,(Ca”"—M"") it is possible to obtain the overall change in
activation energy (relative to Ca’") as a function of the ion (M>") size. Such
a calculation is presented in Fig. 8.10, where the location of Sr**, Ba®",
Ca®*, and Mg®" have been indicated on the curve. The two main conclu-
sions to be drawn from the dependence of AAg’,, on the ion radius. First,
that there is a clear minimum in the neighborhood of Ca®*, which suggests
that the enzyme has been optimized to work exactly with calcium bound.
Secondly, it can be noted that the calculated effect on the catalytic rate is
more pronounced when smaller ions, such as Mg”", replace Ca®" than is the
case for the larger Sr** and Ba®" ion. This is mainly due to the fact that for
smaller ions AAG, depends much more on the ion size than the correspond-
ing free energies of the two other states, while for larger ions the free energy
of all three states shows a more commensurable behavior. This trend
appears to agree with the relevant experimental observations.
~ The finding that SNase appears to have its turnover optimum for the ion
which it uses in nature may, of course, not be considered terribly surprising.
However, the free-energy relationships leading to a rate optimization are
quite interesting and point toward more general features pertaining also to
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other metalloenzymes, both with similar as well as quite different catalytic
reactions. Perhaps the most immediate example is that of deoxyribonuclease
I (DNase I) (Ref. 9). This enzyme catalyzes essentially the same reaction as
SNase with presumably the same mechanistic pathway. The main difference
appears to be that while SNase uses a glutamate as the general base, DNase
I has instead chosen a histidine residue (His131) for this step. The
dependence of the catalytic rate of DNase I on replacement of the Ca’" ion
by various other divalent metal ions has also been studied. The influence of
these replacements on the activity of the enzyme agrees qualitatively well
with the calculated AAg?,, curve for SNase (Fig. 8.10). Only Sr** and Ba’*
can replace the catalytic calcium ion in DNase I, but are less effective (Ba**
more so than Sr).

Another example with similar mechanistic features, but for a different
reaction, is the catalysis of ester bond hydrolysis in phosphoglycerides by
phospholipase A,. As for SNase and DNase I, phospholipase (Ref. 10) also
has an absolute requirement for Ca’* as a cofactor, and the Ca®" appears to
play a very similar role to that in SNase. It binds the negatively charged
substrate phosphate group and probably also facilitates the abstraction of a
proton to yield the OH ™ nucleophile. Furthermore, it must be important for
stabilizing the charges of the tetrahedrally coordinated C2 carbon transition
state, in analogy with its multiple tasks in SNase. The proposed mechanism
for phospholipase A, also involves general base-assisted catalysis in the first
step of the reaction through an Asp-His pair similar to that found in the
serine proteases (as well as DNase I). Several divalent metal ions have been
shown to be inhibitory and no cation has been found that can replace Ca**
in the enzymatic reaction. Since both Sr’* and Ba®* form ternary enzyme-
metal-substrate complexes with phospholipase A,, but neither ion promotes
catalysis, it was suggested that only Ca®" can effectively enhance polariza-
tion of the ester carbonyl oxygen in the second reaction step (as will be
discussed at the end of this chapter, it is important to replace the somewhat
useless concept of ground state bond polarization by the consideration of the
electrostatic stabilization of the transition state). Thus, the reduced ability
(compared to Ca’") for these larger ions to “solvate” the negatively charged
transition state appears to provide a rationalization of the data also for
phospholipase A,, in manner similar to SNase (a less efficient stabilization
of the OH™ nucleophile could also contribute to the absence of activity for
these ions). However, the argument above cannot account for why the more
electrophilic ions do not promote catalysis. For these ions, the inability to
activate the enzyme may again reflect a strong interaction between the metal
and the nucleophile, which hampers its possibility to attack the substrate.

Similar reaction mechanisms, involving general base and metal ion
catalysis, in conjunction with an OH™ nucleophilic attack, have been
proposed for thermolysin (Ref. 12) and carboxypeptidase A (Refs. 12 and
13). Both these enzymes use Zn" as their catalytic metal and they also have
additional positively charged active site residues (His 231 in thermolysin and
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Arg127 in carboxypeptidase) with, presumably, similar transition state
stabilization effects as the arginines in SNase, DNase I, and alkaline
phosphatase. It is noteworthy that thermolysin and carboxygeptidase, as
opposed to the previous cases, combine the choice of the Zn™" ion, which
increases the acidity of the reactive water molecule, with general base
catalysis (by a glutamate), if the proposed mechanisms for these enzymes
are correct. Metal substitution experiments on carboxypeptidase A have
shown that the activity is optimal with Zn>* or Co®* bound. In this case the
alkaline earth metals produce no activity. Interestingly, it appears that
carboxypeptidase A is more sensitive to replacement of the Zn>* ion by
transition metals with larger hydration energy than by those with smaller
hydration energy. This might be indicative of a free-energy relationship
simzi]ar to that of Fig. 8.10, underlying the observed optimum for Co>* and
Zn*".

As a final example, consider the mechanistic features of the alcohol
dehydrogenase (ADH)-catalyzed reaction (Ref. 14). This reaction differs
somewhat from the previous cases, since the step following the alcohol
deprotonation involves a hydride transfer rather than an R—O " nucleophilic
attack. However, the deprotonation of the alcohol group corresponds to
basically the same energetics in solution as the first step of the previous
cases. That is, the free-energy cost of transferring the proton to water in
solution is about 22 kcal/mol, and the enzyme must be able to reduce this
energy to a much more tractable number in order to accomplish any
catalysis at all. In this respect, it again appears that the Zn’" ion bears the
heaviest burden in catalyzing the first step of the reaction.

In all of the cases discussed above, the metal ion plays a central role in
facilitating an otherwise unfavorable proton transfer step as well as in the
subsequent transition-state stabilization and substrate binding. As for the
first point above, it should be kept in mind that even with a general base (as
opposed to a water molecule) to accept a proton from a water molecule, the
cost of forming an OH™ nucleophile is about 11-16 kcal/mol in solution,
depending on the type of general base (it is about 22 kcal/mol without
general base catalysis). Therefore, the advantage of using a divalent metal
ion in order to accelerate the first reaction step is obvious.

8.3.2. Classification of Metalloenzymes in Terms of the Interplay
Between the General Base and the Metal

On the basis of the examples given above, it is reasonable to suggest that the
underlying principles for optimization of the overall reaction rate with
respect to the choice of metal ion are similar. That is, there are basically
three states along the reaction pathway which determine the most suitable
“choice of metal ion. These are: (1) the reactant state with bound metal and
substrate before the proton transfer step, (2) the intermediately created free
OH™ nucleophile and, (3) the subsequent transition state associated with
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the nucleophilic attack. It must clearly be advantageous to reduce the cost of
abstracting the proton from the nucleophile as much as possible, but, as
elucidated in the case of SNase, a too electrophilic metal is likely to be less
efficient by “trapping” the OH" ion as a ligand. The electrostatic stabiliza-
tion of the negatively charged transition state is not, at least in the case of
SNase, as much affected by choosing a small electrophilic ion with large
hydration energy as is the interaction with the free hydroxide ion. This is
due to the higher degree of charge delocalization at the transition state,
where the negative charge carried by the nucleophile is becoming distributed
over several atoms.

It may be instructive to again consider the energetics of a proton transfer
reaction of the type involved in the first step of the examples above, in
solution. Under the influence of a possible general base as the proton
acceptor and a possible metal ion assisting as a catalyst we can write

R-OH+B=R-0 +BH" (8.10)

where B is a base which can be either a water molecule or a stronger base,
while M denotes a metal ion, if present, otherwise simply a water molecule.
The energetics of eq. (8.10) (in solution) can be described by Fig. 8.11a,
which shows the influence of some prototypes B and M on the reaction-free
energy. The approximate numerical values in Fig. 8.11a are calculated from

M ("metal") M ("metal")
2
n™ L \12 7 3 Zn2* _']'”':,i}:,’."%”h?&m thermolysin,

2+
7 Ca™ | SNase g\?::hinm.s,,
12 H,O — ile}l{'l:;pmtem
5 B (base) L | I B (bs
H, H,0 e N
_____ 7 0.0 / 7
§ e
I NH
(b)

FIGURE 8.11. Cla551fy1ng metalloenzymes according to their catalytic metal and the coupled
general base. Part (a) of the figure shows the energetics (in kcal/mol) of transferring a proton
from a metal-bound water to a general base in water. For example, a proton transfer from
Ca’*-bound water to glutamate costs 11kcal/mol in water. Part (b) classifies different
metalloenzymes according to the corresponding metal and general base. The figure illustrates
that metalloenzymes are usually found in the low-energy part of the diagram.
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observed pK,-shifts in solution. If we think of Fig. 8.11a as defining a sort
of free-energy surface for the solution reaction, it is interesting to examine
to what extent this picture is reflected by enzymatic reactions of the same
type. In Fig. 8.11b a number of enzymes with well-characterized reaction
mechanisms are “plotted” according to their metal and general base.
Although it is clear that the actual free-energy values of Fig. 8.11a cannot
apply strictly to Fig. 8.11b (e.g., because of different dielectric properties in
different active sites), it is probably significant that the “high-energy” region
appears to be avoided in Fig. 8.11b.

Finally, it may be useful to comment here on the commonly used concept
that relates the catalytic power of metal ions to their ability to “polarize”
the reacting bond (e.g., the ester carbonyl in the reaction of phospholipase
A,). The concept of bond polarization is somewhat useless since it does not
render itself to quantitative predictions. What really counts is the electro-
static interaction between the metal ion and the reacting fragments in their
ground and transition state (e.g., O C=0O--- Ca’>* and O-C-O~ +--Ca’" in
the phospholipase A, case). Once we define our mechanism in terms of the
energetics of the fragments, rather than the ill-defined polarization concept,
we can conveniently ask how much the given resonance form is stabilized
and use linear free energy relationships in a semiquantitative way.
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HOW DO ENZYMES
REALLY WORK?

