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inhomogeneous porous medium with a general nonlinear filtration law in three-
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Four dimensional space; regular nonlinear filtration law for which the Cauchy problem has a solution.

function; filtration; nonlinear equation;
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1. Introduction

A porous medium is understood as a material consisting of a solid matrix with an interconnected
void. The interconnectedness of the voids allows one or more fluids to pass through the material.
The simplest case is the motion of a single-phase liquid, where the pores are filled with one liquid.
However, in natural cases, the pores are filled with liquids, gases, and mixtures of various types of
liguids. Examples of natural porous media include soils, rocks, topsoil, sand, sandstone, limestone,
etc. All these materials are capable to accumulate liquid in themselves and allow it to move under
external forces [1,4]. In a natural porous environment, the distribution of pores in shape and size is
uneven. At the pore scale (microscopic scale), the flow rate quantities (velocity, pressure, etc.) are
clearly uneven, but in typical experiments the quantities are measured in areas that cross many
pores, and such spatially averaged (macroscopic) quantities vary in a regular manner with respect to
space and time, hence amenable to theoretical approach [2,3].

Filtration is the movement of a fluid through a porous medium. The filtration law is the
relationship between the filtration velocity and the pressure [5]. The study of the filtration process is
a very interesting and economically important topic in connection with oil and gas production, the
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development of subsoil, where the main extraction technologies are leads by the laws of filtration
theory.

Porosity is an important characteristic of porous media. The porosity coefficient m is the ratio of
the pore volume to the entire volume of the porous medium. The ability of a porous medium to pass
liquid is characterized by permeability. The physical meaning of permeability is that it characterizes
the cross-sectional area of the channels of a porous medium through which filtration occurs. The
main filtration law is linear Darcy's law (in honor of the French engineer Henri Darcy, who
experimentally established this law in 1856) [6-8]. Studies and experiments by G. Darcy on a steady
unidirectional flow in a homogeneous medium revealed the proportionality between the flow rate
and the pressure drop. It can be expressed as follows [1]

K opP

Uu=-———

u ox’

e . o . .. 9P L o . .
where u is filtration velocity in x direction, 5, Pressure gradient in flow direction, u —dynamic fluid

viscosity, K - specific or internal permeability of a porous medium. For the three-dimensional case,
the Darcy equation can be expressed as follows

‘o,
VP =-=
KU

where permeability K is a second-order tensor (in the case of an isotropic medium, it is a scalar).

Darcy's law was confirmed by the results of many experiments, among which it is worth noting
the authors of works, which provides a theoretical basis obtained in various ways using deterministic
or statistical models [9,10]. Linear Darcy's law is valid (for both isotropic and anisotropic media) under
the following conditions, that the filtration rate and the pressure gradient is small and the change in
filtration rate and pressure gradient also small. However, a huge amount of research has shown that
there are limits to the applicability of linear Darcy's law. The upper limit is determined in the presence
of inertial forces at high filtration rates, i.e., the upper limit of applicability of Darcy's law is
determined by the critical Reynolds number 1 < Re., < 12 [11]. A lot of researches have been
devoted to the study of fluid motion taking into account inertial effects in a porous medium. Among
them, it is worth noting the works, where restrictions on the use of the linear Darcy's law are
considered and the nonlinear laws of fluid motion are studied in the presence of a Reynolds number
greater than Re,, [12-14]. The lower limit of the linear Darcy's law applicability is determined by the
existing of non-Newtonian rheological properties of the liquid, its interaction with the solid skeleton
of a porous medium at sufficiently low filtration rates.

As mentioned above, at the Reynolds number Re > Re,, the linear Darcy's law ceases to be valid.
The first generalization of Darcy's law to the case of large Re was founded by Dupuis, who formulated
a two-term filtration law. Later, the Austrian researcher F. Forchheimer independently established
two-term filtration law, which is still called F. Forchheimer equation, and its generalization with a
nonstationary effect was proposed by the authors of papers [7,12,13,15,16]. A lot of scientific papers
are devoted to the numerical solution of liquid flow problems [17,18].

The solution of nonlinear filtration problems is of great interest [19,20]. Among them, note the
investigation of B.V. Alekseev, who proposed an analytical solution to the nonlinear Leibenson
equation, which is the problem of transient filtration of a perfect gas.

The aim of this research is to obtain an analytical solution of three-dimensional filtration problem.
In an attempt to obtain an analytical solution of a three-dimensional mathematical model, we
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propose a new approach to solving the problem in the space of four-dimensional numbers, first
proposed by the Kazakh mathematician Abenov [21] (Kazakh National University named after al-
Farabi). Abenov and Gabbassov [23] described anisotropic four-dimensional spaces M2-M7, which
are associative and commutative with zero divisors. In what follows, these spaces will be called
Abenov spaces. In this paper, we propose an analytical solution to a mathematical filtration model
with a nonlinear Darcy’s law in the four-dimensional Abenov space M5.

Mainly the three-dimensional problems of fluid motion are mainly solved by numerical methods,
obtaining an analytical solution of them is difficult. To avoid this difficulty, Abenov [21] and Abenov
et al., [22] proposed a new method for solving the continuity equation in four-dimensional space.
Rakhymova et al., [24] presented elements of the Abenov space M5. In particular, if a function
U(xq, x5, %3,x4) = (Ug, Uy, Uz, Uy) has a derivative, then it must satisfy the Cauchy-Riemann
condition [24]

( 0u; Ou, Oduz OJuy
d0xq - dx, - J0x; - 0x,
du, du;  Ouy Jus
< d0x, - _axz - J0x; - _6x4
duz Jduy Juy du,
dx, - dx, - _6x3 - dx,
duy Jus du, Jduy
\dx; - dx, - dxs - 0x,

2. Methodology

Consider an equation with four unknowns of the following form

divy = 242 4 Q2 4 Oz | Oua _ () (1)

axl 6x2 6x3 6x4
Definition: Four-dimensional function U (x4, x5, x3,x4) = (uy, Uy, U3, Uy), Which is a solution to

