Monthly Notices

MNRAS 512, 5122-5134 (2022)
Advance Access publication 2022 March 24

https://doi.org/10.1093/mnras/stac795

Observational constraints and dynamical analysis of Kaniadakis
horizon-entropy cosmology

A. Herndndez-Almada “,'* Genly Leon ', Juan Magafia ~',* Miguel A. Garcia-Aspeitia >

V. Motta ©, Emmanuel N. Saridakis *,”%° Kuralay Yesmakhanova %! and Alfredo D. Millano >

| Facultad de Ingenieria, Universidad Autonoma de Querétaro, Centro Universitario Cerro de las Campanas, 76010 Santiago de Querétaro, México
2Departamento de Matemdticas, Universidad Catdlica del Norte, Avda. Angamos 0610, Casilla 1280, Antofagasta, Chile

3 Institute of Systems Science, Durban University of Technology, PO Box 1334, Durban 4000, South Africa

4Instituto de Astrofisica and Centro de Astro-Ingenieria, Pontificia Universidad Catdlica de Chile, Av. Vicuita Mackenna 4860, Santiago, Chile
5Departament0 de Fisica’y Matemdticas, Universidad Iberoamericana Ciudad de México, Prolongacion Paseo de la Reforma 880, México D. F. 01219, México
S Instituto de Fisica y Astronomia, Facultad de Ciencias, Universidad de Valparaiso, Avda. Gran Bretaiia 1111, Valparaiso, Chile

7 Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing, National Observatory of Athens, Lofos Nymfon, 11852 Athens, Greece
8CAS Key Laboratory for Researches in Galaxies and Cosmology, Department of Astronomy, University of Science and Technology of China, Hefei, Anhui
230026, P. R. China

9Ratbay Myrzakulov Eurasian International Centre for Theoretical Physics, Nur-Sultan 010009, Kazakhstan

19Ratbay Myrzakulov Eurasian International Centre for Theoretical Physics, Eurasian National University, Nur-Sultan Astana 010008, Kazakhstan

Accepted 2022 March 17. Received 2022 March 9; in original form 2021 December 14

ABSTRACT

We study the scenario of Kaniadakis horizon-entropy cosmology, which arises from the application of the gravity-
thermodynamics conjecture using the Kaniadakis modified entropy. The resulting modified Friedmann equations contain extra
terms that constitute an effective dark energy sector. We use data from cosmic chronometers, Type Ia supernova, H1I galaxies,
strong lensing systems, and baryon acoustic oscillation observations, and we apply a Bayesian Markov chain Monte Carlo
analysis to construct the likelihood contours for the model parameters. We find that the Kaniadakis parameter is constrained
around 0, namely around the value where the standard Bekenstein-Hawking is recovered. Concerning the normalized Hubble
parameter, we find & = 0.7081”8:8{%, a result that is independently verified by applying the HO(z) diagnostic and, thus, we
conclude that the scenario at hand can alleviate the H tension problem. Regarding the transition redshift, the reconstruction of
the cosmographic parameters gives zt = O.715f8:8ﬁ. Furthermore, we apply the Akaike, Bayesian, and deviance information
criteria, and we find that in most data sets the scenario is statistical equivalent to A cold dark matter one. Moreover, we examine
the big bang nucleosynthesis, and we show that the scenario satisfies the corresponding requirements. Additionally, we perform
a phase-space analysis, and we show that the Universe past attractor is the matter-dominated epoch, while at late times the
Universe results in the dark-energy-dominated solution. Finally, we show that Kaniadakis horizon-entropy cosmology accepts

heteroclinic sequences, but it cannot exhibit bounce and turnaround solutions.

Key words: cosmological parameters —dark energy.

the addition of the cosmological constant (CC; Carroll 2001). Thus,

1 INTRODUCTION . . . . -
using the continuity equation and assuming a constant energy density

Cosmology is one of the most exciting adventures in the human
endeavour: the understanding of the origin, evolution, and future
of our Universe by combining the physics at micro- and macro-
scales in a joint framework. In particular, the Universe acceleration
is one of the most important puzzles. Discovered by the Supernovae
team, through Type la supernovae (SNla; Riess et al. 1998), it is
also confirmed by the acoustic peaks of the cosmic microwave
background (CMB) radiation (Spergel et al. 2003), and recently
tested with large-scale structure measurements (Nadathur et al.
2020). Tackling the Universe acceleration is indeed a complicated
issue due to the attractive nature of gravity in the general relativity
(GR) framework. The first approach on its explanation is through

* E-mail: ahalmada@uaq.mx

(p = 0), it is possible to conclude that the equation of state (EoS)
is w = —1, which is in concordance with what is expected for a
fluid that accelerates the Universe. Another main characteristic is
that the energy density of the CC must be subdominant in order
to obtain a late and non-violent acceleration. From the quantum
field theory viewpoint, the CC can be explained by the addition of
quantum vacuum fluctuations (QVF) associated with the space—time.
Therefore, the expansion of space—time implies an increase of QVE,
maintaining a constant energy density. However, when we calculate
the energy density of the QVF, the result is in complete disagreement
with the observed one (see Zel’dovich, Krasinski & Zeldovich 1968;
Weinberg 1989), this is the so-called fine tuning problem (Addazi
et al. 2021). In addition to the CC problem, a 4.2¢ tension in the
current Hubble parameter value (H,) measured by Supernova H, for
the Equation of State (SHOES) collaboration (Riess et al. 2021) and
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the one obtained by Planck collaboration under the A cold dark matter
(ACDM) scenario (Aghanim et al. 2020) has been recently observed.

The above-mentioned problem that afflicts the understanding
of the CC in this framework has driven the community to pro-
pose other approaches like scalar fields, dynamical dark energy,
viscous fluids, Chaplygin gas (Herndndez-Almada et al. 2019) or
modifications to GR such as unimodular gravity (Garcia-Aspeitia
et al. 2019, 2021), Einstein—Gauss—Bonnet (Garcia-Aspeitia &
Hernandez-Almada 2021), Brane Worlds (Garcia-Aspeitia et al.
2018), among others (see Motta et al. 2021; Saridakis et al. 2021, for
a compilation of the mentioned previous models). Despite the fact
that we can have numerous models and scenarios describing the late-
time acceleration, at the end of the day, the detailed confrontation
with observations, alongside theoretical consistency, will be the main
method for their validation.

One interesting alternative to investigate the dynamics of the
Universe is the gravity-thermodynamics approach (Jacobson 1995;
Padmanabhan 2005, 2010). This takes advantage of the first law
of thermodynamics and the standard Bekenstein—Hawking entropy—
area relation for black holes, which applied to the apparent cosmo-
logical horizon leads to the Friedmann equations (Frolov & Kofman
2003; Cai & Kim 2005; Akbar & Cai 2007; Cai & Cao 2007).
Hence, the application of this conjecture with various alternative
entropy relations leads to modified Friedmann equations whose
additional terms can source the cosmic acceleration (Akbar & Cai
2006; Paranjape, Sarkar & Padmanabhan 2006; Cai & Cao 2007;
Sheykhi, Wang & Cai 2007; Cai & Ohta 2010; Jamil, Saridakis &
Setare 2010a,b; Sheykhi 2010a,b, 2018; Wang et al. 2010; Gim,
Kim & Yi 2014; Fan & Lu 2015; Lymperis & Saridakis 2018;
Saridakis 2020).