9.1. INTRODUCTION

The previous chapters taught us how to ask questions about specific
enzymatic reactions. In this chapter we will attempt to look for general
trends in enzyme catalysis. In doing so we will examine various working
hypotheses that attribute the catalytic power of enzymes to different factors.
We will try to demonstrate that computer simulation approaches are ex-
tremely useful in such examinations, as they offer a way to dissect the total
catalytic effect into its individual contributions.

In searching for major catalytic effects one may start from Pauling’s
statement (Ref. 1) that enzymes catalyze their reactions by stabilizing the
corresponding transition states. This statement reflects an early recognition
that the transition state theory is applicable to enzymes and that the rate
constant depends mainly on the activation free energy. This statement also
led to the important prediction that transition state analogues would be
good inhibitors. However, this early insight does not solve our problem.
That is, it is very probable that most enzymes stabilize their transition states
relative to the reference reaction in water, but the question is how this
stabilization is accomplished. Many proposals have been put forward to
rationalize the enormous catalytic power of enzymes (Refs. 2-11). In the
following sections we will consider the main options.
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9.2. FACTORS THAT ARE NOT SO EFFECTIVE IN ENZYME CATALYSIS

9,2.1. It Is Hard to Reduce Activation Free Energies in Enzymes by
Steric Strain

The strain hypothesis, which was mentioned and discussed in Chapter 6,
suggests that the steric force of the enzyme-active site reduces the activa-
tion-free energy by destabilizing the ground state. To estimate the actual
magnitude of this effect we have to agree first on a common definition of
“strain.” Here we adopt the usual definition in conformational analysis and
consider as steric potentials the repulsive van der Waals interactions and the
contributions of bonds, bond angles, and torsional deformations. The
charge—charge and charge-induced dipoles interactions are classified as
electrostatic contributions, while the attractive van der Waals terms (whose
effect in the protein, relative to the same process in water, is negligible) can
be classified as either steric or electrostatic contributions. The main point in
this definition is a clear division between the effects associated with electro-
static forces (which vary slowly with distance) and the effects associated with
steric forces (that change fast with small molecular deformations).

With this definition we can assess the actual catalytic contribution associ-
ated with steric effects by a straightforward “‘computer experiment.” That
is, we can calculate the steric contribution to the activation free energy,
Ag’...., in both the enzyme site and in water. The difference AAG e =
(Agl..i.)” — (AgZ....)" is the contribution of strain to the change in catalytic
free energy. This type of calculation has been performed for the catalytic
reaction of lysozyme (Chapter 6) and has indicated that the strain effect is
not a major catalytic factor, since the protein is quite flexible and can
accommodate the structural changes of the substrate without a large in-
crease in free energy. This seems to be a quite general observation since the
elementary steps in most chemical reactions do not involve large displace-
ments of the reacting atoms (note that these displacements should be
evaluated in a way that minimizes the change in their Cartesian coordinates
for the given change in internal coordinates). It is still possible that some
special reactions, that involve Cartesian displacements of more than 1A,
may be associated with significant steric effects on Ag”. However, such
ground-state destabilization effects cannot help in increasing k_,./ K,,, which
is (as is clearly illustrated in Fig. 5.2) only affected by the difference
between the energy of the transition state, ES™, and the energy of the E+ S
state. Thus these effects are less likely to be used in the evolutional
development of enzymes, which is evolved under the requirement of optimal
k../K,.

"~ In some cases one finds that steric effects lead to clear changes in activity.
The most obvious examples are the cases where the enzyme or the substrate
are modified so that the reacting part of the substrate cannot assume the
proper orientation in the active site. For example, introducing a bulky
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residue in the active site of trypsin can prevent an optimal orientation of t
oxyanion intermediate in the oxyanion-hole. This effect, however, is not
example of a steric contribution to catalysis but of the construction of a ba
catalyst. Another related example is the modification of a proton accepic
group in an enzyme that will pull it further away from the proton donor; fc
example, the reaction of triosephosphate isomerase involves a proton tran:
fer from the dihydroxyacetone phosphate substrate to Glu-165. Mutation ¢
Glu-165 to Asp leads to a reduction of the rate constant by a factor of abo
1000 (see Ref. 14). Such a change can reduce drastically the rate constar
due to steric restriction (this situation is illustrated in Fig. 9.1). Here aga
we do not have an example of the role of strain in enzyme catalysis, but
the role of strain in destroying enzyme activity. Both reactions in goo
enzyme and solution reactions will occur through pathway « and n
through B, and the real issue is how to catalyze reactions that occur throug
pathway a.

Since steric effects can change catalysis (e.g., the above mention
trypsin case), one may still argue that such effects do influence the correlk
tion between structure and function. However, this case is not so relevant
structure—function correlation since the steric effects establish new structu
and the activity associated with this structure is the main subject of ot
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FIGURE 9.1. The potential surface for proton transfer reaction and the effect of constrainir
the R, , distance. The figure demonstrates that the barrier for proton transfer increas
drastically if the A — B distance is kept at a distance larger than 3.5 A. However, in solutic
and good enzymes the transfer occurs through pathway a where the A — B distance is arour
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FACTORS THAT ARE NOT SO EFFECTIVE IN ENZYME CATALYSIS 211

discussion. Thus we conclude that while steric effects should clearly be
considered and taken into account in correlating protein sequence and
structure, they are not likely to provide a major catalytic advantage in most
enzymes.

9.2.2. The Feasibility of the Desolvation Hypothesis Can Be Examined
with Clear Thermodynamic Considerations

One of the interesting proposals for the origin of enzyme catalysis is the
desolvation hypothesis (Ref. 7). According to this hypothesis, a nonpolar
enzyme’s active site can catalyze reactions by desolvating ground states
which are strongly soivated in the corresponding reaction in solution. For
example, in the S,2 reaction of Fig. 9.2, a large part of the barrier is due to
the loss of solvation energy associated with the formation of the delocalized
charges of the transition state from the localized ground state charge.
Moving the system to a nonpolar solvent will reduce the solvation energy of
both the ground and the transition state by about half (see Exercise 9.1) and
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FIGURE 9.2. A superficial analysis of a nucleophilic attack on a carbonyl carbon in different
environments. If a small value for the energy (A,) associated with moving the charged R-O~
group from solution to the gas phase is assumed, one might conclude that the gas-phase
‘reaction provides a reasonable model for the corresponding enzymatic reaction. However, a
correct thermodynamic cycle will shift the gas phase reaction by A, = —Ag,, (to a very high
energy) and one will have to consider the barrier associated with the formation of R-O~ from
R-OH (see Fig. 9.3 and Ref. 13).
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the activation barrier will be reduced by about half. In fact, there are
experimental demonstrations that some’ reactions can be accelerated by
moving them from polar to nonpolar solvents (Refs. 5 and 7d, €). However,
the analysis given above overlooks a major point; reactions in a nonpolar
enzyme-active site are not the same as a reaction in a nonpolar solvent since
the enzyme-active site is surrounded by a polar solvent. Thus the correct
thermodynamic cycle for the reaction must include the energetics of forming
the relevant fragments in aqueous solution and then moving them into the
active site. This point is illustrated in Fig. 9.3 (see also Ref. 13). As is clear
from the figure the apparent activation barrier includes the work of moving
the charged O~ from water to the enzyme-active site and this amounts to a
large (rather than small) barrier in a nonpolar enzyme.

Exercise 9.1. Evaluate the energetics of the reaction of Fig. 9.2 in a
nonpolar enzyme-active site.

Solution 9.1. The energetics of this reaction in water is known from
experimental information (Chapter 7). In order to estimate the correspond-
ing energetics in a non polar site we start by expressing the electrostatic
energy of a given state in a solvent of a dielectric constant d by (see Ref. 8a
of Chapter 4).

Agilecd Agsold+ VQQ_VQQ/d+Agsold (9.1a)

where V,,, is the electrostatic interaction between the reacting fragments in
vacuum [see eq. (5.14)]. Next we use the Born’s formula [eq. (3.21)] for the
solvation energy of the fragments at infinite separation:

ses-Saon (/0 5] om

where AGsol ., is the solvation energy of the kth fragment of the ith state in
water. Usmg the above equations and neglecting terms which include the
1/d factor for the fragments in water, where d =80, we obtain

(AAgiol)w—»np = (Agiol,np - Agiol w) = _Agiol,w/ dnp

= (V"Q AGLE w) / d, (9.1¢)

where Agsol and Ag' | ap are the solvation energies of the ith fragment in
water and in a nonpolar site, respectively. With this we obtain

A8y = A8+ A0gk) g =284 + (Voo - 2 4614, ) /2
(9.1d)
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FIGURE 9.3. Tllustrating why the desolvation mechanisms cannot lead to a lower activation
barrier in enzymes, but possibly to a higher barrier. Three cases are compared: (4) formation of
the charged nucleophile in water and its penetration to a nonpolar active site, (b) formation of
the charged nucleophile in water and penetration to a polar active site, and (c) formation of the
charged nucleophile in a nonpolar active site. The loss of solvation energy upon moving a
R-OH group from water to a nonpolar active site is small compared to the corresponding
change for a charged group. Therefore, the two cases (a and c) that correspond to a desolvation
mechanism can both be described by the same diagram. The solvation substitution model (b),
in which the charged groups are solvated effectively by the protein dipoles, will always give a
lower activation barrier than a desolvation mechanism, since a desolvating active site inevitably
will destabilize the R—O~ state more than the uncharged reference state and more than the
charged state in solution.
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where we use d,, =2 and where Ag! and Ag;p are the energies of the given
state in water and in nonpolar sites, respectively. The solvation energies
AG’S’OkI’w can easily be obtained by the reader with the LD model and are
frequently available from experimental studies (the values needed for the
present problem are given in ref. 13). Using either the LD calculations or
experimental ~ estimates we  obtain (aagl) )y—np = 46 kcal/mol,
—14 kcal/mol, where the subscripts (1) and (2) are the corresponding
states in Fig. 9.2.