Eqg. (1) is called the solenoidal field.
Theorem 1: One class of general solutions of Eq. (1) in the space M5 has the form

Wy = quwy(P1X1, P2X2, D3X3, DaXs)
Uy = qoWo(P1X1, D2 X2, P3X3, PaXs)
Uz = q3w3(P1X1, D2 X2, D3X3, PaXs)’
Uy = qawWa(P1X1, P2X2, P3X3, DaXs)

(2)

where W(X) = W (x4, X2, x3,%4) = (Wy, Wy, w3, w,) — any regular function, p;, q;, (i = 1,2,3,4) -
random real constants satisfying the relation

Yisipiqi = 0. (3)

Proof: Substituting function (2) into Eq. (1), we obtain
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. _ 0w (P1X1,D2X2,03X3,P4%4) OW3(P1X1,D2X2,03X3,P4%4) OwW3(P1X1,02X2,P3%X3,P4X4)
divU = p1q4 + P292 + D3q3 +
0x1 ( 0y2 ) 0y3
0w (P1X1,02X2,03X3,P4Xs) _ 4 0w1(P1X1,02X2,03X3,P4Xs) _
P4q4 374 = Li=1Piqi ox, =0, (4)

by (3) and the Cauchy-Riemann conditions.
The theorem is proved.

An interesting question is the possibility of uniquely recovering the solenoidal field according to
additional conditions, that is, under what additional conditions on the function U(xy, x,, x5, Xx,) =
(uy, Uy, Uz, Uy) is it possible to uniquely determine the solution of Eq. (1) from one of spaces Sz. Let
us set the initial Cauchy data as additional conditions. Suppose that at x, = 0 for the solution of Eq.
(1) the following initial conditions are given

uq (xq, X2, X3, 0) = uyo(xq, X2, X3)
Uy (x1, X2, %3,0) = Upo(Xy, X2, X3)
U3 (x1, X2, x3,0) = Uz0(xq, X2, X3)
Uy (x1, X2, %3,0) = Ugo (X1, X2, X3)

(5)

Theorem 2: Let the functions uy, Uy, Uszg, Uso defining the initial conditions (5) belong to the
class C1(R?) and satisfy the conditions

(w0 _ o Bum _ o Ous
dx1 — o1z 0x, RS 0x3
Ouyzg _ ouyg _ Juyg
o 216_962—513 9xs
< ouzg __ Ougy __ duqg (6)
x4 = 512 dxy =75 dx3
Ousy __ Juzg __ duyo
\ox; To2 dx; RS 0x3

for (x1, X5, x3) € R3, where s;,, 5,1, 513, S31 given positive real constants. Then the Cauchy problem
(1), (5) has a unique solution from the class S3 (R*) and it is expressed by the formulas

$12513+S12+S13 $12513+S12+513

1
U (1, X2, X3, %8) = 3 [“10 ("1 T nesarsiass (v Y23 Jorasarsizsa1 "4"‘2"‘3> *

S12513 S12813tS12+513 S12813+S12+513
— (U |\ X1+ T———— X4, X2, X3 | —Ugo | X1 — F—— X4, X2, X3
521531 V512521513531 v/ 512521513531

S12513+S12+S13 S12S513tS12+S13

1
Ur (X1, Xy, X3, X =—-lu X1+ —]—]/————X,4,Xy, X +u X1 — —F——— X4, X, X —
2( 1, A2, A3 4) 2 l 20 ( 1 $12521513531 442 3) 20 ( 1 m 4y A2 3)

$21513 S12513+S12+S13 $12513+S12+S513
—— | Uz0 <x1 T X4, X2, X3 | — U3 | X1 — F——— X4, X2, X3
$12531 512521513531 $12521513531

S12513+S12+513

~

~

512513 +S12+S13

x4 xZ X >_
$12521513531 ’ '3

X4 xz,xg) + 3o (X1 B 512521513531

$12531 S12513+S12+S13 $12513+S12+S513
— < U0 <x1 t X4, X2, X3 | — Uz | X1 — F—— X4, X2, X3 | ||/
521513 512521513531 512521513531

1
Us (xlr erx3rx4) = E lu30 ('xl +
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S12513+S12+S513 S12513+S12+S13

1
u4(xl,x2,X3,X4) = E lU4O (xl + X4, xZ,x3) + Uy (x1 - Xg,Xp, x3> +

512521513531 512521513531

$12513 S12513+S12+513 $12513+S12+S13
U1o (xl T T X4, X2, X3 | — Uy \ X1 T T /—/———— X4, X2, X3 ] || (7)
521531 v/ 512521513531 V512521513531

Proof: We find a solution to problem (1), (5) in the form (2) with condition (3). Then from the
Cauchy-Riemann conditions for the function W (X) = W (x4, x5, X3, X4) = (W1, Wy, W3, w,), it follows
that the function U(X) = U(xy, x5, X3, x4) = (uq, Uy, us, u,) satisfy the following conditions

1 aul 1 6u2 _ 1 aU3 _ 1 BU4
P191 0% P2q2 0x3 P3q3 9x3 Paq4 0%y
1 6u2 _ 1 6u1 _ 1 8u4 _ 1 8u3
P19z 0% P2q1 0x3 D344 0x3 Paq3 0x4 (8)
1 6u3 _ 1 6u4 _ 1 aul _ 1 auz
P1q3 0x1 D244 0x; P3qy 0x3 Paqz 0xy
1 6u4 _ 1 6u3 _ 1 auz _ 1 6u1
P1q4 0x1 D243 9x; p3qz 0x3 Paqy Oxy

From these equations it is easy to obtain that each function w; (xq, x5, X3, x4), i = 1,2,3,4, satisfies
the following equations

9%u; _ pZo*y

= 9

ox2 p? ax2’ (9)
9%u; 20%u;

zl = _p_: zl/ (10)
oxy p5 0x5
%u; p2 9%y,

x7 = oot (11)
4 b3 0x3

as well as additional initial conditions, except for (5)

