Computer Systems and Communication Technology 45
W. Zheng (Ed.)

© 2024 The Authors.

This article is published online with Open Access by 10S Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/ATDE240007

The Use of Python, Owlready, Sparql in
Processing the Words Ontological Model of
Public Political Discourse

Ayaulym SAIRANBEKOVA®!, Gulmira BEKMANOVA °, Assel OMARBEKOVA ¢,
Assel MUKANOVA ¢ and Altanbek ZULKHAZHAYV ©
abee 1 N. Gumilyov Eurasian National University
4 Astana International University
ORCiD ID: Ayaulym SAIRANBEKOVA https://orcid.org/0000-0002-0814-1532,
Gulmira BEKMANOVA https://orcid.org/0000-0001-8554-7627,
Assel OMARBEKOVA https://orcid.org/0000-0002-9272-8829,
Assel MUKANOVA https://orcid.org/0000-0002-8964-3891,
Altanbek ZULKHAZHAYV https://orcid.org/0000-0002-4491-3253

Abstract. The article describes a technology processing ontological model of
words in public political discourse. The research task is developing an information
question-answering system of political discourse in Kazakh language. The Python
programming language, Sparql data-query language, and Owlready module are
used to develop the system.

Keywords. Artificial intelligence; knowledge base; discourse; ontology;
formalization, python, owlready, sparql, OWL.

1. Introduction

This work is carried out within the framework of the project BR11765535
“Development of Scientific and Linguistic Foundations and IT Resources to Expand
the Functions and Improve the Culture of the Kazakh Language”.

The authors of the article are conducting work related to the processing of
sentiment in socio-political discourse and public speeches [1], knowledge acquisition
based on ontologies in natural language processing [2], and ontology process using
python and sparql [3].

Nowadays, many people express their civic and political positions through the
social networks.

The processors have already been made that work in this direction based on
artificial intelligence methods. In Kazakhstan, scientists from L.N. Gumilyov Eurasian
National University [4, 5], Al-Farabi Kazakh National University [6], and the
International University of Information Technologies (International Information
Technologies University) [7] researched the sentiment analyzer of official and
unofficial information sources based on the texts sentiments analysis.

! Corresponding Author: Ayaulym Sairanbekova, sairanbekova98@gmail.com

https://orcid.org/0000-0002-0814-1532
https://orcid.org/0000-0001-8554-7627
https://orcid.org/0000-0002-9272-8829
https://orcid.org/0000-0002-8964-3891
https://orcid.org/0000-0002-4491-3253

46 A. Sairanbekova et al. / The Use of Python, Owlready, Sparql

An academic ontology is a specification of concepts, their attributes, and
relationships in a certain subject area [1]. Ontologies allow to perform logical inference
to get new information by reasoning and link it together with different pieces of
knowledge from the ontology [8]. The Protégé editor is mainly used to create, maintain,
and evaluate ontologies. However, it is not enough to develop the interface of its
applications [9]. The data-query language SPARQL is mainly used for ontology
programming interfaces; we used the OWLAPI module in our work.

The module was used for making a tool processing biomedical ontologies [10], a
data system connecting different bulletin boards using an ontology coordination
approach [11], explaining contingencies in production planning [12], a semantic web
infrastructure analyzing dataflow [13,14].

2. Ontology Data Processing Algorithm

The question-and-answering system on public political discourse is available at the link
https://kazlangres.enu.kz/#/answer/question/3.

This system was developed based on the ontology of political discourse
(https://webprotege.stanford.edu/#projects/16410306-5223-4a1b-85bf-
61fb3bd3asel/edit/Classes?selection=Class(owl: Thing)).

System operation algorithm:
database of questions is formed on ontology base,
all questions are stored in the database,
all answers to generated questions are stored in the database,
user asks a question,
the question text is being checked for the presence of an entity,
if the question matches a keyword in the ontology, then all answers
associated with this entity are returned.

7. if the question does not match the keyword in the ontology, the question is
checked with the generated questions,

8. if the question matches the generated questions, then all similar questions
and their answers are returned.

Sk W=

- 2

Start

!

Ontology generating

v

Generating questions
based on ontology

'

e A

Generating answers to
generated questions
\ J

v

https://kazlangres.enu.kz/
https://webprotege.stanford.edu/
https://webprotege.stanford.edu/
https://webprotege.stanford.edu/

A. Sairanbekova et al. / The Use of Python, Owlready, Sparql 47

User enters a
question

The
entity of
question is
found in the

the
question

coincides with
generated

Displayi
ng all
questions by

Displaying
similar questions
and their
answers

v y

Finish

Figure 1. System operation algorithm.