One interesting class of extended entropies arises through general-
izations for the Boltzmann—Gibbs statistics. In particular, one modi-
fies the classical entropy of a system givenby S = —kg ) _; p; In p;,
where p; is the probability of a system to be within a microstate,
through a non-extensive analysis resulting into the Tsallis entropy
(Tsallis 1988; Lyra & Tsallis 1998), through quantum-gravitational
considerations resulting into Barrow entropy (Barrow 2020), or
through relativistic extensions resulting into Kaniadakis entropy
(Kaniadakis 2002, 2005). Hence, the application of the gravity-
thermodynamics conjecture using the above-modified horizon en-
tropy gives rise to modified cosmological scenarios. In Lymperis &
Saridakis (2018), this was performed in the framework of Tsallis
entropy, in Saridakis (2020), Saridakis & Basilakos (2021), Leon
et al. (2021), and Barrow, Basilakos & Saridakis (2021), it was
applied for the Barrow entropy case, and recently (Lymperis, Basi-
lakos & Saridakis 2021), it was used in the Kaniadakis entropy
frame.

In this work, we investigate Kaniadakis horizon-entropy cosmol-
ogy by confronting it to observational data from cosmic chronome-
ters, SNIa, H11 galaxies (HIIG), strong lensing systems (SLSs), and
baryon acoustic oscillation (BAO) observations. Additionally, we
perform a complete dynamical system analysis in order to extract
information of the local and global features of the cosmological
evolution.

The outline of the paper is as follows: Section 2 introduces
the framework of the Kaniadakis cosmology. In Section 3.1, we
infer the cosmological parameter under the Kaniadakis model using
five observational data sets mentioned above. Section 4 presents a
stability analysis around the equilibrium points of the dynamical
system under the Kaniadakis cosmology. Finally, we discuss and
summarize our results in Section 5. From now on, we use natural
units in which i=kg =c=1.
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2 KANIADAKIS HORIZON-ENTROPY
COSMOLOGY

In this section, we present the scenario of Kaniadakis horizon-
entropy cosmology (Lymperis et al. 2021), namely the modified
Friedmann equations arising from the application of the gravity-
thermodynamics conjecture using the extended Kaniadakis entropy.

Kaniadakis entropy is a one-parameter generalization of the
classical entropy, given as Sk = —kp Zi n; ln( KM (Kaniadakis
2002, 2005), with kg the Boltzmann constant and where ln( Kx =
(x% — x=K)/2K . In such a framework, the dimensionless parameter
—1 < K < 1 quantifies the relativistic deviations from standard
statistical mechanics, and the latter is recovered in the limit K — 0.
Kaniadakis entropy can be expressed as (Abreu et al. 2016, 2018;
Abreu & Ananias Neto 2021)

w _
Pl_1+1< _ P[_l K

Sk=—ks)_ 2K

i=1

, 1

with P; the probability of a specific microstate and W the total
configuration number. When we apply it in the black hole framework,
we obtain (Moradpour, Ziaie & Kord Zangeneh 2020; Drepanou et al.
2021; Lymperis et al. 2021)

1
Sk = — sinh (K Sgn), 2)
K
where
1
Spp = — A, 3
BH = 3)

is the usual Bekenstein—-Hawking entropy, with A the horizon area
and G the gravitational constant. Hence, in the limit K — 0, we
recover Bekenstein—Hawking entropy.

Let us now apply the gravity-thermodynamics conjecture using
Kaniadakis entropy. We consider a flat homogeneous and isotropic
Friedmann—Robertson—Walker metric of the form

ds® = —dr* + a*(1) (dr? + r7dQ?) )

where dQ2? = d#? + sin?6dg? is the solid angle, and a(¢) the scale
factor. In this setup, the first law of thermodynamics is interpreted in
terms of the heat/energy that flows through the apparent horizon of
the Universe (Jacobson 1995; Padmanabhan 2005, 2010), which in
the case of flat geometry is just (Bak & Rey 2000; Frolov & Kofman
2003; Cai & Kim 2005; Cai, Cao & Hu 2009)

, (5)

1
=g
where H = a/a is the Hubble parameter (dots denote derivatives
with respect to #). Concerning the horizon temperature, this is given
by the standard relation (Gibbons & Hawking 1977):

1
T = (6)

27,

Hence, the first law of thermodynamics is just —dE = 7dS, where
—dE = A(pm + pm)Hr,dt is the energy flow through the horizon
during a time interval dt in the case of a Universe filled with a matter
perfect fluid with energy density p,, and pressure p, (Cai & Kim
2005). Differentiating equation (2), we obtain

81 7 .
dSK = E cosh (K @)rurudh (7)

where we have used that A = 472 = 4mt/H?.
Inserting equations (3), (6), and (7) into the first law of ther-
modynamics, alongside with the relation 7, = —H /H?, we acquire
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(Lymperis et al. 2021)

— 471G (pm + pm) = H cosh [K Gzz} : ®)
Thus, using the matter conservation equation

pm + 3H(pm + pm) =0, ©))
the integration of equation (8) leads to

8nG 5 us Km . s A
Tpm:H cosh [Kﬁ] _FShl[Kﬁ] -3 (10)

with A the integration constant and shi(x) = fox sinh(x")/x'dx’, a
mathematical odd function of x with no discontinuities.

Equations (8) and (10) are the modified Friedmann equations in
the scenario of Kaniadakis horizon-entropy cosmology (Lymperis
et al. 2021). As expected, in the limit K — 0, they turn into the
standard ones. We can rewrite them as

8G
H® = 3 (om + pE), (11

H = —47G(pm + ppE + Pm + POE), (12)

where we have introduced an effective dark energy sector, with
energy density and pressure, respectively, of the form

3 A e h ik i ik hi ik
== — oS —shi ,
PPE = %G | 3 GH? G GH?

(13)
1 . nK
=———<SA+@H*+2H) |1 —cosh | ——
PDE 8716{ +( + ){ cos (GHz)}
3nK . [ nK
+ Tshl GHZ . (14)
Therefore, the EoS parameter for the dark energy sector is
— 1-28 |1—cosh [ 7K.
Wpg = G2
A+ 35 |1—cosh K +37‘[K hi niK -l
X COosS 7GH2 7G sn1 7GH2 .
(15)