Ouq (x1,22,x3,0) — P41 Ougo(x1,x2,x3) — _Pa1a duzo (x1,x2,x3) — _Pa1a Ouzo(x1,x2,x3)
0xy P144 0x, P24q3 dx; P34z 0x3 !
9uz(x1,x2,X3,0) — _ P22 dugo (x1,x2,x3) — _ P42 Ougo(x1,%2,x3) — P44z Ouqo(x1,%2,x3)
x4 P193 0xq P24a 0x, P3q1 0x3 ’
Ouz(x1,x2,%3,0) - _ D4q3 Ouz0(X1,%2,X3) — Paqs 0u10(x1,%2,x3) - _ P4qs Ogo(X1,%2,X3)
x4 P192 0xq P29q1 x5 P3q4 0x3 ’
0u4(x1,x2,%3,0) — Daqs OUyo(X1,%2,X3) — Paqa 0Uzo(X1,%2,X3) — Paqa Ouzo(x1,%2,%3)
x4 P141 0x1 P24q2 0x, P343 0x3 '

From these conditions it follows that the functions u;g, U5, Usg, U4 Setting the initial conditions
(5) must satisfy the equations

D4q1 Ougo(xX1,X2,X3) — _Pata Ougo (x1,%2,X3) — _Pata Ouzo (x1,%2,X3) (12)

D194 0xq D243 0xz P34z 0x3 ’

__Dbaqz duzo(x1,x2,x3) — _Paq2 Ougo (x1,%2,X3) — D492 Ouqo(x1,%2,X3) (13)
piqs  0x P2ds  0x2 psqr  Oxz 7

_ P4as Ouz0(x1,%2,X3) — Dbads Ouqo(x1,%2,X3) — __Paq3 Ougo(X1,%2,X3) (14)
P14z 0x1 D241 0xz D344 0x3 ’
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Paqa 0Uyo(X1,X2,%3) _ Pads Oup0(X1,%2,X3) _ P4da Ouzo(X1,%2,X3) (15)
P141 0x1 P24z 0x, P3q3 0x3 ’

Thus, the function u; (x4, x5, X3, X4) is a solution to the following Cauchy problem

02Uy (X1,X2,X3,%4) _ 2 0% (X1,%2,X3,X4)
2 =a 2 ’
oxg dx1
uy (x1, X3, X3, 0) = uy0(xq, X2, X3),
0u1(X1,X2,X3,0) _ Paqq1 OUso(X1,X2,X3)
0xy D144 0x1

7

where a = Z—“. According to the d'Alembert formula, the solution to this problem has the form [21]
1

1 1q
uy (X1, X2, X3, X4) = > (ug0(x1 + axy, X3, x3) + Ugo (X1 — Xy, X2, X3)) + Eq_i (ugo(xy +

AXy, Xp, X3) — Ugo (X — AXy, X, X3)), X4 > 0, (X1, %5, x3) € R3. (16)
Similarly, the function u, (x4, x,, X3, x4) is a solution to the following Cauchy problem:

02Uy (oq,%2,X3,X4) _ a? 02Uy (21,%2,%3,%4)

ax2 dx32 !
Uy (X1, X2, X3, 0) = Upo(Xq, X2, X3),
Oup(x1,%2,X3,0) _  Pagz Ouzo(x1,x2,X3)

0x4 P1493 0xq )

The solution to this problem is

1 1q
Uy (Xq, X2, X3, X)) = 5(“20(951 + axy, Xz, x3) + Uy (X1 — AX4, X2, X3)) — ;q—z (uzo(x1 +

AXy, Xy, X3) — Uz (X — AXy, X3, X3)), X4 > 0, (X1, %5, x3) € R3. (17)
The function u3 (x4, x5, X3, X4) is a solution to the Cauchy problem

0%uz(xX1,%2X3,%4) _ a? 0%u3(X1,%2,X3,X4)

ax2 ax2 !
uz (X1, X2, X3, 0) = ugo (X1, X2, x3),
Ous(x1,%2,X3,0) _  Pags uzo(x1,X2,X3)

0x4 P19z 0x1 ’

Then,

uz(Xq, X2, X3, X3) = l(1/-30(951 + axy, Xz, %3) + Uzp (X1 — aX4, X2, X3)) — ~4s (uzo(x1 +
2 24>

AXy, X5, X3) — Upo (X — AXg, X, %3)), X4 > 0, (X1, %5, x3) € R3. (18)
The function u, (x4, x5, X3, X4) is a solution to the Cauchy problem

62u4(x1,x2,x3,x4) — 42 62u4(x1,x2,x3,x4)
0x32 ox? !

Uy (X1, X2, X3, 0) = Ugo (X1, X2, X3),

0u4(X1,X2,X3,0) _ Daqq 0uq9(x1,%2,%3)
0xy P141 0xq )
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Then,

1 1q
Uy (X9, X2, X3, X4) = 5(“40(951 + axy, Xz, %3) + Ugo (X1 — AX4, X2, %3)) + Eq—: (ugo(x1 +

aXy, Xz, X3) — Ugo(X] — AX4, Xp,%3)), X4 > 0, (x1, X, %3) € R3. (19)

Thus, we have found an infinite set of solutions to the original problem, depending on the values
of the parameters p;, q;, i = 1,2,3,4 the components of which are expressed by formulas (16) to (19).
To find the parameters p;, q;, 1 = 1,2,3,4 compare conditions (12) to (15) with conditions (6). From
this comparison for the parameters we obtain the system

=S12,7 = 513 = =531, =

P191 __ P191 p1CI2 b1qs q1 qs3 20
21 - ( )
P242 P393 P291 P3d:1 qz da

Solving the last system (20), we find

(ﬁ)z _su (@)2 _ susi (q_1)2 _ s (@)2 _ s (q_1)2 _ st (q_3)2 _si
qz s21’ q3 512531’ a3 531' q4 s31’ \da 521531" \da s21”

2 2 2
p1) _ (P1) _ (Pz) _ S13531
—] = 5,8 —] =538 =] === 21
(Pz 12221 P3 13231 P3 $12521 ( )
The ratio % is determined from the condition (3):
1
— S12513+512+S S12S
|2 — Fi2Sistoietas _ o [S1281s (1 +_+ ) (22)
P1 v/ 512521513531 521531 S12 S13

P1 41 and 2 qz

Note that solutions (16) to (19) depend only on — . Substituting the found ratios into

P4’ da qs’
formulas (16) to (19), we obtain two solutions to the original problem, but it is easy to see that these

two solutions coincide, since sign (p )SLgn( ) <0, sign (p )SLgn( ) <0,

sign (Zi) sign (q3) > 0. The resulting solution is expressed by the formulas (7).