The procedures are described below.

The procedure for generating questions based on ontology:
questions = [

Jlerenimi3 He jereH cypakrap (opmacsl

{

'question': random.choice(["{} nerenimi3z ue?#0", "{} meren He?#0"]),

r.m

'query":
SELECT ?olabel ?1abel
WHERE { ?subject rdfs:subClassOf ?object .
?subject rdfs:label ?label .
?object rdfs:label ?olabel
FILTER(
(REGEX(STR(?label), " + question.lower() + ") || REGEX(STR(?label),
"""+ question + ") || REGEX(STR(?label), " + question.capitalize() + "))

)

48 A. Sairanbekova et al. / The Use of Python, Owlready, Sparql

b
order by ?label

b
'answer": "{} gerenimis - {}#0",

}s
{
'question’: random.choice([source +" OofipiHma {} aHbpIKTamMacei#2", "{}
aHbIKTaMach#2", "{} aHBIKTaMachIH alT#2"]),
lqueryl. m

SELECT ?object ?1abel
WHERE { ?subject kazont:definition ?object .
?subject rdfs:label ?label .
FILTER(
(REGEX(STR(?label), " + question.lower() + ") || REGEX(STR(?label),
"" + question + ") || REGEX(STR(?label) ," + question.capitalize() + "))

}

m

'answer": random.choice(["{} anpikTamacer: {}#2", "{} merenimisz: {}#0"]),
15
{
'question”: random.choice(["{} ymrin mpican kentip#2", source + " OoiibIHmA {}
YILIiH KaHjaait Meicanaap kenripiaren#2", "{} mpicanuapbi#2"]),

om

'query":
SELECT ?subject ?label
WHERE

{

{
?subject rdfitype ?object .

?object rdfs:label ?label .
FILTER(
(REGEX(STR(?label) ,"" + question + ") || REGEX(STR(?label), "' +
question.capitalize() + "))
&& (LANG(?label) ="" || LANG(?label) = "kz")
)

}

union
{
?object kazont:example ?subject .
?object rdfs:label ?label .
FILTER(
(REGEX(STR(?label), "" + question + ") || REGEX(STR(?label), " +
question.capitalize() +""))
&& (LANG(?abel) ="" || LANG(?1abel) = "kz")

)

A. Sairanbekova et al. / The Use of Python, Owlready, Sparql 49

}

m
>

‘answer': random.choice(["{} ymin mbicannap: {}#0", "{} mbicanngapsi: {}#2"]),
}s
{

'question": random.choice(["{} Ttypmepi kamman?#2", "{} " + source + "
OofipIHTIa KaHmal Typiepre Oenineni#0"]),
‘query": "
SELECT ?slabel ?label
WHERE { ?subject rdfs:subClassOf ?object .
?object rdfs:label ?label .
7subject rdfs:label ?slabel .
FILTER((REGEX(STR(?label), """ + question + ") || REGEX(STR(?label), "'

+ question.capitalize() + ")) && (LANG(?slabel) = "" || LANG(?slabel) = "kz"))
H

m

‘answer': random.choice([" {} Typmepi: {}#2", "{} kenecineit Oemineni: {}#0"]),

b
]

Question update procedure:
def update question(self, question):
try:
Database Connection
if self.cursor.closed:
self. delete instance()
self = self.get _instance()
cursor = self.cursor
Checking if a question exists in the database
cursor.execute("SELECT id FROM public.question WHERE question = %s",
(question['question'],))
question_id = cursor.fetchone()

if not question_id:
If there is no question, insert it into the 'question’' table
print(cursor.execute("INSERT INTO public.question (question) VALUES
(%s) RETURNING id", (question['question'],)))
question_id = cursor.fetchone()['id']

Inserting question-related answers into the 'answer' table for
answer_data in question['answers']:
cursor.execute("INSERT INTO public.answer (answer, question_id)
VALUES (%s, %s)", (answer_data['answer'], question_id))

Save change
self.connection.commit()
Closing cursor

50

A. Sairanbekova et al. / The Use of Python, Owlready, Sparql

cursor.close()
return True # Inserted successfully
except Exception as e:
print(f" Error inserting into database: {str(e)}")
self.connection.rollback() =~ # Transaction rollback in case of error
return False # An error occurred while inserting

‘pg_trgm’ for postgresql is used for searching questions from the database.
‘pg_trgm’ is an extension to PostgreSQL providing support for operators and functions
for performing operations on the lines using trigrams. Trigrams are groups of three
sequential character in a line. This extension provides powerful tools for performing
various operations with the text, such as detecting similar lines, performing similar
trigram counting, and much more.