In the general case, the cosmological equations are the two Fried-
mann equations (11) and (12), alongside the matter conservation
equation (9). For convenience, we focus on on the dust case, namely
we consider p,, = 0. It proves convenient to express the equations in
terms of dimensionless variables. Introducing the density parameters

the normalized Hubble function
g=1, (17
Hy

with H,y the Hubble parameter at the present scale factor ay, and
defining the dimensionless parameter 3 as

p= " (18)
 GH}’
then, the cosmological equations are expressed as
B
@, (N) = 325 Qmsech (ﬁ , (19)
Q (N) = 3Qn, | Qmsech LA 1 (20)
m - m m E2 s
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/ 3 B
E'(N) = —EEQmsech (E) , 21)
where primes denote derivatives with respect to the e-foldings
number N = In(a/ay) (and thus f' = f/H). Note that using the
above variables, the first Friedmann equation (11) gives rise to the
constraint

Bshi (%) + E? {— cosh (%) +Qu+ szm] =0, (22)

which allows us to eliminate 2, in terms of €2,, and E. Finally, note
that for the effective dark energy density parameter, in the general
case, we have

Qpe = 1 — Qu = 1 + Bshi(B) — cosh (B) + Q. (23)

Lastly, it proves convenient to introduce the deceleration parameter
q(z), and the cosmographic jerk parameter j(z), which are defined as

E'
=—1-— 24
q " (24)
Ji=qQ2q+1)—¢q, (25)

where j = 1 recovers the case of a CC.

In the scenario of Kaniadakis horizon-entropy cosmology, one may
have the general integration constant A, which will play the role of
an explicit CC, or one may set it to zero and thus require for the
extra K-dependent terms to drive the Universe acceleration. Since
the corresponding equation structure (which will be used later for
the Bayesian statistical analysis and the dynamical system approach)
is different in the two cases, we examine them separately in the
following subsections.

2.1 Casel: A #0

In the general case where A # 0, i.e. 2, # 0, we use the constraint
equation (22) to obtain the reduced dynamical system

QL (N) =32 [Qmsech (%) - 1} , (26)

E'(N) = > EQ h b 27
(N) = D) mSeC ) @7
This is integrable, with

B ) = cosh(B) — pshi (&) + pshi(B) + QY

Qmn(E) = cosh (

ﬁ EZ ’
(28)
Do) = 2y 29)
and
3sech (£ ) (= cosh(B) — shi (L) + Bshi(B) + ¥
E’(N):%E, (52)< 2E (Ez> i )
(30)

where Qn(N =0) = Q© and EN =0) = 1.
Equation (30) is easily integrated to give

cosh(B) — E2cosh (£ ) + Bshi (£ ) — Bshi(B)

3N(E):—ln<l— (# )(0) (#) )
Qm

(€20)

introducing as a dynamical variable the redshift e¥ = a = (1 +
z)~!, where z = 0 and ay = 1 for current time, and the previous
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equation leads to

[cosh(B) — E?cosh (£ ) + shi (£) — Bshi(p)]

@+ =1- o0 :
(32)

Evaluating equation (23) at present time gives

QY =1-Q® =1+ Bshi(B) — cosh (B) + Q. (33)

and combining it with equation (32) we have

QO +1) + QY = E%cosh (g) — Bshi (g) . (34)

We mention here that in the general case where A # 0 from the
above, we obtain the relation between 8, 2, and Q as

Q® = cosh(B) — Bshi(B) — Q. (35)

We expand equations (33) and (34) up to third order around g =
0, resulting in

2
Q$>+Qi”=1—%+0(ﬁ4), (36)
and
0 B
QU+ 1P+ Q0 ~ E? - Yol o (B*). (37)

Hence, we obtain four roots:

2
\/ Q'+ 17+ QY — \/ 267 + [+ 1+ |

Ein=7F

5 :
(38)
2
\/ Q'+ 1+ Q) + \/ 267+ [@ e+ 1) + 2
Ess=7F NG .
(39)

Solutions E; and E, are complex, and Ej is negative. Thus, the only
physical solution is E4. In the following, instead of using the exact
implicit formula for E given in equation (34), we will consider the
approximation E4 in equation (39).

2.2 Casell: A =0

In the case where an explicit CC is absent, namely A =0,1i.e. 2, = 0,
the general system (26) and (27) reduces to

3 3psech (L) shi (%)

E'(N)=—--E 40
(N) 5 + °F (40)
The last equation is easily integrated to give
1 E?cosh (£;) — Bshi (£
N(E)=—-1In (z2) ps () , (41)
3 cosh(8) — Bshi(B)
which, using the redshift, implies
E2cosh (£;) — Bshi (£
(Z+1)3: (Ez) ‘3 (Ez). (42)
cosh(B) — Bshi(B)
Hence, using
QO = cosh (B) — Bshi(B), (43)
as it arises from equation (35) for Q(,?) = 0, we obtain
QO 1Y = E2 cosh B hi B 44
m(z+ 1) = E~cos ya — Bshi =) (44)

Analysis of Kaniadakis cosmology ~ 5125

Expanding equation (44) up to third order around 8 = 0O results in

2

Q0+ 1) ~ E* - 352 +O (8Y), 45)

2
and thus at present times gives QO = 1 — £ + O (B*). Therefore,
we obtain four roots:

2
\/szé?)(z + 1) - \/252 + Q@+ 1P

Ei,=7F NG ) (46)
\/Qfg)(z 1P /282 1 90+ 1y
Esa=7F NG . 47

Similarly to the previous case, roots £ and E; are complex, while 3
is negative. Consequently, the only physical solution is E, in equation
47).

3 OBSERVATIONAL CONSTRAINTS

In this section, we confront the scenario of Kaniadakis horizon-
entropy cosmology with observations. We are interested in extracting
the bounds on the parameter phase space ® = {h, Q¥ g} and {h,
B}, particularly on the parameter 8, which is related to the Kaniadakis
basic parameter K. For convenience, we focus on the physically

interested case of dust matter, namely we set w,, = 0.

3.1 Data sets and methodology
We will employ the most commonly used data sets.

(i) Observational Hubble data (OHD). The sample contains 31
cosmological-independent measurements of the Hubble parameter
in the redshift range 0.07 < z < 1.965 from passive elliptic galaxies,
the so-called cosmic chronometers (Moresco et al. 2016).

(ii) Pantheon supernova Type la sample (SNIa). We use 1048 data
points of the distance modulus, 14(z)snia, Of high-redshift SNIa in the
redshift range 0.001 < z < 2.3 (Scolnic et al. 2018).

(iii) H 1 galaxies (HIIG). It contains a total of 181 data points
of the distance modulus pupng(z) estimated from the Balmer line
luminosity—velocity dispersion relation for HIIG spanning the red-
shift region 0.01 < z < 2.6 (Gonzdlez-Morén et al. 2021).

(iv) Strong lensing systems (SLSs). We use the sample by Amante
et al. (2020), which contains 143 SLSs by elliptical galaxies with
measurements of the redshift for the lens and the source, spectro-
scopic velocity dispersion, and the Einstein radius. These quantities
allow us to construct an observational distance ratio within the region
0.5 < D% < 1.

(V) Baryon acoustic oscillations (BAO). We consider six corre-
lated data points of the imprint of BAO in the size of the sound
horizon in clustering and power spectrum of galaxies measured by
Percival et al. (2010), Blake et al. (2011), and Beutler et al. (2011),
and collected by Giostri et al. (2012).