The found solution is the unique in the class 55. Indeed, if there are two solutions, then their
difference satisfies Eq. (1) with zero initial conditions. It is enough to prove that problem (1), (5) with
Ujp = Upye = U3g = Uge = 0 has only the zero solution in the class S2. If this problem has a nonzero
solution, then its components must satisfy Eq. (9) with zero initial Cauchy condition. But such a
problem cannot have a nonzero solution. Got a contradiction.

By direct verification, using conditions (3), (12) to (15) easy to make sure that the solution found
satisfies Eq. (1) and the initial conditions (5).

The theorem is proved.

Comment: Conditions (6) are necessary and sufficient conditions for the existence and
uniqueness of a solution to the Cauchy problem for Eq. (1).

3. Results

Let us move on to solving the filtration theory model. The continuity equation in filtration theory
has the following form
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mg—’: + div(pv) =0,

Let us change the variables(x, y, z, t) by (x,y, z, T), where T = ct, c is the characteristic velocity.
Then the equation can be rewritten as follows

cmz—i + div(pv) =0, (23)
where m = m(x,y,z) — known medium porosity, p(x,y,zt) — fluid density, v(x,7) =
(1(x,v,2,7),v,(x,y,2,17),v3(x,y,2,7)) - filtration velocity, x = (x,y,z) € R® - spatial

coordinates, T € R, - time.
Write the general nonlinear filtration law in the following form

~Vp = f(p,v1,v2,v3), (24)

where v — kinematic fluid viscosity, k = k(x,y, z) — permeability coefficient depending only on the

properties of the porous medium, p(x,y, z, t) — fluid pressure, f(p, V4, V4, V3) — a given function of
its arguments. Let us assume that the viscosity of the liquid and the coefficient of permeability are
constant values.

For f(p, vy, Uy, U3) = (pvq, pvy, pV3), EQ. (24) is called the linear Darcy law

ap v
{a = TPV
ap v
Ja ~ TkPv (25)

For  f(p, vy, v v3) = (p%0,2 — p2v,% — p2v32 + p2c?m?, 2p2vscm — 2p2 0,0y, 2p2vcm —
2p%v,v3) Eq. (24) is called Forchheimer's nonlinear filtration law

) 2 2

£ = —i(l)zlﬁz —p?v," —pPu” + PZ(Cm)Z)'

P

£ - _2%(P2”3cm — p?uyvy), (26)
P

a_z - _zi(PZUzcm — p?vyv3).

Consider the Cauchy problem for system (23), (24)
,D(X, Yz, 0) = Po(%,Y,2), 0 < pmin < po(x,y,z) < Pmax < ©, (27)
v;(x,v,2,0) = @;(x,y,2), (x,y,z) € R3,i = 1,2,3. (28)

Suppose that the functions pg, @1, ¢, @3 tend to zero as the spatial coordinates tend to infinity.
Let us introduce the following notation: p(x,y,z,7) vi(x,y,2,1) = u1(x,y,2,17), p(x,y,2,¢t) -

v,(,y,2,1) = u(x,5,2,1), p(x,y,2,1) " v3(x,¥,2,1) = u3(x,¥,2,1), cm(x,y,2) - p(x,y,2,7) =
uy(x,v,z,7). Then Eq. (23) can be rewritten as follows

125



Journal of Advanced Research in Fluid Mechanics and Thermal Sciences
Volume 87, Issue 1 (2021) 118-133

Ous | Oup | Ous | Jus _ (29)

i =
divU ox dy 0z at

From (27), (28) for the functions u4, u,, u3, u, we have the following initial conditions

u1(x,¥,2,0) = po(x,y,2)p1(x,y, 2),
uz(x' YV, Z, 0) = Po(x, Y, Z)(/)Z(x' Y Z)'
U3(.X', Y, Z, 0) = pO(xr YV Z)(pS(xl Y Z):
us(x,,2,0) = cm(x,y,2)po (%, y, 2).

(30)

According to Theorem 2, problem (29), (30) has a unique solution if the initial data satisfy the
following conditions

( 0(po@1) _ S 9(pop2) _ s 9(po@3)
ox P12 dy T 18 5,
0(popz) _ 9(poP1) _ d(cmpo)

ax S21 dy = 513 0z 31

< 2(poP3) __ s d(cmpg) _ —s 9(po®1) (31)
ax 12 9y T 731 5

d(cmpo) _ —s 9(poP3) _ —s 9(po®2)
\ oax 21 5y T 31 52

for (x,v,z) € R3, where s;,,513, 524,521,531 given real constants. In this case, the solution of
problem (29), (30) is

_1 S12813+S12+513 S12S5131S12+S13
u(x,y,2,17) =-|p |l x + ———-=1,y,2| 01 |+ ——T1,7, 2| + po | x —
2 v/ 512521513531 v/ 512521513531

$12513+S12+513

S12513+S12+S513 $12513 S12513+S12+513
—T,y,Z)qol(x——T,y,z + [—=|cmpy|x + ———71,5,2) —
V512521513531 V512521513531 521531 V512521513531

S12513+S12+513
cmpy | x ———=71,y,2] ||,
V512521513531
S12513+S12+S513 $12513+S12+S13

1
w2 (%,y,2,7) ‘El”" (" J512521515501 T'y'z)"’z (” Js1252151551 T'”)”O ("_

$12513+S12+513 S12513+S12+S513
—1,),Z X ——— —

21513 S12513+S12+513
@, T,y,z)— p0<x+—r,y,z P3|\ x +

V512521513531 V512521513531 $12531 V512521513531
S12S13+S12+S13 ) _

1,Y,2Z
V512521513531

S12513+S12+S513 $12513+S12+S13
(x_—T,J’;Z P3N\ X ——F/—7—=1,Y,2 ’
V512521513531 V512521513531
S12513+S12+S513 $12513+S12+S13
—_— P3| x + ——

