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A B S T R A C T 

We study the scenario of Kaniadakis horizon-entropy cosmology, which arises from the application of the gravity- 
thermodynamics conjecture using the Kaniadakis modified entropy. The resulting modified Friedmann equations contain extra 
terms that constitute an ef fecti ve dark energy sector. We use data from cosmic chronometers, Type Ia supernova, H II galaxies, 
strong lensing systems, and baryon acoustic oscillation observations, and we apply a Bayesian Markov chain Monte Carlo 

analysis to construct the likelihood contours for the model parameters. We find that the Kaniadakis parameter is constrained 

around 0, namely around the value where the standard Bekenstein–Hawking is reco v ered. Concerning the normalized Hubble 
parameter, we find h = 0 . 708 

+ 0 . 012 
−0 . 011 , a result that is independently verified by applying the H 0( z) diagnostic and, thus, we 

conclude that the scenario at hand can alleviate the H 0 tension problem. Regarding the transition redshift, the reconstruction of 
the cosmographic parameters gives z T = 0 . 715 

+ 0 . 042 
−0 . 041 . Furthermore, we apply the Akaike, Bayesian, and deviance information 

criteria, and we find that in most data sets the scenario is statistical equi v alent to � cold dark matter one. Moreo v er, we e xamine 
the big bang nucleosynthesis, and we show that the scenario satisfies the corresponding requirements. Additionally, we perform 

a phase-space analysis, and we show that the Universe past attractor is the matter-dominated epoch, while at late times the 
Universe results in the dark-energy-dominated solution. Finally, we show that Kaniadakis horizon-entropy cosmology accepts 
heteroclinic sequences, but it cannot exhibit bounce and turnaround solutions. 

Key words: cosmological parameters – dark energy. 
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 I N T RO D U C T I O N  

osmology is one of the most exciting adventures in the human
ndea v our: the understanding of the origin, evolution, and future
f our Universe by combining the physics at micro- and macro-
cales in a joint frame work. In particular, the Uni verse acceleration
s one of the most important puzzles. Disco v ered by the Supernovae
eam, through Type Ia supernovae (SNIa; Riess et al. 1998 ), it is
lso confirmed by the acoustic peaks of the cosmic microwave
ackground (CMB) radiation (Spergel et al. 2003 ), and recently
ested with large-scale structure measurements (Nadathur et al.
020 ). Tackling the Universe acceleration is indeed a complicated
ssue due to the attractive nature of gravity in the general relativity
GR) framework. The first approach on its explanation is through
 E-mail: ahalmada@uaq.mx 

e  

c  

t  

Pub
he addition of the cosmological constant (CC; Carroll 2001 ). Thus,
sing the continuity equation and assuming a constant energy density
 ̇ρ = 0), it is possible to conclude that the equation of state (EoS)
s w = −1, which is in concordance with what is expected for a
uid that accelerates the Universe. Another main characteristic is

hat the energy density of the CC must be subdominant in order
o obtain a late and non-violent acceleration. From the quantum
eld theory viewpoint, the CC can be explained by the addition of
uantum vacuum fluctuations (QVF) associated with the space–time.
herefore, the expansion of space–time implies an increase of QVF,
aintaining a constant energy density. Ho we ver, when we calculate

he energy density of the QVF, the result is in complete disagreement
ith the observed one (see Zel’dovich, Krasinski & Zeldovich 1968 ;
einberg 1989 ), this is the so-called fine tuning problem (Addazi

t al. 2021 ). In addition to the CC problem, a 4.2 σ tension in the
urrent Hubble parameter value ( H 0 ) measured by Supernova H 0 for
he Equation of State (SH0ES) collaboration (Riess et al. 2021 ) and
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he one obtained by Planck collaboration under the � cold dark matter 
 � CDM) scenario (Aghanim et al. 2020 ) has been recently observed.