We would like to mention here that other cosmological observa-
tions could be included in the parameter estimation too, for instance
the CMB data. To perform such analysis in a robust way, a full
perturbation approach is needed in order to obtain the linear Einstein—
Boltzmann equations. Nevertheless, this is beyond the scope of this
work. An alternative approach would be to use the distance priors
from Planck 2018 based on slight deviations from ACDM, such as
the wCDM model (Chen, Huang & Wang 2019). However, since
this procedure could lead to biased constraints, in the following, we
prefer not to use the CMB data set.
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5126 A. Herndndez-Almada et al.

The inference of the cosmological parameters under Kaniadakis
horizon-entropy cosmology for both scenarios (A # 0 and A = 0)
is performed by a Bayesian Markov chain Monte Carlo (MCMC)
approach and the EMcee PYTHON module (Foreman-Mackey et al.
2013). We set 3000 chains with 250 steps each, and consider uniform
priors in the ranges: A: [0.2, 1], Qfﬂ) : [0, 1], and B: [ —mt, 7t]. The
burn-in phase is stopped up to obtain convergence according to
the autocorrelation time criterion. Then, we build a Gaussian log-
likelihood as the figure-of-merit function to minimize through the
equation —2 In(L)x2, where  is the chi-square function given by

Ngat 2
D - M
Xoncorr = D ( ) : (48)

- op
1

for the samples OHD, HIIG, and SLS because the measurements
are considered to be uncorrelated. Ny, is the number of points of
data set D, op is the estimated uncertainty for each data set, and
M represents the theoretical quantity of that observable based on E4
presented in equations (39) and (47) for A # 0 and A = 0 models,
respectively. As SNIa and BAO data sets contain correlated points,
the figure of merit is built as

x2.=Ax-C ' AxT, (49)

where Ax is the difference between the observational and theoretical
quantities, and C~! is the covariance matrix. It is worth mentioning
that a nuisance parameter is presented in the SNla data, and it is
convenient to marginalize over it to reduce the uncertainties. Thus,
the figure of merit for SNIa data is
2

Ko =atin () =2, (50)
where a, b, and e are functions of Ax and C~!. For more details on
these expressions, see Motta et al. (2021).

Finally, we perform a joint analysis through the sum of the
function-of-merits of each data sample, namely

2 2 2 2 2 2
Xjoint = Xoup T XsLs t XimG T Xsnta T XBao» (51)

where subscripts indicate the data set under consideration.

3.2 Results

Performing the full confrontation of the scenario, we construct
the corresponding log-likelihood contours at 68 per cent (1o) and
99.7 per cent (30) confidence level (CL), and we present them in
Fig. 1 alongside the one-dimensional (1D) posterior distribution.
Moreover, in Table 1, we show the mean values and the uncertainties
at 1o CL for the parameters i, Q, and 8 for both A # 0 and A =
0 cases.

As can be seen, the bounds estimated from each data sample are
consistent among themselves, although the SLS data set provides
lower values for Q. The joint constraints & = 0.7080011 (h =
0.715%0012) for the case A # 0 (A = 0) are consistent at 2.67¢
(30) with the one estimated from the CMB anisotropies (Aghanim
et al. 2020) and at 1.740 (1.360) with the one from SHOES (Riess
et al. 2019). Hence, the scenario of Kaniadakis horizon-entropy
cosmology can offer an alleviation to the Hj tension, providing a
value in between its local measurements and its indirect estimation
from the early stages of the Universe.

Concerning the Kaniadakis parameter, we find that, when A # 0,
the combination of the data samples constrains = —0.0llfgigég,
namely B is constrained around O as expected, the value in which
Kaniadakis entropy becomes the standard Bekenstein—-Hawking one.

MNRAS 512, 5122-5134 (2022)

However, when A = 0, the joint constraint yields = 1.16175:913,
which is expected, as we mentioned above, because in the absence
of an explicit CC, one needs a significant deviation from standard
cosmology to describe the Universe acceleration. Finally, note that
due to equation (43) that holds in the A = 0 case, we acquire a
correlation between Q© and the Kaniadakis parameter 8 in the
lower panel of Fig. 1.

Let us make a comment on the predicted entropy today, since
this is possible to be calculated through equation (2). According
to our model, and imposing for the horizon area of our Universe its
present value, we arrive at the values Sx ~ 1.44 x 10%° m?>kgs—2 K~!
(for A # 0) and Sx ~ 3.15 x 10”m?>kgs2K~! (for A = 0).
In comparison, for the standard Bekenstein—-Hawking entropy, we
have Sgy ~ 2.83 x 10 m’kgs2K™! (A # 0) and Sgy ~
2.79 x 10 m?kgs2K~!' (A = 0). Therefore, the corresponding
ratio is Sx/Spy =~ 0.5 for A # 0 and Sk/Spy >~ 1.12 for A = 0, which
implies a small difference between Kaniadakis and Bekenstein—
Hawking entropies.

Due to the competitive qualities of the fits obtained from both
scenarios, it would be interesting to statistically compare them with
the concordance ACDM cosmology. In order to achieve this, we
apply the standard criteria, namely the Akaike information criterion
corrected for small samples (AICc; Akaike 1974; Sugiura 1978;
Hurvich & Tsai 1989) and the Bayesian information criterion (BIC;
Schwarz 1978), since the A # 0 model contains one extra free
parameter over ACDM. The AICc and BIC are defined as AICc =
X2+ 2k + (2k? + 2k) /(N — k — 1)and BIC = x2. + kIn(N), re-
spectively, where x2.. is the minimum of the x> function, N is the
size of the data set, and & is the number of free parameters. Following
the rules described in Herndndez-Almada et al. (2022), we find that
A = 0 model and ACDM are statistically equivalent based on AICc
(AAICc < 4), when the samples are treated separately, but show
strong evidence against (6 < BIC < 10) the scenario when the
joint analysis is applied. On the other hand, although AICc suggests
that A # 0 model and ACDM are statistically equivalent in the
joint analysis, BIC indicates that there is strong evidence against the
candidate model. Additionally, for the two models, we find that the
A = 0 case is preferred by separate data sets, while the A # 0 case
is statistically preferred for the combined data analysis.