1
Uz (X Z,T) =< X T VA T VA X —
3(x,.3,2,7) z[p°< fruzszsizsn Y Vrzszsizsn Y )+p°<

S12513+S12+S13 __ S12513+S12+S13

512531 S12513+S12+513
T,y,z)<p3(x T,y,z)— Po <x+—r,y,z>(p2<x+
V512521513531 V512521513531 521513 V512521513531

S12513+S12+S13 __ S12513+S12+S13

V512521513531 T 0 V512521513531 T 2 V512521513531 T !
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S12513+S12+S13 S12513+S12+S513

1
Ug(X Z,T)=—-|Cm X+ —=7 Z|l+m X ——F——7 zZ |+
4( S ) 2[ ,00( /512521513531 Y ) po( v/ 512521513531 Y )
S21S S12513+S12+S S12513+S12+S
21531 Do (X + 125135121513 7,9, Z) @1 (X + 125135121513 7,9, Z> — Do (x _
$12513 512521513531 V512521513531

S12513+S12+S13

S12513+S12+513
T,Y, Z) 01 (x - —T,Y;Z) .
V512521513531 /512521513531
From here we find the initial variables

1
2becm(x,y,z)

p(x,y,2,t) = (b(mpo)™ + b(mpo)~ + (Pop1)* — (PoP1)7), (32)

(po@1) T +(po@1) +b(mpo)* —b(mpg)~ (33)

v (%, y,2,t) = bem(x, y,2) b(mpo)t+b(mpe)~+(po@1)t—(po@1)™

(Po@2)T+(po@2) " —d(po@3)t+d(po®3)~ (34)

v2003,2,8) = bem(X, y,2) G S b mpoy + (o2 (b0

d(po@3)T+d(po@3) ™ —(po@2) T +(po2)~ (35)
b(mpe)*t+b(mpo)~+(po@1)T—(pop1) ™’

v3(x,y,2,t) = Sl—zcm(x, y,2)"
S21

where (po@1)* = po(x + at,y,2)p(x + at,y,2), (po®1)~ = po(x — at,y, 2),(x — at,y, 2),

(Po®2)* = po(x + act,y, 2)p,(x + act, y, z), (Po®2)™ = po(x — at,y,2)p,(x — at, y, 2),

(Po93)* = po(x + at,y,2)ps(x + at,y, z), (Po®3)™ = po(x — at,y, z)ps(x — at,y, z),

(mp0)+ = Cm(x' y! Z),DO(X + art, y' Z), (mpo)_ = Cm(x' y: Z)pO(x —ar, y' Z),

a = $12513+S12t513 b= 512513 d = S21513
V512521513531 ! S21531 S12531
Thus, if conditions (31) are satisfied, then problem (23), (27), (28) has a unique solution (32) to

(35). Substituting this solution into the equation of motion (24), we obtain the equation for the
pressure. For the solvability of Eq. (24), it is necessary that

rot(f(p,vi,v5,v3)) = 0 (36)

This relation imposes a restriction on the form of the function f Define a function f by the
following theorem.

Let h(x,y,z,T) be an arbitrary four-dimensional regular function and denote by G(x,y,z,7) a
four-dimensional function with components

91(x,y,2,7) = 11h1 (51X, 52, S32, S4T)
92(%,y,2,7) = 15h5(51%, 52Y, 532, 547)
93(x%,y,2,7) = 13h3(51%, 52), 537, 54T)’
94(%,y,2,T) = 1314 (81X, S2Y, $32, 54T)

where 1;,s;,1 = 1,2,3,4, - definable constants. Then for f we take the following function with
components
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(f1(p,v1,v2,v3) = g1(pvy, pv2, pv3, mp) — g1(0,0,0,0) =
= 11hy (5101, S20V2, S3pV3, S4mp) — 11h1(0,0,0,0)
f2(p,v1, V2, v3) = g2(pv1, pv2, pv3, mp) — g2(0,0,0,0) =
= 12hy(S1pV1, S2PV2, S3PpV3, Samp) — 1212(0,0,0,0)
f3(p,v1,v2,v3) = gs(pvy, pvy, pv3, mp) =

\ = 13h3(51pV1, S2PV2, S3PV3, S4MP)

N

, (37)

The function ffrom (37) must satisfy the following condition

0fs _9f2
(63} 62\
2 d d
rotf(x,y,z1)=| L-L =0 (38)
\&&-2)
ox ady
forallt € R, (x,y,2) € R3.
Theorem 3: (Darcy's Law) The Cauchy problem for the mathematical model of the linear filtration

theory (23), (25), (27), (28) satisfying conditions (29), with s;, = s,; = 13 = S3; = 1, has a unique
solution

p(x,7,2,7) = ———((mpo)* + (Mpo)~ + (Pop1)* — (Po1) ") (39)

2cm(x,y,z)

(pop )t +(pop1) ™ +(mpy)* —(mpo)~

vy 21) = cm(x,y,z) - (Mmpo)*+(mpo)~+(Po®1)* —(Po®1)~ (40)
_ (Pop2)* +(Pop2) = (Po@3) T +(Po@3)”
V2007, 2,T) = MY, 2) G mpe) Fpuw ) —(puwn)” (41)
(Po@3)T+(po@3) ™= (Po@2) T +(po@2)~
= : 42
v3(x,y,2,7) = em(x, y,2) (mpo)*+(mpo)~+(po@ 1) —(Pop1)~ (42)
p=—% [ v(§y,20dE - [ v,(0,n,2,D)dn — £ [F;(0,0,{,1)d + C(2) (43)
where
(Po®1)™ = po(x + 31,y,2) 01 ((x + 37,y,2), (Po®1)™ = po(x — 37, ¥, 2)p1(x — 37,¥,2),

(Po®2)" = po((x + 37,y,2)@,((x + 37,y,2), (Po®2)” = po(x —37,¥,2)p,(x — 31,Y, 2),
(Po®3)™ = po((x + 37,y,2)@3((x + 37,y,2), (Po®3)” = po(x —37,¥,z)p3(x — 31,y,2),
(mpo)™ = em(x,y,2)po((x +37,y,2),  (mpy)~ = cm(x,y,2)po(x — 37,y 2).