The abo v e-mentioned problem that afflicts the understanding 
f the CC in this framework has driven the community to pro-
ose other approaches like scalar fields, dynamical dark energy, 
iscous fluids, Chaplygin gas (Hern ́andez-Almada et al. 2019 ) or
odifications to GR such as unimodular gravity (Garc ́ıa-Aspeitia 

t al. 2019 , 2021 ), Einstein–Gauss–Bonnet (Garc ́ıa-Aspeitia & 

ern ́andez-Almada 2021 ), Brane Worlds (Garcia-Aspeitia et al. 
018 ), among others (see Motta et al. 2021 ; Saridakis et al. 2021 , for
 compilation of the mentioned previous models). Despite the fact 
hat we can have numerous models and scenarios describing the late- 
ime acceleration, at the end of the day, the detailed confrontation 
ith observations, alongside theoretical consistency, will be the main 
ethod for their validation. 
One interesting alternative to investigate the dynamics of the 

niverse is the gravity-thermodynamics approach (Jacobson 1995 ; 
admanabhan 2005 , 2010 ). This takes advantage of the first law
f thermodynamics and the standard Bekenstein–Hawking entropy–
rea relation for black holes, which applied to the apparent cosmo- 
ogical horizon leads to the Friedmann equations (Frolov & Kofman 
003 ; Cai & Kim 2005 ; Akbar & Cai 2007 ; Cai & Cao 2007 ).
ence, the application of this conjecture with various alternative 

ntropy relations leads to modified Friedmann equations whose 
dditional terms can source the cosmic acceleration (Akbar & Cai 
006 ; P aranjape, Sarkar & P admanabhan 2006 ; Cai & Cao 2007 ;
heykhi, Wang & Cai 2007 ; Cai & Ohta 2010 ; Jamil, Saridakis &
etare 2010a,b ; Sheykhi 2010a , b , 2018; Wang et al. 2010 ; Gim,
im & Yi 2014 ; Fan & Lu 2015 ; Lymperis & Saridakis 2018 ;
aridakis 2020 ). 
One interesting class of extended entropies arises through general- 

zations for the Boltzmann–Gibbs statistics. In particular, one modi- 
es the classical entropy of a system given by S = −k B 

∑ 

i p i ln p i ,
here p i is the probability of a system to be within a microstate,

hrough a non-e xtensiv e analysis resulting into the Tsallis entropy 
Tsallis 1988 ; Lyra & Tsallis 1998 ), through quantum-gravitational 
onsiderations resulting into Barrow entropy (Barrow 2020 ), or 
hrough relativistic extensions resulting into Kaniadakis entropy 
Kaniadakis 2002 , 2005 ). Hence, the application of the gravity- 
hermodynamics conjecture using the abo v e-modified horizon en- 
ropy gives rise to modified cosmological scenarios. In Lymperis & 

aridakis ( 2018 ), this was performed in the framework of Tsallis
ntropy, in Saridakis ( 2020 ), Saridakis & Basilakos ( 2021 ), Leon
t al. ( 2021 ), and Barrow, Basilakos & Saridakis ( 2021 ), it was
pplied for the Barrow entropy case, and recently (Lymperis, Basi- 
akos & Saridakis 2021 ), it was used in the Kaniadakis entropy
rame. 

In this work, we investigate Kaniadakis horizon-entropy cosmol- 
gy by confronting it to observational data from cosmic chronome- 
ers, SNIa, H II galaxies (HIIG), strong lensing systems (SLSs), and 
aryon acoustic oscillation (BAO) observations. Additionally, we 
erform a complete dynamical system analysis in order to extract 
nformation of the local and global features of the cosmological 
volution. 