For completeness, we additionally calculate the deviance informa-
tion criterion (DIC; Spiegelhalter et al. 2002; Kunz, Trotta & Parkin-
son 2006; Liddle 2007). This is defined as DIC = D() + 2pp,
where D(@) = x*(0) is the Bayesian deviation, pp = D(@) — D(8)
is the Bayesian complexity, which represents the number of effective
degrees of freedom, and @ is the mean value of the parameters. The
advantage of DIC is its use of the full log-likelihood sample instead of
only the maximum log-likelihood (or minimum x2) as AICc and BIC
do. Based on the Jeffreys scale (Jeffreys 1961), for ADIC < 2, both
models are statistical equivalent. In contrast, 2 < ADIC < 6 suggests
a moderate tension between models, being the one with lower value
of DIC the best one, and ADIC > 10 implies a strong tension between
the two models. We find that the A # 0 case and ACDM scenario are
statistical equivalent for BAO, they have a moderate tension for OHD
and SLS, and a strong tension for HIIG and SNIa. On the other hand,
the A # 0 case and ACDM are statistical equivalent for OHD, BAO,
HIIG, and SNIa. In summary, we confirm the results obtained for the
joint analysis by AICc and BIC for both A # 0 and A = 0 models.
It is worth mentioning that when a posterior distribution presents a
bimodal shape or is asymmetric for a parameter, pp yields negative
values and thus DIC may not be a good criterion. This situation is
mainly presented for 8 in the A # O case in separate data sets.
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Figure 1. 2D log-likelihood contours at 68 per cent and 99.7 per cent CL, alongside the corresponding 1D posterior distribution of the free parameters, in Kani-
adakis horizon-entropy cosmology, for A # 0 (upper panel) and A = 0 (lower panel). We use the various data sets described in the text, as well as the joint analysis.

As a next step, we use the constraints from the joint analysis to
reconstruct the three cosmographic parameters, namely the Hubble,
H(z), the deceleration, ¢(z), and jerk, j(z), parameters according to
equations (24) and (25). The cosmic evolution of parameters is shown

in Fig. 2. Thus, we report the current values of gy = —0.6104:8:8%2
(—0.7081001%) for the deceleration parameter, and jo = 1.0417003
(1.13759013) for the jerk parameter for the A # 0 (A = 0) scenario.

Furthermore, the transition redshift between the deceleration and the
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Table 1. Best-fitting values and their 68 per cent CL uncertainties for Kaniadakis horizon-entropy cosmology
with A # 0 (upper panel) and A = 0 (lower panel) employing the data sets: OHD (31 data points), BAO (6 data
points), SLS (143 data points), HIIG (181 data points), SNIa (1048 data points), and the joint analysis of them.

Sample Xanin h oy B AAICc  ABIC  ADIC
Case A #0
+0.033 +0.072 +1.259
OHD 19.25 0.69970033 0.3547007 —0.004]232 7.6 8.2 —45
+0.272 +0.027 +1.596
BAO 2.91 0.599103% 0.30275:0%7 —0.01611-358 14.1 1.9 0.2
+0.268 +0.064 +2.550
SLS 216.52 0.608™03%8 0.07715:5%3 —0.006%3:330 5.5 8.3 -52
0.018 0.151 2.510
HIIG 452.96 0.7221001% 0.408"013; 0.043%32¢ 19.3 223 —19.6
+0.273 +0.126 +1.108
SNIa 1042.99 0.598103% 0.3597093 0.009™{-19% 9.0 140  —146
: +0.012 +0.016 +0.517
Joint 1743.48 0.70870013 0.2831001¢ —0.0111037 2.9 8.1 0.5
Case A =0
+0.029 +0.057 +0.043
OHD 14.56 0.70110:0% 0.3531003) 11387004 0.5 0.0 0.0
+0.272 +0.023 +0.017
BAO 2.33 0.60210373 0.29715:533 11861000 36 —04 -0.3
+0.276 +0.031 +0.020
SLS 212.86 0.596103% 0.0577903% 1.37375:929 -02  —03 0.0
0.018 0.050 0.038
HIIG 435.64 072110013 0.298% ) ns 118510035 -0.1 -0.2 -0.1
+0.275 +0.023 +0.021
SNIa 1036.48 0.59610373 0.40275:022 1.09310-0%1 0.5 0.5 0.5
Joint 1753.03 0.71579012 0.32670013 116175913 10.4 10.4 10.4
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Figure 2. Upper panel, left to right: reconstruction of the H(z), g(z), and j(z), in Kaniadakis horizon-entropy cosmology with A # 0. Lower panel: same as
before for the case A = 0. We have used the bound obtained from the joint analysis, and the shaded regions denote the uncertainties at 1o. For completeness,
the red square points represent the results of ACDM cosmology with 2 = 0.6766 and Q(n(q)) = 0.3111 (Aghanim et al. 2020).

acceleration stages is estimated to be zr = 0.7157 004 (0.6527003%),
which is in agreement with the one obtained by ACDM as shown in
Fig. 2. Note that the jerk parameter evolution reveals the dynamical
EoS of the effective dark energy.

Finally, to investigate in more detail the Hubble tension, we apply
anew diagnostic, called HO(z) diagnostic, defined by (Krishnan et al.
2021)

H(2)

HO(z) = ————,
@ E xcom(z)

(52)
where H(z) is the Hubble function evolution in a given cosmological

scenario alternative to ACDM, and E,cpwm(z) is the dimensionless
Hubble parameter of ACDM paradigm. This diagnostic measures a

MNRAS 512, 5122-5134 (2022)

possible deviation of Hy from its ACDM value. Concerning a flat
ACDM, a non-constant path of HO(z) within error bars suggests a
modification of the Planck-ACDM scenario. In Fig. 3, we depict the
obtained results.

As we observe, there is an agreement within 1o between flat-
ACDM cosmology and Kaniadakis cosmology for z 2 0.7 in the A
# 0 case, and for 0.7 < z < 1.3 in the A = 0 case. Additionally,
it is interesting that the current value HO(z = 0) for both models is
consistent with the one obtained by SHOES (Riess et al. 2019), and
that the A # 0 model has a trend to the Planck value in the past
(Aghanim et al. 2020). This is another verification that the scenario
of Kaniadakis horizon-entropy cosmology may offer an alleviation
to the Hy tension. Nevertheless, to further investigate whether both
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Figure 3. The HO(z) diagnostic for Kaniadakis horizon-entropy cosmology
with A # O (upper panel) and A = 0O (lower panel). We have used the
bound obtained from the joint analysis, and the shaded regions denote the
uncertainties at lo. For completeness, the red square points represent the
results of ACDM cosmology with /1 = 0.6766 and Q2 = 0.3111 (Aghanim
et al. 2020).

Kaniadakis models can alleviate the Hubble tension, a parameter
estimation using the linear perturbation equations together with CMB
data should be performed.