Some of the key functions and operators provided by "pg trgm’ are:

1.

similarity(textl text, text2 text): This function compares two texts and
returns similarity value between them. It uses trigrams to calculate similarity,
and the result is represented as a floating-point number ranging from 0 to 1,
where 0 indicates no similarity at all and 1 indicates a complete match.
“%” n “<%”: These operators can be used to perform comparisons of text
lines using trigrams. "%" returns "true" if two lines have similarity more
than 0.3, while <%’ returns “true' if the similarity is more than 0.6.
word_similarity(textl text, text2 text): This function works similar to
“similarity()", but it only considers words, not characters.
show_trgm(text text): This function returns an array of trigrams for the
specified text.

Using “pg trgm” can be useful for implementing full-text search, as well as

for searching for similar texts and auto-completion of text queries. It carries efficient
searching even in the cases where texts can contain typos or spelling variations.
def get question_similarity(self, question):

try:

Database Connection
if self.cursor.closed:

self. delete instance()
self = self.get instance()

cursor = self.cursor

Request to get a question by its ID

cursor.execute(

SELECT id, question FROM

(SELECT id, question, similarity(question, %s) AS sim

FROM

question

WHERE

similarity(question, %s) > 0.3) AS quest

ORDER BY

sim DESC

LIMIT 10", (question,question))
question_datas = cursor.fetchall()
result =[]

A. Sairanbekova et al. / The Use of Python, Owlready, Sparql 51

for question_data in question_datas:

question_id = question_data['id']

Runnnig a query to get answers related to the question
cursor.execute("SELECT * FROM public.answer WHERE question_id = %s",
(question_id,))

answers_data = cursor.fetchall()

Dictionary formation based on the received data question_dict

'question’: question_data['question'],
'answers': [{'answer: answer data['answer'|} for answer data in
answers_data]

result.append(question_dict)

Closing cursor
cursor.close()
return result
except Exception as e:
print(f" Error while retrieving data from database:
{str(e)}")

return None

If a question is not found in the question database, then the search
procedure for a similar question is performed (a function for calculating the
Levenshtein distance between two lines): levenshteinDistance(a, b) {

if (a.length === 0) return b.length;
if (b.length === 0) return a.length;

const matrix = [];

// Fill in the matrix
for (leti = 0; i <= b.length; i++) {
matrix[i] = [i];

}

for (let j = 0; j <= a.length; j++) {
matrix[0][j] = j;
}

for (leti=1; i <=b.length; i++) {
for (let j = 1; j <= a.length; j++) {
const cost = a.charAt(j - 1) ===b.charAt(i-1)?0: I;
matrix[i][j] = Math.min(
matrix[i- 1][j]+ 1,
matrix[i][j - 1] + 1,
matrix[i - 1][j - 1] + cost
)i
}

52 A. Sairanbekova et al. / The Use of Python, Owlready, Sparql

}

return matrix[b.length][a.length];
55

this.questions.sort((a,b)=>
this.levenshteinDistance(a.question, this.question) -
this.levenshteinDistance(b.question, this.question)

);

3. Conclusion

The practical significance of the study is focus on solving the applied problem of
developing a question-answering system based on the ontology of political discourse.
The operation algorithm of the question-answering system, the knowledge base
formation of questions and answers based on the knowledge base are described, and the
Python program codes for system use are described in detail. The obtain results can
certainly be applied developing applications in various subject areas basing on
ontologies.

Summing up, we can draw conclusions about the relevance and development
trends of this direction. To date, a lot of work is being done around the world in the
direction of artificial intelligence and intelligent systems based on knowledge. The
research carried out in this work gives new ideas and opens up new possibilities of
intelligent systems based on bases of the knowledge for further work and study.

References

[11 G. Bekmanova, B. Yergesh, A. Ukenova, A. Omarbekova, A. Mukanova, Y. Ongarbayev. Sentiment
Processing of Socio-political Discourse and Public Speeches. Lecture Notes in Computer Science. Tom
14108, pp. 191 — 205, ICCSA 2023, doi:10.1007/978-3-031-37117-2_15

[2] G.Yelibayeva, A. Sharipbay, G. Bekmanova, A. Omarbekova. Ontology-based extraction of Kazakh
language word combinations in natural language processing. ACM International Conference
Proceeding Series. pp. 58 - 595, DATA 2021. doi:10.1145/3460620.346063 1.