This calculation demonstrates that a nonpolar solvent can accelerate S,2
reactions. However, this is not what we are asking; the relevant quantity is
the overall activation energy for the reaction in a nonpolar enzyme which is
surrounded by water. Thus, as is indicated in the thermodynamic cycle of
Fig. 9.3, we should include the energy of moving the ionized R-O " from
water to the nonpolar active site (AAgicl,l))w_,np. Thus the actual apparent
change in activation barrier is '

AAg™ = (AAGL))y oy + AAGL ,,, =46 — 14=32kcal/mol  (9.2)

The main point of this exercise and considerations is that you can easily
examine the feasibility of the desolvation hypothesis by using well-defined
thermodynamic cycles. The only nontrivial numbers are the solvation ener-
gies, which can however be estimated reliably by the LD model. Thus for
example, if you like to examine whether or not an enzymatic reaction
resembles the corresponding gas-phase reaction or the solution reaction you
may use the relationship

Ag;as = Ag’w - Agiol,w (93)

Using this relationship for different enzymatic reactions (e.g., Ref. 13)
indicates that enzymes do not use the desolvation mechanism and that their
reactions have no similarity to the corresponding gas-phase reaction, but
rather to the reference reaction in water. In fact, enzymes have evolved as
better solvents than water, by providing an improved solvation to the
transition state (see Section 9.4).

One may still conceive cases where destabilization of charged ground
states can contribute to catalysis, and where nonelectrostatic binding forces
(e.g., hydrophobic forces) compensate for the energy of moving the charges
to the enzyme-active site. However, most of the regular functional groups in
proteins (e.g., ionizable amino acids) will become unionized when placed in
nonpolar active sites. Thus, for example, with a neutral ground state we will
have to pay for ionizing the relevant groups in a nonpolar environment
(e.g., Fig. 9.3¢). More importantly, enzymes that have evolved in order to
optimize k_,,/K,, could not benefit from destabilizing ground states charges,
but only from stabilizing the charges of the transition states (see Fig. 5.2).
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Thus it is concluded that while destabilization of the ground-state charges
may be used in enzymes to reduce Ag”, it is not used in enzymes that
optimize k_,/K,,. Furthermore, we argue that the feasibility of any pro-
posed desolvation mechanism can be easily analyzed (and in most cases
disproved) by the reader once the relevant thermodynamic cycle is defined
and the solvation energies of the reacting fragments are estimated.

9.2.3. Dynamical Effects and Catalysis

It has been frequently suggested that dynamical factors are important in
enzyme catalysis (Ref. 9), implying that enzymes might accelerate reactions
by utilizing special fluctuations which are not available for the corresponding
reaction in solutions. This hypothesis, however, looks less appealing when
one examines its feasibility by molecular simulations. That is, as demon-
strated in Chapter 2, it is possible to express the rate constant as

k=7"exp{—AG"B} (9.4)

where we use here the rigorous rate expression with AG”, rather than the
approximate expression with the Ag”™ of eq. (3. 31) since we would also like
to explore entropic effects. The inverse time 7~ ' is the only part of the rate
constant that reflects dynamical effects, while the activation-free energy
AG” reflects the nondynamical thermodynam1c probabilities. Thus the issue
here is whether an enzyme can increase 7 ~ in a significant way.

This question can be explored within the linear-response approximation,
which relates the response of the effective coordinate of the environment
(e.g., the solvent or the protein) to the dipole, u, of the solute by (Ref. 11)

F{0(0)0@))

(00) = Qi) |, (SRS (BG= D O

7 =(3(0(). ) 19t)IAQ” (9.5b)

where Q is the generalized solvent coordinate which is defined as the solvent
contribution to the energy gap ¢;(t) — &,(¢) for a reaction which involves a
transfer from the potential surface ¢, to ¢;. As explained in detail in Ref. 11,
this coordinate is related to the projection of the field from the solvent on
the solute dipole. Eq. (9.5) can be used to evaluate the average time
dependence of the solvent coordinate in a reactive trajectory. In doing so it
is useful to obtain the time dependance of the solute dipole from several
downhill trajectories and to approximate the calculated autocorrelation
function (Q(0)Q(z)) by a single exponential function:

(Q(0)0(t)) = B exp{—t/7,} (9.6)



216 HOW DO ENZYMES REALLY WORK?

while using the relationship —(Q(0)Q(¢)) = 9{Q(0)Q(¢)) /dt. (The charac-
teristic time 7, is frequently referred to as the longitudinal dielectric
relaxation time of the solvent). In the frequent case where 7, is shorter than
the relaxation time of the solute dipole one finds (Ref. 11) that 7,
determines 7.

When the approximation of eq. (9.6) is not justified, or when the
relaxation time of u is slower than 7,, we may determine 7 'in a direct way
by eq. (9.5b).

An examination of the autocorrelation function (Q(0)Q(f)) and the
corresponding 7, for the nucleophilic attack step in the catalytic reaction of
subtilisin is presented in Fig. 9.4. As seen from the figure, the relaxation
times for the enzymatic reaction and the corresponding reference reaction in
solution are not different in a fundamental way and the preexponential
factor 7! is between 10'2 and 10"* sec”" in both cases. As long as this is the
case, it is hard to see how enzymes can use dynamical effects as a major
catalytic factor. ’

The above arguments can be restated in terms of related formulations
(e.g., Ref. 15, Ref. 16 and Appendix A of Ref. 11) that explore in a
somewhat more formal way the role of dynamical effects in chemical
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FIGURE 9.4. The autocorrelation function of the time-dependent energy gap Q(f)=
(&5(t) — &,(t)) for the nucleophilic attack step in the catalytic reaction of subtilisin (heavy line)
and for the corresponding reference reaction in solution (dotted line). These autocorrelation
functions contain the dynamic effects on the rate constant. The similarity of the curves indicates
that dynamic effects are not responsible for the large observed change in rate constant. The
autocorrelation times, ,, obtained from this figure are 0.05 ps and 0.07 ps, respectively, for the
reaction in subtilisin and in water.
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reactions in solutions. These formulations predict rather small dynamical
effects (factors of 10 in the most extreme cases, as long as one deals with
reactions whose activation barriers are more than 5 kcal/mol), while we are
interested in rate acceleration of many orders of magnitude. Furthermore,
using the 7,’s of Fig. 9.4 in the expressions of Refs. 15 and 16, one obtains
negligible differences between the rate constants of reactions in enzymes
and the corresponding reactions in solutions.

9.3. WHAT ABOUT ENTROPIC FACTORS? -

It has been frequently proposed that enzymes catalyze reactions by using
entropic effects (Refs. 3-5). This idea, which has been put forward in
different ways, implies that the ground-state free energy is raised by fixing
the reactants and products in an exact orientation and that this is a major
catalytic effect. In exploring entropic effects one has to be quite careful in
defining the problem correctly. In particular, the definition of the proper
reference state is crucial. If, for example, we take our solvent cage as a
reference state (Exercise 5.1), the concentration factors associated with
bringing the reactants to the same cage are eliminated and one is left with
true entropic factors which are the subject of this section.

In exploring the entropic difference between a given enzyme and its
reference solvent cage, we should consider the dependence of the activation
barrier on the activation entropy using the relationship

AAGT,,=AG, —AG] =AAH]  — TAAST

s=>p s—p s—p
AAST,, =AST —AS] =(S] — S3)— (S — SD) 9.7)

where $° designates the entropy in the reactant state.

As is obvious from Eq. (9.7), it is possible (at least in principle) to reduce
AAG™ by reducing § f, or by increasing § :. Exploring whether such effects
really occur in proteins is far from simple. A unique experimental demon-
stration that a given catalytic effect is associated with an entropic factor
(e.g., the restriction of the ground-state configurations by the enzyme) is not
available, and computer simulation approaches are not so effective at the
present time (since the convergence of calculations of entropic contributions
is still rather poor). Thus we will explore here the feasibility of entropic
catalysis in a somewhat qualitative way, using sometimes simple logical
arguments.

9.3.1. Entropic Factors Should be Related to Well-Defined
Potential Surfaces

In order to explore the significance of entropic factors, we must relate the
different hypotheses to the clear concept of potential surfaces. Thus we start
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by taking the simple example of the nucleophilic attack reaction
(O C=0— 0O-C-0O") in amide hydrolysis and demonstrate the relationship
between the reaction potential surface and the entropic contributions. The
approximated EVB potential surface for this reaction in solution is drawn in
Fig. 9.5, using equipotential lines (contours) with increments of 0.6 kcal/mol
(which corresponds to 8~ at room temperature). The activation free energy
for this surface can be estimated by

@ XFHAXT/2 w X7
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FIGURE 9.5. The potential surface for the O"C=0O—>0-C-O" step in amide hydrolysis in
solution, where the surface is given in terms of the angle @ and the distance b. The heavy
contour lines are spaced by 87! (at room temperature) and can be used conveniently in
estimating entropic effects. The figure also shows the regions (cross hatched) where the
potential is less than g8 ™" for the corresponding reaction in the active site of subtilisin.
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where s designates the coordinates perpendicular to the reaction coordinate
X (6 and b are taken in the present case as s and X, respectively). Here R™
designates the transition state region, R, designates the reactant region (as
indicated by the limits of the corresponding integrals) and the Av’s are smali
volume elements in the given space. This equation gives AG™ in terms of
the ratio between the partition functions of the transition state and the
reactant states, which can be estimated easily by counting the available
configurations with low potential energy in both states.