Proof: Substituting the given coefficients s;, = s,; = 513 = s3; = 1 into (32) to (35), we find

1
p(x,¥,2,1) = =———=<((mpo)* + (Mpo)~ + (Po®1)™ — (Po1)7)

2cm(x,y,2)
(pop)™ + (pop1)™ + (mpy)™ — (mpy)~

(mpo)* + (mpo)~ + (Po@1)™ — (Pow1)~
(pop2) " + (po92)™ — (Po®3)™ + (Po93)”

(mpo)* + (mpo)~ + (Po@1)™ — (PoP1)~

vi(x,y,2z,1) = cm(x,y,2)

vy(x,y,2,7) = cm(x,y,z)
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(po@3)" + (po93)™ = (Po@2)™ + (Pog2)~
(mpo)* + (mpo)~ + (Po@1)™ — (Pop1)~

v3(x,y,z,1) = cm(x,y,z)

where (po@1)* = po(x + 37,y,2) 91 ((x + 37,, 2), (Po®1)™ = po(x — 37, ¥, 2)p1(x —
31,y,2),

(Po®2)* = po((x + 37,y,2) @ ((x + 31,, 2), (Po®2)™ = po(x — 37,,2)p,(x — 31, Y, 2),
(Po®3)* = po((x + 37,y,2)@3((x + 31,, 2), (Po®3)™ = po(x — 37,,2)p3(x — 31,Y, 2),
(mpo)™ = em(x,,2)po((x +37,y,2),  (mpo)~ = em(x,y,2)po(x — 37, y,2).

Let us choose a linear function h(x,y,z,t) = X, then for s;, = s5; = S;3 = S3; = 1 we obtain
f1(p, v1,v2,v3) = pvy, f,(p, V1, V2,V3) = pvy, f3(p, V1,12, V3) = pv3

Check the condition (38)

dfs 0f, _ d(pvs) _ d(pv,) _ d(pvs) _ 52_10(P173) _

9y 0z dy dz  0dy sy 0y 0,
%_%__a(mﬁ)_a(m%)_ _6(pv1)+ a(Pv1)_0
0z Ox 0z ox z ST, T
%_% _ d(pvy) n d(pvy) _ d(pv,) _ia(Pvz) -0

ox dy  ox dy  0x s, Ox

Thus, Eq. (37) is satisfied. Therefore, there exists a scalar function ¥(x, y, z, T) such that

fxy,2,7) = V(% y,2,7). (44)

Such a function Y(x, y, z, ) has the form

Y(x,y,2,10) = [§ (filovs, pra, pv3, mp)) (€, 5, 2,0)dE + [ (f2(pv1, pv2, pr3,mp)) (0,1, 2,T)dn +
I3 (£5(pv1, pva, pv3,mp))(0,0,{,7)dS + C(v).

Then, Eq. (25) can be written as

=7),

which has a solution

(0p v v v U
o = P vavs) = =L filp vy, vy, v5) = -2 pvy = — 2y,
dap v v v U

\ 5 = _Epfz(vpvz,vg) = _Efz(pﬂvpvz;l%) = —Epvz = _Evz'
dp v v v U
\97 _Epf3(v1’772:773) = _Efs(P,Vp Uy, V3) = TRPVs =T Us

Calculating we get a solution for the pressure
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x y
VA

b= _%f V1(€;y,Z,T)df _%f Uz(O»TI»Z'T)dU _%JO 173(0,0, {,T)d( + C(T)

0 0

To find C(7), we use the fact that as the spatial variables tend to infinity, the filtration rate and
density tend to zero. Then

Do = _g Jy v3(0,0,¢,1)d¢ + C(n),
whence
C(1) = po + %fo v5(0,0,¢,7)d{.
The theorem is proved.
Thus, we obtained an explicit analytical solution to the three-dimensional mathematical model
of linear filtration (39) to (43).
Theorem 4: (Second order nonlinear filtration law) The Cauchy problem for a nonlinear

mathematical model of filtration theory (23), (26), (27), (28) satisfying conditions (29), for s;, =
Sy1 = S13 = S31 = 1, has a unique solution

1 - -
p(x,y,2,0) = s (Mpo) ™ + (Mpo)™ + (o)™ = (Po1) ™) (45)
v, (%,7,2,7) = cm(x, y,7) - (po@1) " +(Po@1)”+(Mpo)* —(Mmpo)~ (46)

(mpo)t+(mpg)~+(po@1)t—(Po@1)~

(Po@2) T +(pow2)"—(pow3)t+(pops)~ (47)

v2(x,y,2,7) = cm(x,y,2) - (MpPo)* +(mpo)~+(po@ 1)+ —(Po@1)™

(Po@3) T +(po@3) ™ —(Po@2)T+(po@2)~ (48)

v3(0,y,2,7) = cm(X, Y, 2) T e —(popa)

p= _%foxp(ﬁz — % —v3® + (em)?)dé — Z%f:p(mcm —vv,)dn — Z%fozp(vzcm -

V1V3)d( + C(t) (49)
where  (po@1)* = po(x +37,y,2)01((x +37,¥,2), (pPo91)” = po(x — 37, ¥,2)p,(x — 37,¥,2),
(Pop2)* = po((x + 37,y,2)p,((x + 37,, 2), (PoP2)” = po(x —37,y,2)p,(x — 31,Y,2),
(Pop3)* = po((x + 37,y,2)p3((x + 37,, 2), (Po@3)™ = po(x — 37,y,2)p3(x — 31,Y,2),
(mpo)* = em(x,y,2)po((x + 317,¥,2), (mpy)~ = cm(x,y,2)po(x — 37,7, Z).