The outline of the paper is as follows: Section 2 introduces 
he framework of the Kaniadakis cosmology. In Section 3.1 , we 
nfer the cosmological parameter under the Kaniadakis model using 
ve observational data sets mentioned above. Section 4 presents a 
tability analysis around the equilibrium points of the dynamical 
ystem under the Kaniadakis cosmology . Finally , we discuss and 
ummarize our results in Section 5 . From now on, we use natural
nits in which � = k B = c = 1. 
 K A N I A DA K I S  H O R I Z O N - E N T RO P Y  

O S M O L O G Y  

n this section, we present the scenario of Kaniadakis horizon- 
ntropy cosmology (Lymperis et al. 2021 ), namely the modified 
riedmann equations arising from the application of the gravity- 

hermodynamics conjecture using the extended Kaniadakis entropy. 
Kaniadakis entropy is a one-parameter generalization of the 

lassical entropy, given as S K = −k B 
∑ 

i n i ln { K } n i (Kaniadakis 
002 , 2005 ), with k B the Boltzmann constant and where ln { K } x =
 x K − x −K ) / 2 K . In such a framework, the dimensionless parameter
1 < K < 1 quantifies the relativistic deviations from standard

tatistical mechanics, and the latter is reco v ered in the limit K → 0.
aniadakis entropy can be expressed as (Abreu et al. 2016 , 2018 ;
breu & Ananias Neto 2021 ) 

 K = −k B 

W ∑ 

i= 1 

P 

1 + K 

i − P 

1 −K 

i 

2 K 

, (1) 

ith P i the probability of a specific microstate and W the total
onfiguration number. When we apply it in the black hole framework,
e obtain (Moradpour, Ziaie & Kord Zangeneh 2020 ; Drepanou et al.
021 ; Lymperis et al. 2021 ) 

 K = 

1 

K 

sinh ( KS BH ) , (2) 

here 

 BH = 

1 

4 G 

A, (3) 

s the usual Bek enstein–Hawking entrop y, with A the horizon area
nd G the gravitational constant. Hence, in the limit K → 0, we
eco v er Bekenstein–Ha wking entropy. 

Let us now apply the gravity-thermodynamics conjecture using 
aniadakis entropy. We consider a flat homogeneous and isotropic 
riedmann–Robertson–Walker metric of the form 

 s 2 = −d t 2 + a 2 ( t) 
(
d r 2 + r 2 d �2 

)
, (4) 

here d �2 ≡ d θ2 + sin 2 θd ϕ 

2 is the solid angle, and a ( t ) the scale
actor. In this setup, the first law of thermodynamics is interpreted in
erms of the heat/energy that flows through the apparent horizon of
he Universe (Jacobson 1995 ; Padmanabhan 2005 , 2010 ), which in
he case of flat geometry is just (Bak & Rey 2000 ; Frolov & Kofman
003 ; Cai & Kim 2005 ; Cai, Cao & Hu 2009 ) 

 a = 

1 

H 

, (5) 

here H = ȧ /a is the Hubble parameter (dots denote deri v ati ves
ith respect to t ). Concerning the horizon temperature, this is given
y the standard relation (Gibbons & Hawking 1977 ): 

 = 

1 

2 πr a 
. (6) 

ence, the first law of thermodynamics is just −d E = T d S , where
d E = A ( ρm 

+ p m 

) Hr a d t is the energy flow through the horizon
uring a time interval d t in the case of a Universe filled with a matter
erfect fluid with energy density ρm 

and pressure p m 

(Cai & Kim
005 ). Differentiating equation ( 2 ), we obtain 

 S K = 

8 π

4 G 

cosh 
(
K 

π

GH 

2 

)
r a ̇r a d t, (7) 

here we have used that A = 4 πr 2 a = 4 π/H 

2 . 
Inserting equations ( 3 ), ( 6 ), and ( 7 ) into the first law of ther-
odynamics, alongside with the relation ṙ a = −Ḣ /H 

2 , we acquire 
MNRAS 512, 5122–5134 (2022) 
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Lymperis et al. 2021 ) 