In the following section we will only consider the contribution to z, from
the configurations which are within the solvent cage region (the remaining
contributions are evaluated in Exercise 5.1). Thus we will be focusing on
entropic contributions to Ag7,, rather than AG™.

Exercise 9.2. Estimate AG™ and AS™ for the system in Fig. 9.5.

Solution 9.2. The AG™ of eq. (9.8) can be estlmated by including in the
relevant sum only those terms that are within 28" from the lowest point in
the corresponding term (higher-energy regions will give only small contribu-
tions). Thus we can simply count the squares with the given value of U and
use the volume element (A6 sin 6 Ab), replacing sin 6 by its value in the
center of the corresponding square. This gives
2% = (4e VP + 6V IR AG AD
~e UP(4+6e ') AO Ab = 6A0 Abe U

2= (40e "% + 60e # #) = (40 + 60e ') AG Ab=60A6 AL (9.9)
The resulting AG” is given by
T=—B7 In(z7z,) =U" — B " In(6/60 9.10
0

The second term in eq. (9.10) is the T AS™ term [—T AS™ = —B " In(6/
60)] and we obtain

—TAS™ =—8""In(6/60) (9.11)

Reahzlng that the main contribution to eq. (9.7) comes from terms within
the ,B counter line we may use the approximation

—TAS™ ==8""In(v™/v°) (9.12)

where v” and v° designate the configurational volumes in R™ and R°
respectively, whose potential energies are 8~' or less above the lowest
potential in the given range.
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After learning to estimate AG” and AS”™, we might ask how AASHP
affected by the steric restriction of the protein environment. As is clear from
eq. (9.7), we need the differences between the entropic contributions to
AG” rather than the individual AS™, This requires the examination of the
difference between the potential surfaces of the protein and solution re-
action. Here we exploit the fact that the electrostatic potential changes
rather slowly and use the approximation

U = U# + Up strain + A#
Ud=U+ U, pain T A° (9.13)

where the A’s are the relatively constant contributions from electrostatic
interactions to the difference between U, and U;. Here we assume that
there are no significant steric forces in the solvent cage (the solvent should
be allowed to relax for each solute configuration in proper calculations of
AG7”). In our specific example of the O~ C 0O— 0-C-0O" reaction in
subt111s1n we find that U, ,;, is less than B ™" at § =105+ 30° and is larger
than B~ ' outside this range (this steric potential is indicated in Fig. 9.5).
With the above U,,,;, one finds that the available configuration space in the
protein’s transition state is not much different than the corresponding space
in solution, but the ground-state configuration space vi’, and v! are different.

This gives
— TAAS™ =—B ' In[(v]/v5)/(v] Tv))]=—B " In(v/v}) (9.14)

In our specific example (vg/v?,) =40/24 and —T AAS™ = —0.6 kcal/mol.

With this insight in mind you might examine the so-called orbital steering
mechanism (Ref. 3). This interesting hypothesis considers the possibility
that the transition state energy is a very steep function of the overlap
between the orbitals of the reacting fragments (very small v7 in our
notation). The overall proposal has not been rigorously formulated, in both
the original work and subsequent dlscusswns by other workers, in terms of
the well-defined parameters v, » v7, v , and v, but it has been implied that
the enzyme keeps the reacting fragments in the exact orientation for the
optimal transition state. This means, in terms of our more accurate con-
cepts, that ovj)=v]. Thus it is implicitly assumed that
—TAAS™ =—8 'In(v?/v]). Assuming that v is very small gives very
large entropic factors through this expression. The validity of the assump-
tion is examined in the following exercise.

Exercise 9.3. Determine the entropic contr1but1ons to AAG™ in the orbital
steering model using (a) v7 =Ab x0.1°, v?=Ab x 40° and (b) the EVB
estimate of v} for the 0O C=0—-0-C- O reaction. Note that this model
implies that v =y]
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Solution 9.3. (a) Wlth the estimate v’/v] =40/0.1 we obtain
—TAAS™ = —B " 'In(v?/v]) = —0.61n(40/0.1) = 3.6 kcal/mol which is a
very large factor. (b) Thrs result should, however, be reexamined with a
realistic (rather than hypothetical) estimate of v . This can be done by the
EVB formulation, noting that the transition-state potential is given by
U™ =L1(e® + &) — H,, where ¢ and £ are, respectively, the poten-
tials for the O C=0 and O-C-O~ resonance structures. Since the 6
dependance of ) and H,, is small (there i Is no bond between O and C in
this conﬁguratlon) we can write AUT(8)~ Ae®(0)=1.6-107%(9 —
00) kcalmol ' degree > where we took a typical X—C-X bending force
constant from Table 4.2 and converted it to the current units. Now we can
determine v} by requiring AU to be equal to 8" or 0.6 kcal/ mol. This can
be written as 1.6-107>A6° =0.6, wh1ch gives U] ~Ab x 6° and much
smaller entropic contributions than for v7 = Ab X O 1°

As is clear from this discussion and exercise, one can estimate v] in a
realistic way. However, the correct estimate of AAS™ requlres a clear
definition of the problem considering the available conﬁguratlons v” and v’
in both protein and solution. For example, it appears that v is much larger
than what was_ assumed in early works, since proteins are quite flexible.
Thus, even if v] is very small, it does not mean that AAS™ is large, since the
assumption of v ~v7 is invalid. It is interesting to note that with an
unrealistically r1g1d protein, where v° , is much smaller than v], we will find
that the same steric effect of the protein will also make v Very small (with
shallow v] we will find that v’ » is determined by the protem strain and is
given approxrmately by v’). This will give (v},/v})~1 and v]/v] will
determine AAS”.

This discussion demonstrates the need for a clear definition of different
entropic hypotheses in terms of well-defined potential surfaces which can
then be examined by clear thermodynamic concepts.

9.3.2. Entropic Factors in Model Compounds and Their Relevance
to Enzyme Catalysis

The entropic hypothesis seems at first sight to gain strong support from
experiments with model compounds of the type listed in Table 9.1. These
compounds show a huge rate acceleration when the number of degrees of
freedom (i.e., rotation around different bonds) is restricted. Such model
compounds have been used repeatedly in attempts to estimate entropic
effects in enzyme catalysis. Unfortunately, the information from the avail-
able model compounds is not directly transferable to the relevant enzymatic
‘reaction since the observed changes in rate constant reflect interrelated
factors (e.g., strain and entropy), which cannot be separated in a unique
way by simple experiments. Apparently, model compounds do provide very
useful means for verification and calibration of reaction-potential surfaces
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TABLE 9.1. Relative Rates for the Ring-Closure Reactions (R'COO™ +
RY"COOR— R'COOCOR’ + “OR) of Related Model Compounds, Which Can Be Used in
Estimating the Importance of Entropic Effects in Solution Reactions (see Ref. 2)

n Compound Kol
1 CH 4,CO0® +CH 4COOC ¢H ;Br 1.0
COOC ¢H Br
2 < : ~1 x 10%M
coo®
COOC ¢H Br \
3 >< 3x10°M — 1.3 x10°M
coo®
COOC ¢H Br
4 [ ~22 x 10°M
co0®
COOC ¢H Br
5 E : 1x10™™M
co0®
0
COOC H Br
6 ~5x 10'™M
coo®

and simulation methods, but they cannot be used in a direct assessment of
entropic factors in enzymatic reactions. In other words, the potential
surfaces and the simulations probably provide the best way of analyzing and
transferring the information from model compounds to enzymes. With this
in mind, we will consider here only one simple example of the information
from intramolecular reactions in model compounds by examining the differ-
ence between compounds (4) and (5) in Table 9.1. The dependence of the
potential surface of these molecules on the central dihedral angle (¢,) and
the O~ - - - C distance (b) is estimated in Fig. 9.6. The value of the potential
surface for each ¢, and b was determined by minimizing the energy of the
system with respect to all other coordinates. As in Exercise 9.2 one can use
the resulting surface and eq. (9.8) to estimate the relevant entropic effect by
counting the volume elements with U < 8" in the reactants and transition-
state regions. This gives v”/v,=10/500 and 1/4 for compounds (4) and (5)
respectively. Thus we obtain —T AAS] . =—8""'In(50/4) = —1.4 kcal/
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FIGURE 9.6. Analyzing the contributions from entropic effects to the free energy of ring
closure reactions. The actual reaction involves a displacement of a “OR group, but we only
consider here the formation of the transition state. The figure displays the potential surface of
compound (4) in terms of ¢, and b, where the energy of the system is minimized at each point
with respect to all other coordinates. The heavy and the dotted contour lines are spaced by B!
and 1087}, respectively (at room temperature), and can be used in estimating entropic effects.
The figure also gives the regions (shaded) where the potential is less than B~ for the
corresponding reaction in compound (5). In this case the rotation around ¢, is drastically
restricted.



224 \ HOW DO ENZYMES REALLY WORK?

mol. While the corresponding observed ratio between the rate constants
gives AAGZ,.,=—B 'In50=—2.3kcal/mol. A better agreement is ob-
tained by a more rigorous treatment that counts all the available configura-
tions with AU = 87", including those associated with ¢, and ¢,. Such a
treatment (that cannot be displayed in a simple two-dimensional potential
surface) can be easily performed. One can also use free-energy perturbation
approaches for estimating the relevant AAG”.