Proof: Substituting the given coefficients s;, = 5,1 = s13 = 531 = 1 into (32) to (35), we find

((mpo)™* + (mpy)™ + (po@1)* — (Po®1)7),

(pop)™ + (pop1)™ + (mpy)™ — (mpy)~
(mpo)* + (mpo)~ + (pop1)* — (Pop1)™

P2 = Semtey, )

vi(x,y,2z,7) = cm(x,y,2)
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. (Po@2)* + (Po@2)™ — (Pop3)™ + (Pop3)~

(mpo)* + (mpo)~ + (o)t — (Pop1) ™"
(po@3)™ + (po93)™ = (Po@2)™ + (Pog2)~

(mpo)* + (mpo)~ + (Po@1)™ — (PoP1)~

vy (x,y,z,1) = cm(x,y,z)

v3(x,y,z,1) = cm(x,y,z)

where (po91)* = po(x + 37,5, 2)1 ((x + 37, ¥, 2), (Pop1)™ = po(x = 37,y,2) 1 (x —
31,y,2),
(Po®2)" = po((x + 37,7, 2)9,((x +37,,2),  (Po®2)” = po(x — 37,y,2)@(x — 37, ,2),
(Po®3)" = po((x + 37,7, 2)93((x +37,,2),  (Po®3)™ = po(x — 37,y,2)@3(x — 37, ,2),
(mpo)* = cm(x,y,2)po((x +37,y,2),  (mpo)~ = cm(x,y,z)po(x — 37, ,2).

Let us choose a nonlinear function h(x,y,z,t) = X2, then for sy, = 5,1 = S13 = 53; = 1 we
obtain fi(p, v1,v2,v3) = p?vi® — p?v,* — p?v3® + p?cPm?, f2(p, v1,v2,v3) = 2p*v3em —
2p%v1vy, f3(p, V1, v, v3) = 2p*vyem — 2p%v, v

Check the condition (38)

0f; 0f,  0(=2p*viv3 + 2p°vyem)  9(2p*vzem — 2p%v,v,)

dy 0z dy dz

d(pvs) d(pvy) d(cmp) d(pvy) d(cmp)
= —2p1; 6y3 — 2p1, ayl + 2pv, 3y +2cmpa—yz—2pv3 57

d(pv3) d(pv,) d(pvy)
— 2cmp a?z )+ 2pv4 a(zz )+ 2pv, a(zz | .

pV3 pV1 cmp PV
=-2 - —+2 2
pV1 3y Py 3y + 2pv, dy + 2cmp 3y
LS 0(pv1)_25q_zcmp6(pvz)+zsﬁpv d(pvs) Sz d(cmp)
S13 ’ dy S13 dy S31 ! dy S31 2 dy

Ofi _ 3fs _ 9(pPvi? = pv;? = pPug? — pPcm?) | 0(2pvem = 20%vivs)

dz Ox

0z ox
d(pvy) a(pvz)_z d(pvs3) 42 d(cmp) 5 d(cmp)

= 2p1y —2pv;— pV3—o cmp —— PV2—5
d(pv,) d(pvs) d(pvy)
T AT T a(cmp)  a(pvy)
B pv1) pva) pUs cmp PV,
= 2pv; 07 2pv, 07 2pv3 57 + 2cmp 57 + 2pv, 07
d(cmp) d(pvy) d(pvs3)
— 2513cmp T 4531PV1 + 251303 P 0,

af; 0fi _ d(2p*vsem — 2p*v1v,) _ d(p*v,? — p?v,” — p?v3® + p?c?m?)

ox dy d0x dy

. a(cmp)+2Cm a(pvg)_2 ’ 6(pv2)_2 ’ a(pvl)_2 ’ d(pvy)
PP 0x P dx L ox P2 0x PP dy
d(pv d(pv d(em
+ 2pv, (pv,) + 2pvs (pv3) _ 2cmp (ayp)
d(cmp) d(pvs) d(pvy) d(pvy) 1 d(pvy)
=2 2 -2 _— =2 2—
PVs 0x +acmp dx PP 0x pva 0x + Sy e dx
+2i v a(PV1)_ i v a(cmp)—Zicm a(PV3)=O
312’0 2 ox 521p > ox S12 P dx
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Thus, Eq. (38) is satisfied. Therefore, there exists a scalar function Y (x, y, z, ) such (44). Then Eq.
(26) has a solution of

(0 v
£ = —EPZ(WZ —vy° —v3? + (em)?),
dp v

1 @ =—2 EPZ(%C”m — V1V3),
dp v

Yria -2 Epz(vzcm — v,v3).

Calculating we get a solution for the pressure

x y
u u
p =5 = w2 =02 + )y 008 - 2 [ pwsem = v 0,02, 000
0 0

VA
_ z%f p(voem — v,1v3)(0,0,{,7)d{ + C(7)
0
Where
C(t) = poo + £ [ p(vocm — v193)(0,0,¢, (.

The theorem is proved.

Thus, an explicit analytical solution (45) to (49) of the three-dimensional mathematical nonlinear
filtration model was obtained.

Theorem 5: The function p(x, y, z, t) defined by equality (32) is a strictly positive function.

Proof: Rewrite an Eq. (23) as

9(mp) ¥ cdiv(Z) =
T+V(mp) —+mp dlv(m)—O,

which functions (32) to (35) satisfy. Divide both sides of this equation by mp:

dln (mp)

T Vin(mp) - u = —divi.

=

where ﬁ=(u1,u2,u3)=%. Eq. (36) for the function In(mp) with the initial conditions

In(mp)(x,y,2,0) = (mpy)(x,y,z) has a unique solution o(x,y,zt). Then p(x,y,zt) =
exp (6(xy,2.0)
m(x,y,z)

The theorem is proved.

> (0 and, since the solution is unique, it coincides with the function (29).

4. Conclusion

In this paper, a mathematical model of filtration theory was investigated and the existence and
uniqueness of a solution to the Cauchy problem for this model were proved. An analytical solution
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of a three-dimensional problem is obtained by the method of four-dimensional mathematics in the
Abenov space M5 for the linear Darcy law and the second order nonlinear filtration law.