− 4 πG ( ρm 

+ p m 

) = Ḣ cosh 
[ 
K 

π

GH 

2 

] 
. (8) 

hus, using the matter conservation equation 

˙m 

+ 3 H ( ρm 

+ p m 

) = 0 , (9) 

he integration of equation ( 8 ) leads to 

8 πG 

3 
ρm 

= H 

2 cosh 
[ 
K 

π

GH 

2 

] 
− K π

G 

shi 
[ 
K 

π

GH 

2 

] 
− � 

3 
, (10) 

ith � the integration constant and shi ( x) ≡ ∫ x 
0 sinh ( x ′ ) /x ′ d x ′ , a

athematical odd function of x with no discontinuities. 
Equations ( 8 ) and ( 10 ) are the modified Friedmann equations in

he scenario of Kaniadakis horizon-entropy cosmology (Lymperis
t al. 2021 ). As expected, in the limit K → 0, they turn into the
tandard ones. We can rewrite them as 

 

2 = 

8 πG 

3 
( ρm 

+ ρDE ) , (11) 

˙
 = −4 πG ( ρm 

+ ρDE + p m 

+ p DE ) , (12) 

here we have introduced an ef fecti ve dark energy sector, with
nergy density and pressure, respectively, of the form 

DE = 

3 

8 πG 

{
� 

3 
+ H 

2 

[
1 − cosh 

(
πK 

GH 

2 

)]
+ 

πK 

G 

shi 

(
πK 

GH 

2 

)}
, 

(13) 

 DE = − 1 

8 πG 

{
� + (3 H 

2 + 2 Ḣ ) 

[
1 − cosh 

(
πK 

GH 

2 

)]

+ 

3 πK 

G 

shi 

(
πK 

GH 

2 

)}
. (14) 

herefore, the EoS parameter for the dark energy sector is 

 DE = −1 − 2 Ḣ 

[
1 −cosh 

(
πK 

GH 

2 

)]

×
{

� + 3 H 

2 

[
1 −cosh 

(
πK 

GH 

2 

)
+ 

3 πK 

G 

shi 

(
πK 

GH 

2 

)]}−1 

. 

(15) 

n the general case, the cosmological equations are the two Fried-
ann equations ( 11 ) and ( 12 ), alongside the matter conservation

quation ( 9 ). For convenience, we focus on on the dust case, namely
e consider p m = 0 . It pro v es conv enient to e xpress the equations in

erms of dimensionless variables. Introducing the density parameters 

� 

≡ � 

3 H 

2 
, �m 

≡ 8 πGρm 

3 H 

2 
, (16) 

he normalized Hubble function 

 ≡ H 

H 0 
, (17) 

ith H 0 the Hubble parameter at the present scale factor a 0 , and
efining the dimensionless parameter β as 

≡ K π

GH 

2 
0 

, (18) 

hen, the cosmological equations are expressed as 

′ 
� 

( N ) = 3 �� 

�m 

sech 

(
β

E 

2 

)
, (19) 

′ 
m 

( N ) = 3 �m 

[
�m 

sech 

(
β

E 

2 

)
− 1 

]
, (20) 
NRAS 512, 5122–5134 (2022) 
 

′ ( N ) = −3 

2 
E �m 

sech 

(
β

E 

2 

)
, (21) 

here primes denote deri v ati ves with respect to the e-foldings
umber N = ln ( a / a 0 ) (and thus f ′ = ḟ /H ). Note that using the
bo v e variables, the first Friedmann equation ( 11 ) gives rise to the
onstraint 

shi 

(
β

E 

2 

)
+ E 

2 

[
− cosh 

(
β

E 

2 

)
+ �� 

+ �m 

]
= 0 , (22) 

hich allows us to eliminate �� 

in terms of �m 

and E . Finally, note
hat for the ef fecti ve dark energy density parameter, in the general
ase, we have 

DE = 1 − �m 

= 1 + βshi ( β) − cosh ( β) + �� 

. (23) 

astly, it pro v es conv enient to introduce the deceleration parameter
 ( z), and the cosmographic jerk parameter j ( z), which are defined as

 : = −1 − E 

′ 

E 

, (24) 

 : = q(2 q + 1) − q ′ , (25) 

here j = 1 reco v ers the case of a CC. 
In the scenario of Kaniadakis horizon-entropy cosmology, one may

ave the general integration constant � , which will play the role of
n explicit CC, or one may set it to zero and thus require for the
xtra K -dependent terms to drive the Universe acceleration. Since
he corresponding equation structure (which will be used later for
he Bayesian statistical analysis and the dynamical system approach)
s different in the two cases, we examine them separately in the
ollowing subsections. 