The above discussion demonstrates that significant entropic effects do
indeed operate in ring closure reactions. This fact might imply that enzymes
produce enormous entropic effects by fixing the reacting fragments (that
might be viewed as the analogues of the ends of the chains involved in our
ring closure reactions). This, however, is not directly related to regular
enzymatic reactions since many configurations that are being restricted upon
ring closure would not be so relevant to the difference between enzymatic
reactions and the corresponding intermolecular reactions. For example, a
large fraction of the additional configuration space of compound (4) [rela-
tive to compound (5)] occurs with large values of b that will place the
corresponding intermolecular reaction out of our reference solvent cage (the
contribution of these configurations to AG”™ is already considered in our
concentration calculations). In fact, the considerations of Fig. 9.5 are more
relevant to the difference between the intermolecular reaction and the
corresponding enzymatic reaction than those of Fig. 9.6. Apparently we do
not have, as yet, direct experimental information about the magnitude of
the entropic contribution to enzyme catalysis (which might indeed be
significant). This emphasizes the need for computer simulations in assessing
the importance of the rather complicated entropic factors.

It might be important to comment here on the hypothesis of Page and
Jencks (Ref. 4) that received significant attention in the literature. This
hypothesis implies that enzyme catalysis is due to the loss of rotational and
translational entropy of the reacting fragments upon transfer from solution
to the enzyme-active site. However, although this could be a significant
factor in catalysis, it is probably overestimated. That is, Page and Jencks
estimate the entropic contribution as that associated with the complete loss
of rotational and translational degrees of freedom of the reacting fragments.
However, the rotational and translational degrees of freedom are converted
in the enzyme active site to low frequency vibrational mods with significant
- entropic contributions. It is clear now that the enzyme substrate complex is
not as rigid as previously thought and no degree of freedom is completely
frozen. This is why we formulated the problem in terms of the availabie
volumes v™ and v,. Evaluating these volumes or related simulation ap-
proaches, should allow one to really examine what is the actual entropic
contribution (in addition to the trivial cage effect estimated in Exercise 5.1).
Reformulating the Page and Jencks hypothesis in terms of the more precise
approach of eq. (9.14) one finds that the relevant AAS™ should only include
those degrees of freedom whose available space is drastically reduced at the
transition state. For others, such as the rotation around the bond b in Fig.
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9.5, one finds similar steric restrictions at the ground and transition state in
the enzyme-active site. The corresponding contribution to AAS™ is small.
Furthermore, while fixing the reacting fragments might change the Ag™ that
corresponds to k., it is hard to see how such an effect can change the AG™
that corresponds to k_,/K,,. In fact, fixing the reacting fragments decreases
the entropy of the transition state (this effect is not significant if the reacting
fragments are also fixed at the transition state of the reference solvent cage).

In summary, as shown above, the discussion of entropic factors might be
very complicated and involves major semantic problems, such as the defini-
tion of the relevant reference state. Thus it is essential to be able to calculate
the actual entropic contribution to AG™ with well-defined potential surfaces.
At present it does not seem likely that converging calculations of AAS™ will
attribute very large catalytic effects to true entropic factors, but more
studies are clearly needed. It should be noted, however, that calculations of
entropic effects in active sites of enzymes may be simpler than calculations
of such effects in model compounds. This is why we chose as a reference
state a solvent cage where the reacting fragments are in the same general
orientation as in the enzyme. This procedure can be viewed as a practical
way of using experimental information about the reacting fragments to
extract the different gas phase parameters (the s, and the H,’s), while
avoiding the need to calculate AS? and to study the real solution reactions.
With reliable a;’s, we can calculate the Ag}, for our enzymatic reaction
without facing the challenge of calculating entropic effects in the solution
reaction. The entropic contributions to Ag:f may be estimated by the FEP
approach, provided that fragments are confined to several well defined
regions. However, a more systematic study of entropic effects in both the
enzyme and the solvent cage should involve considerations of the available
low energy configurations (see Section 9.3.1).

9.4. ELECTROSTATIC ENERGY IS THE KEY CATALYTIC FACTOR
IN ENZYMES

9.4.1. Why Electrostatic Interactions Are So Effective in Changing AAg™

As discussed and demonstrated in the previous chapters, the catalytic effect
of several classes of enzymes can be attributed to electrostatic stabilization
of the transition state by the surrounding active site. Apparently, enzymes
can create microenvironments which complement by their electrostatic
potential the changes in charges during the corresponding reactions. This
provides a simple and effective way of reducing the activation energies in
_ enzymatic reactions.

In order to examine what makes electrostatic stabilization more effective
than other feasible factors, it is useful to ask what is required for an effective
reduction of AAgf_,p. We may start from the general statement that an
effective catalyst must interact with the changes during the reaction and such
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changes can be classified according to the following three classes: (1)
changes in structures, (2) changes in available configurations, and (3)
changes in charges. The structural changes in the elementary steps of most
chemical reactions are relatively small and, as discussed before, cannot lead
to large steric contributions to AAg”™ (since the steric potentials are steep
and can be relaxed by small displacements of the protein atoms). The
changes in the available configurations and the corresponding entropic
contributions are also ineffective in reducing AAg™ (see Section 9.3). On the
other hand, the changes in charge distribution during the reaction can be
translated to significant changes in AAg”, since the electrostatic potentials
are not very steep and can be used to “store” large energy contributions.

As discussed in the early sections it seems that there are very few
effective ways to stabilize the transition state and electrostatic energy
appears to be the most effective one. In fact, it is quite likely that any
enzymatic reaction which is characterized by a significant rate acceleration (a
large AAgf_,P) will involve a complimentarity between the electrostatic:
potential of the enzyme-active site and the change in charges during the
reaction (Ref. 10). This point may be examined by the reader in any system
he likes to study.

The concept of electrostatic complimentarity is somewhat meaningless
without the ability to estimate its contribution to AAg”™. Thus, it is quite
significant that the electrostatic contribution to AAg™ that should be
evaluated by rigorous FEP methods can be estimated with a given enzyme—
substrate structure by rather simple electrostatic models (e.g., the PDLD
model). It is also significant that calculated electrostatic contributions to
AAg” seem to account for its observed value (at least for the enzymes
studied in this book). This indicates that simple calculations of electrostatic
free energy can provide the correlation between structure and catalytic
activity (Ref. 10).

9.4.2. The Storage of Catalytic Energy and Protein Folding

The previous section suggested that the catalytic power of enzymes is related
to their ability to stabilize the changes in the reactant charges during the
reaction. It might be argued, however, that the same stabilization effect can
be obtained in other polar solvents (e.g., water) that can reorient their
dipoles toward the transition-state charge distribution. For example, the
interaction potential between the oxyanion transition state of amide hydro-
lysis and its surrounding solvent cage is not much different than the
corresponding interaction with the oxyanion-hole in trypsin. The two cases,
however, are quite different. In the enzyme the stabilizing dipoles are
preoriented in the ground state toward the transition-state charges. In
solution, on the other hand, it costs significant energy to orient the solvent
dipoles to their transition-state configuration. In general, one finds that
about half of the free energy associated with the charge—dipole interactions,
AG,,, is spent on the dipole-dipole repulsion, AG,,, so that
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1
AG = AGQ# + AGML = 2 AGQ# (9.15)

In proteins, however, a significant part of AG,, (or the corresponding
reorganization energy of Chapter 3) is already paid for in the folding
process, where the folding energy is used to compensate for the dipole—
dipole repulsion energy and to align the active-site dipoles in a way that will
maximize AG,,. With preoriented dipoles we do not have to pay a
significant part of AG,, during the formation of the charged transition state.
Now the solvation of the transition state can approach AG,,,. This effect,
which is described schematically in Fig. 9.7, resembles to some extent the
process of using chemical bonding to close a ring and to form a molecule
that provides an effective binding site for ions. Thus, we may view enzyme-
active sites as “super solvents” that provide optimal solvation for the
transition states of their reacting fragments (Refs. 10a and 17). As
indicated above, this requires a very polar environment with small reorgani-
zation energy (which may also be described as fixed permanent dipoles in a
relatively nonpolar environment, Ref. 10a). This description is the exact
opposite from viewing or modeling enzyme-active sites at low dielectric
environments that provide small reorganization energies (Ref. 8), since such
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FIGURE 9.7. A demonstration of the relationship between folding free energy and catalytic
energy. The energy balance involved in the formation of an jon-pair type transition state in
solution (top). The corresponding energetics in proteins. AG,, designates the dipole—dipole
interaction of the solvent (bottom).
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sites would lead to /arge rather than small activation barriers due to their
desolvation effect (see Section 9.2.2 and Ref. 17).

In view of the arguments presented in this chapter, as well as in previous
chapters, it seems that electrostatic effects are the most important factors in
enzyme catalysis. Entropic factors might also be important in some cases but
cannot contribute to the increase of k., /K,,. Furthermore, as much as the
correlation between structure and catalysis is concerned, it seems that the
complimentarity between the electrostatic potential of the enzyme and the
change in charges during the reaction will remain the best correlator.
Finally, even in cases where the source of the catalytic activity of a given
enzyme is hard to elucidate, it is expected that the methods presented in this
book will provide the crucial ability to examine different hypothesis in a
reliable way. ’

REFERENCES

1. L. Pauling, Chem. Eng. News, 263, 294 (1946).

2. T. C. Bruice, Ann. Rev. Biochem., 45, 331 (1976).

3. D. R. Storm and D. E. Koshland, J. Am. Chem. Soc., 94, 5805 (1972).

4. M. I Page and W. P. Jencks, Proc. Natl. Acad. Sci. U.S.A., 68, 1678 (1971).

5. W. P. Jencks, Catalysis in Chemistry and Enzymology, Dover Publication, New York,
1986.

6. P. F. Menger, Acc. Chem. Res., 18, 128 (1985).

7. (a) M. J. S. Dewar and D. M. Storch, Proc. Natl. Acad. Sci. U.S.A., 82, 2225 (1985) (b)
R. Wolfenden, Science, 222, 1087 (1983). (c) S. J. Weiner, U. C. Singh, and P. A.
Kollman, J. Am. Chem. Soc., 107, 2219 (1985). (d) S. G. Cohen, V. M. Vaidya, and R.
M. Schultz, Proc. Natl. Acad. Sci. U.S.A., 66, 249 (1970). (e) J. Crosby, R. Stone, and
G. E. Lienhard, J. Am. Chem. Soc., 92, 2891 (1970).