We close this section by investigating one important process in
every cosmological scenario: the big bang nucleosynthesis (BBN),
since the production of light elements in the early Universe can be
affected in non-standard cosmologies (Pospelov & Pradler 2010;
Barrow, Basilakos & Saridakis 2021). Considering that the freeze-
out of the light elements occurs when the weak interaction rates are
lower than H(z), a simple test to guarantee that the BBN is not spoiled
is to require that the deviation §H(z) with respect to the standard
Hubble expansion rate at the BBN epoch should be small. Although
in the Friedmann equations mentioned above, we have not included
a radiation component, this can be added and we can perform the
analysis by expanding E4 around f = 0 in equation (39) (resp.
equation 47) and neglecting the fourth-order error terms, resulting

in
o) 0B Too 3, o072
VaRe+ 1 +al+ o [szm(z+1> +QA] JA#£0
—— —
E(Z) _ value fromACDM ﬁz _;'/uzrrediun
Q@ + Y2+ TR e+ Aa=0

R e ——
value fromACDM

correction

(53)
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Hence, we can study both Kaniadakis models (A # 0 and A = 0)
at z ~ 10'° (approximately BBN era). We find that for A # 0, the
model is consistent with the BBN constraints, since the correction
term at z ~ 10'° is of the order of ~10~*°, dominating the standard
cosmology and not producing significant effects on the formation
of light elements. In the case A = 0, the correction is larger,
and calculations at z ~ 10'° are of the order of ~107>. However,
such corrections are still subdominant, allowing the production of
light elements. A further analysis could be performed following
Capozziello, Lambiase & Saridakis (2017), Barrow et al. (2021),
and Asimakis et al. (2021).

4 DYNAMICAL SYSTEM AND STABILITY
ANALYSIS

In this section, we perform a full dynamical system analysis in order
to investigate the global dynamics of cosmological scenarios, and
obtain information on the Universe evolution independently of the
initial conditions. In the dynamical system formulation, one starts
from a local analysis of the differential equation x'(7) = X(x),
where x is the state vector, and T a convenient time variable, near an
equilibrium point x = ¥, and progressively extends the investigated
regions of the phase and of the parameter space. Assuming that the
vector field X (x) has continuous partial derivatives, the process of de-
termining the local behaviour is based on the linear approximation of
the vector field X (x) &~ DX (x)(x — X¥) where D X (¥) is the Jacobian
of the vector field at the equilibrium point ¥, which is referred to as the
linearization of the dynamical equations at the equilibrium point. In
this neighbourhood, we acquire the system x’(7) = DX (¥)(x — X).
Each of the equilibrium points can be classified according to the
real parts of the eigenvalues of DX (¥) (if none of these are zero).
Thus, this approach provides a general description of the phase
space of all possible solutions of the system, their equilibrium points
and stability, as well as the asymptotic solutions (Ferreira & Joyce
1997; Wainwright & Ellis 1997; Copeland, Liddle & Wands 1998;
Perko 2000; Coley 2003; Copeland, Sami & Tsujikawa 2006; Chen,
Gong & Saridakis 2009; Giambo & Miritzis 2010; Cotsakis & Kittou
2013; Papagiannopoulos, Basilakos & Saridakis 2022). If some real
parts of the eigenvalues are zero, the equilibrium point is non-
hyperbolic, and the analysis through linearization fails. Then, we
use numerical tools for the analysis.

In the following subsections, we perform the global dynamical
system analysis for the two cases, namely A # 0 and A = 0.

4.1 Casel: A #0

Defining the dimensionless variables 6, T as

6 = arctan (1 — 87TG'0DE) , {—E, E} , T = o s
3H?2 22 H + H,
(54
with
871G pm
Qm = R tan (6), (55)
then equation (10) becomes
A (-TP {cosh [%] —tan(@)} 8
sy = — Bshi [ :|
3H; T2 (1—Ty
(56)
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Table 2. The equilibrium points of the dynamical system (58) and (59) of
Kaniadakis horizon-entropy cosmology with A # 0. We use dS to denote
the de Sitter, dark-energy-dominated solutions, and M to denote the matter-
dominated ones.

Label 6 T Existence Stability
dasy 271C] Arbitrary cr e’ Stable
asy 271y 0 ez Stable
dast) 271y 1 ez Stable
das_ (1 + 2¢1) Arbitrary cre”? Stable
ds® (1 + 2¢1) 0 ez Stable
asy (1 + 2¢1) 1 ez Stable
M@ 27C) — 37” 0 cr e’ Unstable
Mﬂro) 27| + % 0 cre’ Unstable
M 2mey — 3 1 c1eZ,p=0 Saddle
MY 2mer + F 1 c1€Z,p=0 Saddle

It proves convenient to introduce the new time derivative as

,_df_cosh(g—lfz) .
fl=ot = S 57

Therefore, we finally extract the dynamical system

0/(x) = 3sin(0) { sin(®) — cos(0) cosh |- 58
(r) = sm(){sm() cos®) cosh | 53 | 1+ o9

T'(t) = %(1 — I)T tan(9). (59)

Note that this system diverges at 7= 1 and at 0 = £7/2.

Lastly, the deceleration parameter (24) is written as

. H 3 BT?
q:=—1— e =—1+ Etan(@)sech {m} .

Note that, for an expanding universe (H > 0), we have T € [0, 1],
while 6 is a periodic coordinate with period 7t, and thus we can set
0 € [ —m/2, /2] (modulo a periodic shift c7t, ¢ € Z). Moreover, the
physical condition 0 < €2,,, < 1 implies that the region of physical
interest is 6 € [0, /4] (modulo a periodic shift c7t, ¢ € Z). The
non-physical region Q, > 1 is 6 € (7/4, 7/2] (modulo a periodic
shift ¢, ¢ € Z). Hence, we have obtained a global phase-space
formulation. For the representation of the flow of the system (58)
and (59), we integrate in the variables 7, # and project in a compact
set using the ‘cylinder-adapted’ coordinates

(60)

x = cos(0),
S ¢ y=sin(9), 61)
=T,

with 0 < T <1, 6 € [ —m, 7], with inverse § = arctan (y/x), and
T = z. Thus, the region of physical interest is 6 € [0, 7t/4], modulo a
periodic shift ¢, ¢ € Z.

We proceed by extracting the equilibrium points and characterizing
their stability. There are two equivalent hyperbolic equilibrium points
M for which g = 1/2,1.e. they are associated with matter domination,
and two equilibrium points dS. corresponding to dark-energy-
dominated de Sitter solutions for which ¢ = —1. The equilibrium
points of the dynamical system (58) and (59) of Kaniadakis horizon-
entropy cosmology with A # 0 are presented in Table 2.

In Fig. 4, we display an unwrapped solution space of the system
(58) and (59) (upper panel), and the projection over the cylinder S,
defined in Cartesian coordinates (x, y, z) by equation (61), for the
best-fitting value f§ = —0.011 obtained through the observational
analysis. For the points that are non-hyperbolic, their stability is
analysed numerically. The two dashed lines, indicated by dS_ (blue)

MNRAS 512, 5122-5134 (2022)
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Figure 4. Phase-space plot of the dynamical system (58) and (59) of
Kaniadakis horizon-entropy cosmology with A # 0, for the best-fitting value
of Kaniadakis parameter obtained by the observational analysis, namely for
B =—0.011. Upper panel: unwrapped solution space. Lower panel: projection
over the cylinder S defined in Cartesian coordinates (x, y, z) through equation
(61). At late times, the Universe results in a dark-energy-dominated, de Sitter
solution, while the past attractor is the matter-dominated epoch.

and dS (red), are the late-time de Sitter attractors. The early-time
attractors are Mf ) for which g = 1/2, and they correspond to matter-
dominated solutions. Hence, at late times, the Universe results in
a dark-energy-dominated solution, while the past attractor of the
Universe is the matter-dominated epoch. At the intersection of the
invariant set 7 = 1 with the singular lines 6 = +7/2, we obtain
the equilibrium points L. Considering that equations (58) and (59)
diverge at L., we should introduce suitable variables for the analysis.