.1 Case I: � �= 0 

n the general case where � �= 0, i.e. �� 

�= 0, we use the constraint
quation ( 22 ) to obtain the reduced dynamical system 

′ 
m 

( N ) = 3 �m 

[
�m 

sech 

(
β

E 

2 

)
− 1 

]
, (26) 

 

′ ( N ) = −3 

2 
E �m 

sech 

(
β

E 

2 

)
. (27) 

his is integrable, with 

m 

( E) = cosh 

(
β

E 

2 

)
+ 

− cosh ( β) − βshi 
(

β

E 2 

) + βshi ( β) + �(0) 
m 

E 

2 
, 

(28) 

m 

(1) = �(0) 
m 

, (29) 

nd 

 

′ ( N) = − 3 

2 
E −

3 sech 
(

β

E 2 

) (
− cosh ( β) − βshi 

(
β

E 2 

)
+ βshi ( β) + �

(0) 
m 

)

2 E 

, 

(30) 

here �m 

( N = 0) = �(0) 
m 

and E ( N = 0) = 1. 
Equation ( 30 ) is easily integrated to give 

 N( E) = − ln 

(
1 −

cosh ( β) − E 

2 cosh 
(

β

E 2 

)
+ βshi 

(
β

E 2 

)
− βshi ( β) 

�
(0) 
m 

)
, 

(31) 

ntroducing as a dynamical variable the redshift e N = a = (1 +
) −1 , where z = 0 and a 0 = 1 for current time, and the previous
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quation leads to 

 z + 1) 3 = 1 −
[
cosh ( β) − E 

2 cosh 
(

β

E 2 

) + βshi 
(

β

E 2 

) − βshi ( β) 
]

�
(0) 
m 

. 

(32) 

valuating equation ( 23 ) at present time gives 
(0) 
DE = 1 − �(0) 

m 

= 1 + βshi ( β) − cosh ( β) + �
(0) 
� 

, (33) 

nd combining it with equation ( 32 ) we have 

(0) 
m 

( z + 1) 3 + �
(0) 
� 

= E 

2 cosh 

(
β

E 

2 

)
− βshi 

(
β

E 

2 

)
. (34) 

We mention here that in the general case where � �= 0 from the
bo v e, we obtain the relation between β, �(0) 

m 

, and �(0) 
� 

as 

(0) 
m 

= cosh ( β) − βshi ( β) − �
(0) 
� 

. (35) 

We expand equations ( 33 ) and ( 34 ) up to third order around β =
, resulting in 

(0) 
m 

+ �
(0) 
� 

= 1 − β2 

2 
+ O 

(
β4 

)
, (36) 

nd 

(0) 
m 

( z + 1) 3 + �
(0) 
� 

≈ E 

2 − β2 

2 E 

2 
+ O 

(
β4 

)
. (37) 

ence, we obtain four roots: 

 1 , 2 = ∓

√ 

�
(0) 
m 

( z + 1) 3 + �
(0) 
� 

−
√ 

2 β2 + 

[ 
�

(0) 
m 

( z + 1) 3 + �
(0) 
� 

] 2 
√ 

2 
, 

(38) 

 3 , 4 = ∓

√ 

�
(0) 
m 

( z + 1) 3 + �
(0) 
� 

+ 

√ 

2 β2 + 

[ 
�

(0) 
m 

( z + 1) 3 + �
(0) 
� 

] 2 
√ 

2 
. 

(39) 

olutions E 1 and E 2 are complex, and E 3 is ne gativ e. Thus, the only
hysical solution is E 4 . In the following, instead of using the exact
mplicit formula for E given in equation ( 34 ), we will consider the
pproximation E 4 in equation ( 39 ). 