8. L. L Krishtalik, J. Theor. Biol., 88, 757 (1980).

9. (a) G. Careri, P. Fasella, and E. Gratton, Ann. Rev. Biophys. Bioeng., 8, 69 (1979). (b)
B. Gavish and M. M. Werber, Biochemistry, 18, 1269 (1979).

10. (a) A. Warshel, Proc. Natl. Acad. Sci. U.S.A., 75, 5250 (1978). (b) A. Warshel, Acc.
Chem. Res., 14, 284 (1981). .

11. J-K. Hwang, G. King, S. Creighton, and A. Warshel, J. Am. Chem. Soc., 110, 5297
(1988).

12. M. F. Perutz, Science, 201, 1187 (1978).

~13.  A. Warshel, J. Aqyist, and S. Creighton, Proc. Natl. Acad. Sci. U.S.A., 86, 5820 (1989).

14. R. T. Raines, E. L. Sutton, D. R. Straus, W. Gilbert, and J. R. Knowles, Biochemistry,
25, 7142 (1986).

15. G. van der Zwan and J. T. Hynes, J. Chem. Phys., 78, 4174 (1983).

16. D. F. Calef and P. G. Wolynes, J. Phys. Chem., 87, 3400 (1983).

17. A. Yadav, R. M. Jackson, J. J. Holbrook and A. Warshel., J. Am. Chem. Soc. 113, 4800
(1991). :



INDEX

Numbers set in boldface indicate pages on which a figure or a table appears.

Abstraction reactions, see Hydrogen
abstraction reactions
Activation energy, see Free energy, of
activation
Acylation reaction, 171
Alanine, structure of, 110
Alcohol dehydrogenase, 205
Amide hydrolysis, see also Serine proteases;
Trypsin
metoxycatalyzed, 177
in solutions, 172
Amides, table of force field parameters for,
112 .
Amino acids, 109, 110, 214
Aspartic acid, structure of, 110
Atomic orbitals, 2-3, 5
Atoms, 2-4, 15. See also Atomic orbitals
degrees of freedom of, 78 :
free energy of changing charge of, 82
Autocorrelation functions:
for enzymatic reactions, 215-216, 216
velocity, 120-122, 121
Autocorrelation time, 122

. Barium, effectiveness as cofactor for, see also
Enzyme cofactors
phospholipase, 204
SNase, 200-204
Bond-breaking processes, 12
potential surfaces for, 13-14, 18-20
in solutions, 22, 46-54

wave functions for, 16
Born-Oppenheimer approximation, 4
Born-Oppenheimer potential surfaces, see
Potential surfaces

Born’s formula, 82

Bronstead, and linear free energy
relationships, 95

Brownian motion in proteins, MD
simulation, 120-122

Calcium, as cofactor for, see also Enzyme
cofactors
deoxyribonuclease I, 204
phospholipase, 204
staphylococcal nuclease, 189-191, 195-197,
203
Carbon atom, 4. See also Atomic orbitals
Carbon dioxide hydration, 197-199. See also
Carbonic anhydrase
Carbonic anhydrase, 197-199, 200
Carbonium ion transition state, 154, 159
Carboxypeptidase A, 204-205
Catalysis, general acid, 153, 164, 169
in carboxypeptidase A, 204-205
free energy surfaces for, 160, 161
in lysozyme, 154
potential surfaces for reference solution
reaction, 164, 165
resonance structures for, 160, 161
Catalysis, general base:
metalloenzymes and, 205-207

229



230

Catalysis, general base (Continued)
in phosphodiester hydrolysis by SNase,
190
Catalysis, specific acid, 163
Catalytic triad, 171, 173
Cavity radius, of solute, 48-49
Charge-relay mechanism, see Serine
proteases, charge-relay mechanism
Charging processes, in solutions, 82, 83
Chemical bonding, 1, 14
Chemical bonds, see also Valence bond
model
bond orders, 9
breaking, see Bond-breaking processes
covalent, 15, 18-19, 109
electron pairs forming, MO treatment of,
29-30
Hamiltonian for, 19
valence electrons in, 4. See also Valence
bond model
wave functions of electrons in, 4
Chemical reaction coordinates, see Reaction
coordinates
Chemical reaction rate, see Rate of reaction
Chemical reactions:
condensed phases, 42-46
enzymatic, see Enzymatic reactions
gas phase, see Gas-phase reactions
heterolytic bond cleavage, 46, 47, 51,
53
hydrogen abstraction, see Hydrogen
abstraction reactions
nucleophilic substitution, see Substitution
reactions, nucleophilic (S,2)
potential surfaces for, 14
proton transfer, see Proton transfer
reactions
ring closure, see Ring-closure reactions
in solution, see Solution reactions
Chemical reaction trajectories, see Reactive
trajectories
Chymotrypsin, 170, 171, 172, 173
Classical partition functions, 42, 44, 77
Classical trajectories, 78, 81
Cobalt, as cofactor for carboxypeptidase A,
204-205. See also Enzyme cofactors
Condensed-phase reactions, 42-46, 215
Configuration interaction treatment, 14, 30
Conformational analysis, 111-117, 209
Conjugated gradient methods, 115-116. See
also Energy minimization methods
Consistent force field approach, 113
Coulomb integrals, 16,27
Coulomb interactions, in macromolecules,
109, 123-126
Covalent bonds, 15, 18-19, 109
Covalent states, 47, 53, 145
Cysteine, structure of, 110

Deoxyribonuclease I, calcium as cofactor
for, 204

INDEX

Deoxyribonucleic acid (DNA) hydrolysis,
189
Desolvation hypothesis, 211-215
Dielectric constants of proteins, 123-125,
159, 169
Dielectric relaxation times, 122, 216
Diffusion, in proteins, simulated by MD,
120-122
Dihydroxyacetone phosphate, 210
Dimethyl ether, heterolytic cleavage, 47, 48,
53
Dipole approximation, 54
Dipole moment, molecular, 22-23
Dipoles:
in amide hydrolysis, 181
Langevin, see Langevin dipoles; Langevin
dlpoles model
in proteins, 124, 125. See also PDLD model
DNA hydrolysis, see Deoxyribonucleic acid
(DNA) hydrolysis .
Double proton transfer mechanism, see
Serine proteases, charge-relay
mechanism
Dynamical effects, 90-92, 215-217

Einstein equation, 120
Elastase, 170, 172
Electron-electron repulsion integrals, 28
Electrons:
bonding, 14, 18-19
electron-electron repulsion, 8
inner-shell core, 4
ionization energy of, 10
localization of, 16
polarization of, 75
Schroedinger equation for, 2
triplet spin states, 15-16
valence, core-valence separation, 4
wave functions of, 4, 15-16
Electrostatic fields, of proteins, 122
Electrostatic interactions, 13, 87
in enzymatic reactions, 209-211, 225-228
in lysozyme, 158-161, 167-169
in metalloenzymes, 200-207
in proteins:
PDLD model for, 123-125
SCAAS model for, 125-128, 125
in SNase, 195-197
Electrostatic stabilization, 181, 195, 225-228
Empirical valence bond model, see Valence
bond model, empirical
Energy minimization methods, 114-117
computer programs for, 128-132
convergence of, 115
local vs. overall minima, 116-117
use in protein structure determination,
116, 116
Entropic factors, in enzyme reactions, 215,
217-225
Enzymatic reactions, 136, 208-228
cofactors, role in, 195-197, 200-207



INDEX

cofactors and coupled general bases,
205-207
desolvation hypothesis, 211-215
diffusion limit of, 138
“downhill” trajectories of, 215
dynamical factors in, 215
electrostatic interactions as key factor in,
195-197, 209-211, 225-228
entropic effects in, 215, 217-225, 228
entropic hypotheses, 224-225
enzyme viewed as “solvent,” 136
free energy diagram for, 138, 145, 167,
180, 195
kinetics of, see Enzyme kinetics
potential surfaces for, 145, 167, 180, 195,
217-222, 218, 223,225
reference solution reactions for, 139-140,
165, 176-178, 217
solvent effects on, 212
specificity of, 137
strain hypothesis, 155-158, 209-211, 226
thermodynamic cycle for, 186, 196,
211, 212-215
transitions states, 155, 159, 168, 181, 184,
208, 225-227
Enzyme active sites, 136, 148, 225. See also
Protein active sites:
in carbonic anhydrase, 197-199
in chymotrypsin, 173
in lysozyme, 153, 157 )
nonpolar (hypothetical site), 211-214
SNase, 189-190, 190
steric forces in, 155~158, 209-211, 225
in subtilisin, 173
viewed as “super solvents,” 227
Enzyme cofactors:
calcium:
for deoxyribonuclease I, 204
for phospholipase, 204
cobalt, for carboxypeptidase A, 204-205
electrostatic effects of, in SNase, 195-197
metal ion size, effect of, 200-205
most suitable choice of, 205-207
zing:
for alcohol dehydrogenase, 205
for carbonic anhydrase, 197-200
for carboxypeptidase A, 204-205
for thermolysin, 204
Enzyme kinetics, 137-140. See also Rate of
reaction
activation barrier, apparent, 138
activation energy, 148, 149, 212-215, 217,
. 225
contribution of individual amino acids,
184-188
mutations effect on, 184-188, 186
preexponential factor and, 215-217
rate constant, 137-139, 215, 217
saturation kinetics, 137
for single-substrate enzymes, 137
steady-state approximation, 137