For the analysis at 7= 1, it proves convenient to define the variable

BIT2 17
¢={1+exp[m}} ,® €0, 1], (62)

2202 1snBny z| uo Jasn AjIsiaAlun jeuonen ueiseing AoAjwng “N 7 Aq £68€659/2Z1S/b/2 | G/elonie/Seiuw/woo dnooiwapeoe//:sdiy woll papeojumoq


art/stac795_f4.eps

_r  _=x i z
2 4 0 4 2
1\\>T> --———<—— ’1
\\\

0
0

Figure 5. Phase-space plot of the system (64)—(65) of Kaniadakis horizon-
entropy cosmology with A # 0, for dust matter. The late attractor corresponds
to # = 0, and thus to a dark-energy-dominated solution with Qpg = 1.

as well as the time rescaling

4
==

df _ tanh’ (55r) + 1

' 1— @)Y= = . 63
f ( ) a AH ! (63)
Hence, using also the variable 6 from equation (54), we finally obtain
the autonomous system

0'(¢) = —% sin(0) [2(® — 1)P(sin(f) + cos(0)) + cos(0)], (64)

@'(2) = 3(1 — ®)>P? tan(d) In[®/(1 — D)]. (63)

In Fig. 5, we depict the phase-space flow of the system (64)
and (65). Asymptotically, & — 0 and & tends to a constant
®,. Therefore, the late attractor corresponds to the dark-energy-
dominated solution with Qpg = 1. The current values ®¢ = 1/(e/fl +
1), 6 = arctan (Q) lead to the de Sitter solution a(t) = et ~1v).,

4.1.1 Heteroclinic sequences

In the phase portrait of a dynamical system, a heteroclinic orbit is a
path in phase space that joins two different equilibrium points. If the
equilibrium points at the start and end of the orbit are the same, the
orbit is a homoclinic orbit (Guckenheimer & Holmes 1983).

From the above analysis, we can see that the invariant sets
T = 0 and 1 are of interest in the determination of possible
heteroclinic sequences. The direction of the flow can be determined
by considering the monotonic function

T , 3tan(0)
o MO=

If tan (0) < 0, the orbits move from 7' = 1 to 0, and if tan () > 0,
the orbits move from 7' = 0 to 1. In the invariant manifold 7= 0 (H
— 00), the dynamics is given by the 1D flow

M, =

M. (66)

0'(r) = 3sin(0) (sin(¥) — cos(H)). (67)

In Fig. 6, we present the 1D dynamical system (67), in which we can
see the heteroclinic sequences Mﬁ» — de) and M — as©.
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Figure 6. Phase-space diagram of the 1D dynamical system (67) of Kani-
adakis horizon-entropy cosmology with A # 0, for dust matter and any value
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Figure 7. Phase-space diagram of the 1D dynamical system (68) of Kani-
adakis horizon-entropy cosmology with A # 0, for dust matter and any value

B.

Similarly, analysing the 1D flow in the invariant set 7 = 1, which
corresponds to @ = 0, we find that the dynamics on this invariant set
is given by the 1D dynamical system

0'(¢) = —% sin(6) cos(8), (68)

which has a behaviour shown in Fig. 7, where the heteroclinic
sequences L, — d SEr') and L_ — dS" are presented. Finally, to
find heteroclinic sequences Mf) — dSm, the intersection of the
unstable manifold of M(io ) with the stable manifold of d S(il ) should
be analysed. Since the former is R?, then it is required to examine
the stable manifold of dS'". This is given locally by the graph

{(®,0) e R*: & = h(6), h(0) =0, 1'(0) =0}, 0] <3, (69)
for 6 > 0O suitably small. By the invariance of the stable manifold,

we obtain the quasi-linear differential equation for 4 given by

% sin()R (0)(2(h(O) — Dh(O)(sin(d) + cos(8)) + cos(8))

+ 3(h(0) — 1)*h(0)” tan(0) In _h® =0 (70)

1 —h() '
Introducing the ansatz i(0) = ;6% + a,0° + a30* + . .., we obtain
a; = 0 at any order. Therefore, the dynamics at the stable manifold
of dSi]) is given by equation (68). Then, it is easy to construct

heteroclinic sequences Mﬁro) —d Sﬂrl), which pass near the singularity
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L. by assuming, for instance, the initial value (®, 0) = (e, /4), ¢ =~
0 and evolving the system back and forward in ¢. Similar arguments
can be used to construct heteroclinic sequences M? — ds™® which
pass near the singularity L_, with the initial value (&, 0) = (e,
—3m/4),e =~ 0

Summarizing, for 0 < 6 < 71/2 (the physical regionis 0 <6 < 7/4),
there exist the heteroclinic sequences Mf)(Qm — 1,H - o0) —
L (Qn — +00, H— 0) — dS\"(de Sitter, @, — 0, H — 0)
and Mﬁ)) — de)(de Sitter, Q,, — 0, H — 00), and in the region
—m < 6 < —m/2 (the physical region is —m < 6 < —3m/4),
there exist the heteroclinic sequences M@(Qm — 1,H —> 00) —>
L_(Qy, — —00, H—> 0) —> dS(_l)(de Sitter, Q,, — 0, H — 0)
and M© — dS(,O)(de Sitter, 2, — 0, H — o0).

4.1.2 Bounce and a turnaround

Another interesting cosmological possibility is the possible existence
of a bounce and a turnaround (Saridakis 2009; Cai, Gao & Saridakis
2012; Zhu et al. 2021). Let us assume that, for the state vector (a, H,
R), the field equations can be written as

i =aH, n
= (R-1287), (72)
R =g(a, H, R), (73)

such that the function g(a, H, R) satisfies g(a, H, R) = —g(a, —H,
R). Hence, the system (71)—(73) is invariant under time inversion
t— —tif also H— —H and R—R, and by definition a > 0. Those
solutions can be related to symmetric cyclic solutions with respect
to the origin, chosen to correspond to the possible bounce point
thounce = 0. Therefore, if the bounce exists, the system (71)—(73) is a
reversible system in the sense that it has a reversing symmetry under
time inversion.

Let us consider the simplest case where there is exactly one
bouncing and exactly one turnaround point. Note that both at the
bounce and turnaround points we have H = 0. In this case, the line
connecting these points and corresponding to H = 0 defines a plane
that separates all points on the trajectory in this phase space to the
ones corresponding to either the expanding (H > 0) or contracting (H
< 0) phase. As discussed in Pavlovi¢ & Sossich (2021), it is natural
that in cyclic models the value of the Ricci scalar would approach
its maximum around the bounce and since H > 0, from equation
(72), it follows that this maximum Ricci scalar value is positive, and
moreover that H = 0 at the bounce.