.2 Case II: � = 0 

n the case where an explicit CC is absent, namely � = 0, i.e. �� 

= 0,
he general system ( 26 ) and ( 27 ) reduces to 

 

′ ( N ) = −3 

2 
E + 

3 βsech 
(

β

E 2 

)
shi 

(
β

E 2 

)
2 E 

. (40) 

he last equation is easily integrated to give 

( E) = −1 

3 
ln 

[ 

E 

2 cosh 
(

β

E 2 

) − βshi 
(

β

E 2 

)
cosh ( β) − βshi ( β) 

] 

, (41) 

hich, using the redshift, implies 

 z + 1) 3 = 

E 

2 cosh 
(

β

E 2 

) − βshi 
(

β

E 2 

)
cosh ( β) − βshi ( β) 

. (42) 

ence, using 

(0) 
m 

= cosh ( β) − βshi ( β) , (43) 

s it arises from equation ( 35 ) for �(0) 
� 

= 0, we obtain 

(0) 
m 

( z + 1) 3 = E 

2 cosh 

(
β

E 

2 

)
− βshi 

(
β

E 

2 

)
. (44) 
xpanding equation ( 44 ) up to third order around β = 0 results in 

(0) 
m 

( z + 1) 3 ≈ E 

2 − β2 

2 E 

2 
+ O 

(
β4 

)
, (45) 

nd thus at present times gives �(0) 
m 

= 1 − β2 

2 + O 

(
β4 

)
. Therefore,

e obtain four roots: 

 1 , 2 = ∓

√ 

�
(0) 
m 

( z + 1) 3 −
√ 

2 β2 + �
(0) 
m 

2 
( z + 1) 6 

√ 

2 
, (46) 

 3 , 4 = ∓

√ 

�
(0) 
m 

( z + 1) 3 + 

√ 

2 β2 + �
(0) 
m 

2 
( z + 1) 6 

√ 

2 
. (47) 

imilarly to the previous case, roots E 1 and E 2 are complex, while E 3 

s ne gativ e. Consequently, the only physical solution is E 4 in equation
 47 ). 

 OBSERVATI ONA L  C O N S T R A I N T S  

n this section, we confront the scenario of Kaniadakis horizon- 
ntropy cosmology with observations. We are interested in extracting 
he bounds on the parameter phase space 
 = { h, �(0) 

m 

, β} and { h ,
} , particularly on the parameter β, which is related to the Kaniadakis
asic parameter K . For convenience, we focus on the physically
nterested case of dust matter, namely we set w m 

= 0. 

.1 Data sets and methodology 

e will employ the most commonly used data sets. 

(i) Observational Hubble data (OHD). The sample contains 31 
osmological-independent measurements of the Hubble parameter 
n the redshift range 0.07 < z < 1.965 from passive elliptic galaxies,
he so-called cosmic chronometers (Moresco et al. 2016 ). 

(ii) Pantheon supernova Type Ia sample (SNIa). We use 1048 data 
oints of the distance modulus, μ( z) SNIa , of high-redshift SNIa in the
edshift range 0.001 < z < 2.3 (Scolnic et al. 2018 ). 

(iii) H II galaxies (HIIG). It contains a total of 181 data points
f the distance modulus μHIIG ( z) estimated from the Balmer line
uminosity–velocity dispersion relation for HIIG spanning the red- 
hift region 0.01 < z < 2.6 (Gonz ́alez-Mor ́an et al. 2021 ). 

(iv) Strong lensing systems (SLSs). We use the sample by Amante 
t al. ( 2020 ), which contains 143 SLSs by elliptical galaxies with
easurements of the redshift for the lens and the source, spectro-

copic velocity dispersion, and the Einstein radius. These quantities 
llow us to construct an observational distance ratio within the region
.5 ≤ D 

obs ≤ 1. 
(v) Baryon acoustic oscillations (BAO). We consider six corre- 

ated data points of the imprint of BAO in the size of the sound
orizon in clustering and power spectrum of galaxies measured by 
erci v al et al. ( 2010 ), Blake et al. ( 2011 ), and Beutler et al. ( 2011 ),
nd collected by Giostri et al. ( 2012 ). 