231

Enzyme potential surfaces, 145, 167, 180,
195,217, 221-222, 223, 225
calibration of, 143-145, 162-165, 176~178
solution reactions as reference systems,
136, 168, 183
Enzymes, see also Macromolecules; Proteins
activity, steric effects on, 156-158, 209-210,
226
cofactors for, see Enzyme cofactors
flexibility of, 209
linear free energy relationships in,
148-149
structure-function correlation, 210-211,
226,228
viewed as generalized solvents, 92
Equations of motion, 77, 118
Equilibrium constant, 41
Ergodic hypothesis, 79, 120
Ester bond hydrolysis, 172, 204
EVB, see Valence bond model, empirical
(EVB)
Exchange integrals, 16, 27
Exchange reactions, free energy diagram
for, 89

FEP method, see Free energy perturbation
method
Folding energy and catalysis, 227
Force field approach, consistent, 113
Free energy, 43, 47
of activation, 87-90, 92-93, 93, 138
of charging processes, 82
convergence of calculations of, 81
in proteins, SCAAS model for, 126
of reaction, 90
Free energy functions, 89, 90, 94
Free energy perturbation method (FEP),
81-82, 146, 186-187
computer program for, 97-98
Free energy relationships, linear, 92-96,
148-149
for enzyme cofactors, 201, 202
for S,2 reactions, 95, 149
validity of, 95
Free radicals, 30

Gas-phase reactions, 41
rate, see Rate of reaction, gas-phase
reactions
substitution reactions, 211, 214
General acid catalysis, see Catalysis, general
acid
Glycine, structure of, 110
Gradient methods, see Conjugated gradient
methods
Ground state energy, of hydrogen molecule,
16
Ground states, 22
charge distribution of; 48, 52
desolvation of, by enzymes, 211-215
ionic character of, 22



232

Hamiltonian operator, 2, 4
for many-electron systems, 27
for many valence electron molecules, §
semi-empirical parametrization of, 18-22
for S2 reactions, 61-62
for solution reactions, 57, 83-86
for transition states, 92
Hammond, and linear free energy
relationships, 95
Heitler~London model, for hydrogen
molecule, 15-16. See also Valence bond
model
Heitler-London wave function, 15-16
Helium atom, wave function for, 3
Heterolytic bond cleavage, 46, 51, 47, 53
Histidine, structure of, 110
Huckel approximation, 8, 9, 10, 13
Hydrocarbons, force field parameters for,
112
Hydrogen abstraction reactions:
potential surfaces for, 25-26, 26, 41
resonance structures for, 24
Hydrogen atom, 2
Hydrogen bonds, 169, 184
Hydrogen fluoride, 19-20, 20, 22-23
Hydrogen molecules, 15-18
energy of, 11, 16, 17
Hamiltonian for, 4, 15-16
induced dipoles, 75, 125
lithium ion effect on, 12

Ionic states:
solvation free energy, 48, 49-52, 53
and solvent interactions, 47
stabilization of, 46, 145
wave functions for, 17-18

Ions:
metal, see Enzyme cofactors; Metal ions
solvation energies of, in water, 54

Langevin dipoles, 52, 53, 125
Langevin dipoles model, 49-53, 50. See also
Protein dipoles-Langevin dlpole model
for catalytic effect of carbonic anhydrase,
199
computer program for, 63-65
for enzymatic reaction solvation energies,
214
free energy in, 51
LD model, see Langevin dipoles model (LD)
Linear free-energy relationships, see Free
energy relationships, linear
Linear response approximation, 92, 215
London, see Heitler-London model
Lysine, structure of, 110
Lysozyme, (hen egg white), 153-169, 154. See
also Oligosaccharide hydrolysis
active site of, 157-159, 167-169, 181 -
calibration of EVB surfaces, 162, 162-166,
166

INDEX

clectrostatic interactions as factor, 159-169

key residues in, 153

mechanism, 154

rate-limiting step of, 154, 155

reference solution reaction for, 165,
167-169

strain hypothesis and, 155-157, 156-158,
209

Macromolecules, 109. See also Enzymes;
Proteins
energy minima in 116-117, 119. See also
Energy minimization methods
fluctuations of, 122
forces in, 111-112
free energy of, calculation by FEP
methods, 122, 126-128
MD simulation of, 119-122
non-nearest neighbor interactions, 109
normal modes analysis of, 117-119
potential surfaces for, 109, 113, 125-128
Magnesium, as cofactor for SNase, 200-204

Manganese, as cofactor for SNase, 200-204
Marcus’ equation, 94

Mass action, law of, 40

MD simulations, see Molecular dynamics

simulations (MD)
Metal ions, effect of size, 200-205
Metalloenzymes, see also Enzyme cofactors
classification of, by cofactor and coupled
general base, 205-207, 206
electrostatic interactions in, 205-207
SNase, 189-197
Methane, hydrogen abstraction of, 24-26, 41
MO, see Molecular orbitals (MO)
Molecular crystals, 113
Molecular dynamics simulations (MD), 49,
78
of average solvent properties, 77-80
of Brownian motion, 120-122
computer program for, 96-106
and free energy perturbation method,
81-83
of macromolecules, 119-122
of phosphodiester hydroly31s, 196, 197
Molecular force fields, 112
Molecular orbitals (MO), 5, 6, 10
for diatomic molecules, 5-7
external charge effects, incorporation of,
12-14
Huckel approximation for, computer
program for, 33-37
incorporation of solvent effects, 54-55
for. many valence electron molecules, 9-11
SCF treatment of, 28
computer program for, 33-37
for solution reactions, computer program
for calculating, 72-73
in S,2 reactions, 60
wave functions of, 7



INDEX

zero-differential overlap approximation, 28
Molecular potential surfaces, see Potential
surfaces
Molecules:
degrees of freedeom of, 221, 224-225
diatomic, 5-7, 13
effect of external charge on, 12-14
Huckel electronic energy of, 10-11
molecular orbital model for, 29-30
valence bond model for, 15-22
many-electron, 8-9
Hamiltonian for, 8, 27
ionization potential, 30
molecular orbital model of, 27-30
potential surfaces for, 10
wave functions for, 8
polar, charge distribution of, 22
polyatomic 24-26
Morse functions, 18, 21, 22, 56
Mutations, site specific, see also Enzyme
active sites
in serine proteases, 184
in subtilisin, 184, 187-188
in triosephosphate isomerase, 210
in trypsin, 187-188

Newton-Raphson methods, 114-115, 115.
See also Energy minimization methods
computer program for, 130-132
Nonbonded interactions, 56, 61
Normal modes analysis, 117-119
computer program for, 132-134

Oligosaccharide hydrolysis, 153-154
activation energy in enzyme active site vs.
reference solvent cage, 167-169
transition state of, 169
Oligosaccharides, conformers of, 155-158,
155, 161
chair—»sofa transformation, FEP study of,
157-158
Orbitals, atomic, see Atomic orbitals
Orbitals, molecular, see Molecular orbitals
Orbital steering mechanism, 220-221
Oxyanion intermediates, 172, 181, 185, 210
Oxyanion hole, 181

Page, M. L, and Jencks, W. P., entropic
hypothesis of enzyme catalysis, 224-225

Papain, Cys-His proton transfer in, 140-143

Pauling, Linus, view of enzyme catalysis, 208

PDLD model, see Protein dipoles-Langevin
dipoles model (PDLD)

Peptide bonds, 109, 110

Peptide hydrolysis, see Amide hydrolysis

“Perfect-pairing” approximation, 24

“Phantom” atoms, 24

Phase space, 77-80

Phenylalanine, structure of, 110

Phosphodiester bond hydrolysis, see
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Staphylococcal nuclease
Phosphoglycerides, hydrolysis of ester bond
in, 204
Phospholipase A, 204
Plasmin, 170
Polarizabilities of atoms, 75, 76, 125
Polarization of bonds, 207
Potential energy surfaces, see Potential
surfaces
Potential functions:
induced-dipole terms, 84-85
minimization, 113-116
nonbonded interactions, 84-85
Potential of mean force, 43, 144
Potential surfaces, 1, 6-11, 85, 87-88, 85
for amide hydrolysis, 176-181, 178, 179,
217-220, 218
analytical potential functions of, 18, 74-76,
113
for bond-breaking processes, 14
calculated by LD model, 51-52
computer program for calculating,
37-38
for enzymatic reactions, 136, 143-145, 217,
221-222,223, 225
external charge, effect on, 13
“force field” form for, 111-113, 112
gas-phase reactions, 56
for hydrogen molecule, 7, 11, 14, 17
ionic, 20
lysozyme, reference solution reaction for,
163
for macromolecules, 111-113
for many valence electron molecules, 10,
29
perturbations of, 81-83
for phosphodiester hydrolysis, 192~195,
194, 197
for proton transfer reactions, 55-62,
140-148, 210
trypsin Ser 195-His 57 proton transfer,
146
semi-empirical calibration of, 11, 18, 25
of solutes, solvent effects on, 74
for solution reactions, 46, 47, 54, 80-83
computer program for, 65-72
for S,2 reactions, 59-60, 83-87
for subtilisin, 218
for trypsin, 80, 146
for water molecules, 74
Potential wells, 111
Preexponential factor, 44, 215-217
“downhill” trajectory for estimating, 91
solvent effects on, 46, 90
Protein active sites, 142, 144, See also
Enzyme active sites
Protein dipoles~Langevin dipoles model
(PDLD), 123-125, 124
Protein potential surfaces, see Enzyme
potential surfaces
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Proteins, 109, 110, 116. See also Enzymes;
Macromolecules
average thermal amplitudes, MD
simulations, 119
binding of ligands to, 120
dielectric relaxation time of, 122
electrostatic energies in, 122, 123-125
flexibility of, 209, 221, 226-227, 227
folding, 109, 227
incorrect view of nonpolar active site in,
214
ionized groups in, 123
molecular dynamics simulations of, 119
normal modes analysis of, 117-119
PDLD model for, 123-125
residual charges in, 125
SCAAS model for, 125-128
solvation energy in, 127
solvent effects on, 122-128
viewed as collection of springs, 157, 158
Protein-solvent systems, all-atom model for,
126, 146
Proton transfer reactions, 143-144, 144
activation energy, 149, 164
all-atom models for, 146-148
Cys 25-His 159 in papain, 140-143
computer program for EVB calculations,
150-151
EVB parameters for, 142
resonance structures for, 141
Cys 25~-His 159 in water, computer
program for EVB calculations, 149-150
free energy of, 58
linear free-energy relationships, 148-149
in lysozyme, 154 '
potential surfaces for, 55-57, 57, 62, 210
in serine proteases, 182
solvent effects on, 58
valence bond model for, four
electrons/three orbitals, 59