References

(1]
(2]
3]
(4]
(5]
(6]
(7]
(8]

(9]
(10]

(11]
(12]
(13]
(14]
(15]
(16]
(17]

(18]

(19]

[20]
[21]
[22]
(23]

(24]

Nield, Donald A., and Adrian Bejan. Convection in porous media. Vol. 3. New York: springer, 2006.

Coutelieris, Frank A., and J. M. P. Q. Delgado. "Modeling of Transport Processes in Porous Materials." In Transport
Processes in Porous Media, pp. 87-121. Springer, Berlin, Heidelberg, 2012. https://doi.org/10.1007/978-3-642-
27910-2 5

Coussy, Olivier. Mechanics and physics of porous solids. John Wiley & Sons, 2011.
https://doi.org/10.1002/9780470710388

Bear, Jacob, and M. Yavuz Corapcioglu, eds. Fundamentals of transport phenomena in porous media. Springer
Science & Business Media, 1972.

Vafai, Kambiz, ed. Handbook of Porous Media. CRC Press, 2005. https://doi.org/10.1201/9780415876384

Entov, V. M. "Filtration theory." Sorosov. Obrazovat. Zh 2 (1998): 121-128.

Polubarinova-Koch, Pelageia lakovlevna. Theory of groundwater movement. Princeton University Press, 1977.
Dullien, Francis A. L. Porous media: fluid transport and pore structure. Academic Press, 1991.
https://doi.org/10.1016/B978-0-12-223651-8.50007-9

Leontiev, N. E. Fundamentals of filtration theory: a tutorial. Moscow: Max Press, 2017.

Whitaker, Stephen. "The Forchheimer equation: a theoretical development." Transport in Porous Media 25, no. 1
(1996): 27-61. https://doi.org/10.1007/BF00141261

Ingham, Derek B., and loan Pop, eds. Transport phenomena in porous media Ill. Vol. 3. Elsevier, 2005.

Tamer, 0. S., E. S. Toropov, T. E. Shevnina, and T. |. Vorobieva. "Research of Reservoir Rock Properties in Violation
of Darcy's Linear Law." In IOP Conference Series: Materials Science and Engineering, vol. 154, no. 1, p. 012006. IOP
Publishing, 2016. https://doi.org/10.1088/1757-899X/154/1/012006

Hassanizadeh, S. Majid, and William G. Gray. "High velocity flow in porous media." Transport in Porous Media 2,
no. 6 (1987): 521-531. https://doi.org/10.1007/BF00192152

Skjetne, Erik, and Jean-Louis Auriault. "High-velocity laminar and turbulent flow in porous media." Transport in
Porous Media 36, no. 2 (1999): 131-147. https://doi.org/10.1023/A:1006582211517

Bear, J. Dynamics of fluids in porous media. Elsevier, New York, 1972.

Ewis, Karem Mahmoud. "Analytical Solution of Modified Bingham Fluid Flow through Parallel Plates Channel
Subjected to Forchheimer Medium and Hall Current Using Linearized Differential Transformation Method." Journal
of Advanced Research in Numerical Heat Transfer 4, no. 1 (2021): 14-31.

Sukamta, Sukamta. "Computational Fluid Dynamics (CFD) and Experimental study of Two-Phase Flow Patterns Gas-
Liquid with Low Viscosity in a Horizontal Capillary Pipe." CFD Letters 11, no. 8 (2019): 16-23.

Sahak, Ahmad Sofianuddin A., Nor Azwadi Che Sidik, Siti Nurul Akmal Yusof, and Mahmoud Ahmed Alamir.
"Numerical Study of Particle Behaviour in a Mixed Convection Channel Flow with Cavity using Cubic Interpolation
Pseudo-Particle Navier-Stokes Formulation Method." Journal of Advanced Research in Numerical Heat Transfer 1,
no. 1(2020): 32-51.

Nagasasikala, Madduleti, and Bommanna Lavanya. "Heat and mass transfer of a MHD flow of a nanofluid through
a porous medium in an annular, circular region with outer cylinder maintained at constant heat flux." CFD Letters
11, no. 9 (2019): 32-58.

Alexeev, B. V. "Analytic solution of nonlinear Leybenson equation in the theory of filtration." Fine Chemical
Technologies 11, no. 1 (2016): 34-39. https://doi.org/10.32362/2410-6593-2016-11-34-39

Abenov, M. M. "Chetirehmernaya matematika." Metody i prilozheniya. Nauchnaya monographia [Four-dimensional
mathematics: Methods and applications. Scientific monograph](Almaty: Publishing House, 2019, 176 pp.).
Abenov, M. M., M. B. Gabbasov, and F. Y. Ismagulova. "Movement of fluid inside the sphere." International Journal
of Engineering & Technology 7, no. 4 (2018): 42-44. https://doi.org/10.14419/ijet.v7i4.30.22001

Abenov M. M., M. B. Gabbassov. Anyzotropnie chetirehmernie prostranstva ili novie kvaternioni [Anisotropic four-
dimensional spaces or new quaternions] (Preprint, Nur-Sultan, 2020).

Rakhymova, A. T., M. B. Gabbassov, and K. M. Shapen. "On one space of four-dimensional numbers." Journal of
Mathematics, Mechanics and Computer Science 108, no. 4 (2020): 81-98.
https://doi.org/10.26577/JIMM(CS.2020.v108.i4.07

133


https://doi.org/10.1007/978-3-642-27910-2_5
https://doi.org/10.1007/978-3-642-27910-2_5
https://doi.org/10.1002/9780470710388
https://doi.org/10.1201/9780415876384
https://doi.org/10.1016/B978-0-12-223651-8.50007-9
https://doi.org/10.1007/BF00141261
https://doi.org/10.1088/1757-899X/154/1/012006
https://doi.org/10.1007/BF00192152
https://doi.org/10.1023/A:1006582211517
https://doi.org/10.32362/2410-6593-2016-11-34-39
https://doi.org/10.14419/ijet.v7i4.30.22001
https://doi.org/10.26577/JMMCS.2020.v108.i4.07