[3] A. Omarbekova, A. Sharipbay, A. Barlybaev. Generation of Test Questions from RDF Files Using
PYTHON and SPARQL. Journal of Physics: Conference Series. Tom 806, Beimyck 121, CCEAI 2017.
doi: 10.1088/1742-6596/806/1/012009.

[4] B. Yergesh, L. Kenzhina. Analysis of the users' emotional state in social networks. ACM International
Conference Proceeding Series. Article number 3492654. 7th International Conference on Engineering
and MIS, ICEMIS 2021. 2021. Kox 175544. ISBN 978-145039044-6. doi: 10.1145/3492547.3492654.

[5] A. Boranbayev, G. Shuitenov, S. Boranbayev. The Method of Analysis of Data from Social Networks
Using Rapidminer. Advances in Intelligent Systems and Computing. Volume 1229 AISC, Pp. 667 —
673. 2020 Science and Information Conference, 2020. Kod 241959. ISSN 21945357. ISBN 978-
303052245-2. doi: 10.1007/978-3-030-52246-9 49.

[6] D. Sultan, A. Suliman, A. Toktarova, B. Omarov, S. Mamikov, G. Beissenova. Cyberbullying detection
and prevention: Data mining in social media. Proceedings of the Confluence 2021: 11th International
Conference on Cloud Computing, Data Science and Engineering. Pp.338 — 342. Article number
9377077 11th International Conference on Cloud Computing, Data Science and Engineering,
Confluence. 2021. Kox 167955. ISBN 978-073813160-3. doi:10.1109/Confluence51648.2021.9377077.

[7] B. Gulnara, Z. Ilyas, Z. Gulnara. The development of a web application for the automatic analysis of
the tonality of texts based on machine learning methods. International Conference on Control,
Automation and Systems. Volume 2018. Article number 8571950. 18th International Conference on
Control, Automation and Systems, ICCAS 2018. Kod 143670. ISSN 15987833. ISBN 978-899321515-
1.

(8]
[9]

[10]

[11]

[12]

[13]

[14]

A. Sairanbekova et al. / The Use of Python, Owlready, Sparql 53

N. Guarino, D. Oberle, S. Staab, Handbook on ontologies, Springer, 2009, Ch. What Is an Ontology?,
pp. 1-17.

A. Rector, M. Horridge, L. Tannone, N. Drummond, Use Cases for Building OWL Ontologies as
Modules: Localizing, Ontology and Programming Interfaces & Extensions, in: 4th Int Workshop on
Semantic Web enabled software engineering (SWESE-08), 2008.

J.-B. Lamy, Owlready: Ontology-oriented programming in Python with automatic classification and
high level constructs for biomedical ontologies. Artificial Intelligence in Medicine. Vol. 80, pp. 11 —28.
2017. doi: 10.1016/j.artmed.2017.07.002.

R. Jain, N. Duhan. OntoJob Query Processor: An Ontology Driven Query Processing Method in
Jobology Information System. Journal of Computer Science. Vol. 16, Beimyck 5, pp. 702 — 714. 2020.
doi: 10.3844/JCSSP.2020.702.714.

P. Schuller. A new OWLAPI interface for HEX-programs applied to explaining contingencies in
production planning. CEUR Workshop Proceedings. Vol. 2659, pp. 25 — 31. 2020. NeHuAlI 2020.

E. Jajaga, L. Ahmedi. C-SWRL: A Unique Semantic Web Framework for Reasoning over Stream Data.
International Journal of Semantic Computing. Vol. 11, Bsmyck 3, pp. 391 — 409. 2017. doi:
10.1142/S1793351X17400165.

E. Jajaga, L. Ahmedi. C-SWRL: A Unique Semantic Web Framework for Reasoning over Stream Data.
International Journal of Semantic Computing. Vol. 11, Bsmyck 3, pp. 391 — 409. 2017. DOIL
10.1142/S1793351X17400165] [E. Jajaga, L. Ahmedi. C-SWRL: SWRL for Reasoning over Stream
Data. ICSC 2017. Pp. 395 —400. doi: 10.1109/ICSC.2017.64

	1.Introduction
	2.Ontology Data Processing Algorithm
	References