Quantum mechar.ics, 4, 14
Quantum numbers, 2, 3

Radial distribution function, 79
computer program for calculating, 96-106
Rate constant, see Rate of reaction
Rate of reaction:
condensed-phase reactions, 43-46
enzymatic reactions, see Enzyme kinetics
gas-phase reactions:
activation barrier, 41
classical partition function and, 42
cross section, 43
equilibrium constant, 41
fraction of molecules able to react, 42
law of mass action, 40
rate constant, 40, 42-43
dependence on activation barrier, 41
reaction coordinates, 41-42. See also

INDEX

- Reaction coordinates; Reactive
trajectories
transition states, 43
transmission factor, 42
solution reactions, 46, 90
Reaction coordinates, 41-44, 88, 91
for enzymatic reactions, 215
reactive trajectories, see Reactive
trajectories
and transmission factor, 45
Reaction fields, 48, 49
Reactive trajectories, 43-44, 45, 88, 90-92, 215
“downhill” trajectories, 90, 91
velocity of, 90
Relaxation processes, 122
Relaxation times, 122
Reorganization energy, 92, 227
Resonance integral, 10
Resonance structures, 58, 143
for amide hydrolysis, 174, 175
covalent bonding arrangement for, 84
for Cys-His proton transfer in papain, 141
for general acid catalysis, 160, 161
for phosphodiester hydrolysis, 191-195,
191
for polyatomic molecules, “phantom
atom” and, 24
for SNase catalytic reaction, 200-202
for Sy2 reactions, 60, 84, 86
for solution reactions, 55-56, 58
stabilization of, 145, 149
Ribonucleic acid (RNA) hydrolysis, see
Staphylococcal nuclease
Ring-closure reactions, of model compounds
for enzymatic reactions, 222, 222-225
RNA hydrolysis, see Ribonucleic acid
(RNA) hydrolysis

SCF, see Self-consistent field treatment (SCF)
Schroedinger equation, 2, 4, 74
Secular equations, 6, 10, 52
solution by matrix diagonalization, 11
computer program for, 31-33
Self-consistent field treatment (SCF), of
molecular orbitals, 28
Serine, structure of, 110
Serine proteases, 170-188. See also
Subtilisin; Trypsin enzyme family
comparison of mechanisms for, 182-184,
183
electrostatic catalysis mechanism for,
172-173, 174, 187-188
feasibility of the charge-relay
mechanism for, 172-173, 174, 182-184, 187
activation barrier for, 182
unfavorability of, in water, 184
potential surfaces for, 176-181, 178, 179
site-specific mutagenesis experiments, 184
specificity of, 171
transition states, 183, 184, 226
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Site-specific mutations, see Mutations,
site-specific
SNase, see Staphylococcal nuclease (SNase)
Sy2 reactions, see Substitution reactions,
nucleophilic (5,2)
Solutes:
cavity radius of, 48-49
charge distribution of, 87
Solution reactions, 214
carbon dioxide hydratlon 197~ 199 199
dynamical effects in, 90-92, 216
entropic effects in model compounds, 222
estimating energetics of, using EVB, 58-59
FEP studies of, 148
Hamiltonian for, solvent effects on, 57
ionic states and, 46-47
LD model for, 51, 52
MO calculations for, computer program
for, 72-73
phosphodiester hydrolysis, calibration of
EVB surface for, 193-195
potential surfaces for, 46, 47, 54
rate, see Rate of reaction, solution
reactions
resonance structures for, 55-56, 58
solute- vs. solvent-driven, 91
solvent cages, see Solvent cages
wave functions for, 56
Solvation energy, 46, 48-49, 143, 144
calculation of, by FEP method, 81-83
computer program for estimating, 63-65
and enzymatic reactions, 211-215
evaluation of, using LD model, 49-52, 53
in proteins, 127
Solvent cages:
and enzymatic reference solution
reactions, 139-140, 144-145
steric forces in, 219-220
Solvent effects, 46-48, 74, 83-87
importance of ionic terms, 18
incorporated in MO calculations, 54-55
in proteins, 122-128
Solvent models, see also Solvents
all-atom, 49, 74-76
FEP methods, 80
Langevin dipoles, see Langevin dipoles
model
for macromolecules; 125
microscopic, 76-77
three-body inductive effect, 75
for water, 74-76
Solvents:
binding to protein sites, 120
LD model for, 51
longitudinal dielectric relaxation time, 216
MD simulations of, 77-80
polar 46, 226
polarity, effect on reactions, 212
polarization of, 49, 50, 87
potential surfaces of, 80
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radial distribution function of, 79
Staphylococcal nuclease (SNase), 189-197,
190
active site of, 189-190, 190
calcium as optimum cofactor for, 189,
203. See also Enzyme cofactors
“downhill” trajectories for, 196, 197
mechanism of catalytic reaction, 190-192
metal substitution, 200-204
potential surfaces for, 192-195, 197
rate-limiting step of, 190
reference solution reaction for, 192-195,
195
resonance structures, 191-195, 191, 200-202
transition states, 201-204, 205, 207
Statistical mechanics, 76-77, 78
Steepest descent methods, 113-115, 115. See
also Energy minimization methods
computer program for, 128-130
Steric forces, in enzymes, 209-211, 220-221
Strain, and activity of lysozyme, 155,
156-158, 157
Strain hypothesis, and enzyme catalysis,
209-211
Strontium, see also Enzyme cofactors
effectiveness as cofactor for phospholipase,
204
effectiveness as cofactor for SNase,
200-204
Structure-function correlation, 210-211, 226,
228
Substitution reactions, nucleophilic (S,2),
211
active electrons of, 60
free energy diagram for, 88
Hamiltonian for, 61-62
potential function parameters for, 85
quantum treatment of, 60
resonance structures for, 60, 84-86, 86
VB model, four electrons/three orbitals,
59, 60
Subtilisin, 170
active site of, 171, 173
autocorrelation function of, 216, 216
potential surfaces for, 218
site-specific mutations, 184, 185, 187-188
Sugars, see Oligosaccharides
Surface-constrained solvent model, 125

Tetrhedral intermediate, 172
Thermodynamic cycles, 186
Thermolysin, zinc as cofactor for, 204
Thrombin, 170
Torsional potential, 111
Transition states, 41-42, 44, 45, 46, 88, 90-92
in amide hydrolysis, 219-221
oxyanion hole and, 181
stabilization of, 181, 181
carbonium ion, 154, 155, 156-161, 167-169
for gas-phase reactions, 43
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Transition states (Continued)
in hydrogen abstraction, 25
in phosphodiester hydrolysis, 190
reactant-like vs. product-like, 96
solvation energy of, 211, 213,214
solvent effects on, 46
stabilization of charge distribution, 91,
225-227
Transition state theory, 46, 208
Transmission factor, 42, 44-46, 45
Triosephosphate isomerase, 210
Trypsin, 170. See also Trypsin enzyme family
active site of, 181
activity of, steric effects on, 210
potential surfaces for, 180
Ser 195-His 57 proton transfer in, 146, 147
specificity of, 171
transition state of, 226
Trypsin enzyme family, catalysis of amide
hydrolysis, 170-171. See also
Chymotrypsin; Elastase; Thrombin;
Trypsin; Plasmin
Tryptophan, structure of, 110

Umbrella sampling method, see Free energy
perturbation method

Valence bond diagrams, for S,2 reactions, 60
Valence bond (VB) model:

for diatomic molecules, 15-22

empirical (EVB), 58-59

EVB mapping potential, 87, 88
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four.electron/three orbital problem, 55-56,
59-62 .
ionic terms, inclusion of, 17-18
for polyatomic molecules, 24-26
Valence bond potential surfaces, see Potential
surfaces
Valence bond theory, 1
Valine, structure of, 110
VB, see Valence bond model (VB)

Water, 49, 76, 76

Wave functions, 2-4, 5, 8
covalent, 19
external charge effects on, 13
ionic terms, inclusion of, 17-18, 19
for molecular orbitals, 27
and “perfect-pairing approximation,” 24
for proton transfer reactions, 62
Slater determinants, 4, 7
for S,2 reactions, 60-62
for solution reactions, 55
in valence bond model, 15-18

Zero differential overlap approximation,
28, 54
Zinc, see also Enzyme cofactors
as cofactor for alcohol dehydrogenase, 205
as cofactor for carbonic anhydrase,
197-200
as cofactor for carboxypeptidase A,
204-205
as cofactor for thermolysin, 204