In summary, at the bounce, we have R = Ryounce > 0, H = 0,
and @ = amin. The bounce is then followed by a phase in which
H>0,H>0,a>0,and R < 0. Then, the Universe enters the
phase characterized by H < 0 and approaches the turnaround point,
which is determined by H = 0, @ = dmax, and R = Rymaround < 0,
where the last condition follows from equation (72).

To obtain g(a, H, R) in equation (73), we use equations (8), (9),
(11), (12), and (14), where for simplicity we focus on the dust case.
Therefore, we obtain

R = 6H + 12H* = —24ntGppg

2
= 3{ — 881G pm [sech (ﬁ;o ) — 1}
2 2
+3B Hjshi <I}{3f> —3H? {cosh (if;) - 1] + A}.

(74)
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Introducing the dimensionless quantities £ = H% and R = and

_R_
12H2°
using z as the independent variable, we extract the general system
for (a, E, R):

da 2
= - 75
i a, (75)
dE a
— =-2(R-E* —, 76
dz ( ) E (76)
dR 9ﬁ§2(°)2tanh (L) sech® (£)

. n
dz 4E4a’

Finally, in order to examine whether the above requirements are
fulfilled in the present scenario, we use the best-fitting values g =
—0.011 and Qf;)) = 0.283 in equations (75)—(77), and we find

d
(TZ =—d, (78)
dE a

= ~2(R - E?) = (79)
dR _ 0.0019822tanh (“%1) sech® (231)

@ T E'd’ | (80)

In the case of dust matter and A # 0, this system cannot satisfy the
above requirements, and hence the present scenario cannot exhibit
bounce and turnaround solutions.

4.2 Casell: A =0

In the case A = 0, equation (10) becomes

871G P 37[Ksh1 K
G Pm (GHZ) cosh 7 1)
3H? 3GH*? GH?

This expression is used as a definition of py,. If B # 0, and rescaling
the time derivative d/dv = (1 — T)d/dt, we obtain

D PR PT° N Sppog (L6
T'(v) = E(1 — T)“T cosh ((1 T)2) - EﬂT shi ((1 T)2)
(32)

The equilibrium points of equation (82) are 7 = 0, which is
unstable, and the equilibrium point 7' = 7., where T, is a solution
of the transcendental equation (1 — 7.)*cosh (BT2/(1 — T.)?) —
BT2shi (T?B/(1 — T.)*) =0,0 < T, < 1, corresponding to the de
Sitter solution a(?) o eHot(T%fl), is stable. In Fig. 8, we depict a
phase-space plot of the 1D dynamical system (82) of Kaniadakis
horizon-entropy cosmology with A = 0, for dust matter, and the join
value B = 1.161. Note that all orbits originate from the invariant
subset 7' = 0, classically related to the initial singularity with H —
oo. The late-time attractor is 7= T, ~ (0.521, and it corresponds to
a de Sitter solution.

Finally, in order to examine whether the present scenario exhibits
a bounce, we use the best-fitting values 8 = 1.161 and Q¥ = 0.326
in equations (75)—(77), and we find

da 5

@ _ _ 83
i as, (83)
dE a

— =-2(R—-E?) —, 84
dz ( ) E (84)
dR _ 0.277619 tanh (148 sech® (143!) (&5)
dz E*a’ ’

In the case of dust matter and A = 0, we deduce that the system
cannot fulfil the bounce requirements, and therefore it cannot exhibit
bounce and turnaround solutions.
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Figure 8. Phase-space diagram of the 1D dynamical system (82) of Ka-
niadakis horizon-entropy cosmology with A = 0, for dust matter and for
the best-fitting value of Kaniadakis parameter obtained by the observational
analysis, namely for 8 = 1.161. The physical region is 0 < 7 < 1. The
equilibrium point 7' = 0 is unstable, dominated by dark energy, and the de
Sitter equilibrium point 7'= T, ~ 0.521 is stable.

5 SUMMARY AND DISCUSSION

This work was devoted to explore Kaniadakis horizon-entropy
cosmology, which arises from the application of the gravity-
thermodynamics conjecture using the Kaniadakis modified entropy.
The resulting modified Friedmann equations contain extra terms
that constitute an effective dark energy sector. Moreover, we used
data from OHD, SNIa, HIIG, SLSs, and BAO observations, and
we applied a Bayesian MCMC analysis in order to construct the
likelihood contours for the model parameters.

Regarding the Kaniadakis parameter §, we found that it is
constrained around 0, namely around the value in which standard
Bekenstein—Hawking is recovered. Furthermore, the present matter
density parameter Q( is consistent with the expected value from
the ACDM scenario, having a lower value for the A # 0 case and a
slightly higher value for the A = 0 case.

However, the interesting result comes from the constraint on the
normalized Hubble parameter 4. In particular, for A # 0, we extracted
h = 0.70870:512, while for A = 0, we found & = 0.71575:9!2. Thus,
the obtained value of H, for A # 0 deviates 2.67¢ from the Planck
value and 1.740 from the SHOES one, while in the A = 0 case, the
deviation is 30 from the Planck value and 1.360 from the SHOES
one. Additionally, in order to verify this result in an independent way,
we performed the H0(z) diagnostic. Hence, our analysis reveals that
Kaniadakis horizon-entropy cosmology is an interesting candidate
to alleviate the Hj tension problem. This is one of the main results
of this work.

We proceeded by investigating the cosmographic parameters,
namely the deceleration and jerk ones, by using the data in order
to reconstruct them in the redshift region 0 < z < 2.5. As we
showed, the transition from deceleration to acceleration happens
at zr = 0.7157004% for the A # 0 case and at zr = 0.65270:037 for
the A = 0 case, in agreement within 1o with that found in Herrera-
Zamorano, Hernandez-Almada & Garcia-Aspeitia (2020) for ACDM
cosmology. Furthermore, we applied the AICc and BIC information
criteria, and we found that although AICc suggests that A # 0 model
and ACDM are statistically equivalent in the joint analysis, BIC
indicates that there is strong evidence against the candidate model.
Lastly, applying the DIC criterion, we found that the A # 0 case
and ACDM are statistical equivalent for BAO, they have a moderate
tension for OHD and SLS, and a strong tension for HIIG and SNIa
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data sets, while the A 7 0 case and ACDM are statistical equivalent
for all data sets.

Finally, we performed a detailed dynamical system analysis,
providing a general description of the phase space of all possible
solutions of the system, their equilibrium points and stability, as well
as the late-time asymptotic behaviour. As we showed, the Universe
past attractor is the matter-dominated epoch, while at late times, the
Universe results in the dark-energy-dominated solution, for both A =
0 and A # 0 cases. Moreover, we showed that the scenario accepts
heteroclinic sequences, but it cannot lead to bounce and turnaround
solutions.

In summary, the scenario of Kaniadakis horizon-entropy cosmol-
ogy exhibits very interesting phenomenology and is in agreement
with observational behaviour. Hence, it can be an interesting candi-
date for the description of nature.
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