We w ould lik e to mention here that other cosmological observa-
ions could be included in the parameter estimation too, for instance
he CMB data. To perform such analysis in a robust way, a full
erturbation approach is needed in order to obtain the linear Einstein–
oltzmann equations. Nevertheless, this is beyond the scope of this 
ork. An alternative approach would be to use the distance priors

rom Planck 2018 based on slight deviations from � CDM, such as
he wCDM model (Chen, Huang & Wang 2019 ). Ho we ver, since
his procedure could lead to biased constraints, in the following, we
refer not to use the CMB data set. 
MNRAS 512, 5122–5134 (2022) 
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The inference of the cosmological parameters under Kaniadakis
orizon-entropy cosmology for both scenarios ( � �= 0 and � = 0)
s performed by a Bayesian Markov chain Monte Carlo (MCMC)
pproach and the EMCEE PYTHON module (F oreman-Macke y et al.
013 ). We set 3000 chains with 250 steps each, and consider uniform
riors in the ranges: h : [0.2, 1], �(0) 

m 

: [0 , 1], and β: [ −π, π]. The
urn-in phase is stopped up to obtain convergence according to
he autocorrelation time criterion. Then, we build a Gaussian log-
ikelihood as the figure-of-merit function to minimize through the
quation −2 ln ( L ) χ2 , where χ is the chi-square function given by 

2 
uncorr = 

N dat ∑ 

i 

(D − M 

σD 

)2 

, (48) 

or the samples OHD, HIIG, and SLS because the measurements
re considered to be uncorrelated. N dat is the number of points of
ata set D, σD 

is the estimated uncertainty for each data set, and
 represents the theoretical quantity of that observable based on E 4 

resented in equations ( 39 ) and ( 47 ) for � �= 0 and � = 0 models,
espectively. As SNIa and BAO data sets contain correlated points,
he figure of merit is built as 

2 
corr = � x · C 

−1 · � x T , (49) 

here � x is the difference between the observational and theoretical
uantities, and C 

−1 is the covariance matrix. It is worth mentioning
hat a nuisance parameter is presented in the SNIa data, and it is
onvenient to marginalize over it to reduce the uncertainties. Thus,
he figure of merit for SNIa data is 

2 
SNIa = a + ln 

( e 

2 π

)
− b 2 

e 
, (50) 

here a , b , and e are functions of � x and C 

−1 . For more details on
hese expressions, see Motta et al. ( 2021 ). 

Finally, we perform a joint analysis through the sum of the
unction-of-merits of each data sample, namely 

2 
Joint = χ2 

OHD + χ2 
SLS + χ2 

HIIG + χ2 
SNIa + χ2 

BAO , (51) 

here subscripts indicate the data set under consideration. 

.2 Results 

erforming the full confrontation of the scenario, we construct
he corresponding log-likelihood contours at 68 per cent (1 σ ) and
9 . 7 per cent (3 σ ) confidence level (CL), and we present them in
ig. 1 alongside the one-dimensional (1D) posterior distribution.
oreo v er, in Table 1 , we show the mean values and the uncertainties

t 1 σ CL for the parameters h , �(0) 
m 

, and β for both � �= 0 and � =
 cases. 
As can be seen, the bounds estimated from each data sample are

onsistent among themselves, although the SLS data set provides
o wer v alues for �(0) 

m 

. The joint constraints h = 0 . 708 + 0 . 012 
−0 . 011 ( h =

 . 715 + 0 . 012 
−0 . 012 ) for the case � �= 0 ( � = 0) are consistent at 2.67 σ

3 σ ) with the one estimated from the CMB anisotropies (Aghanim
t al. 2020 ) and at 1.74 σ (1.36 σ ) with the one from SH0ES (Riess
t al. 2019 ). Hence, the scenario of Kaniadakis horizon-entropy
osmology can offer an alleviation to the H 0 tension, providing a
alue in between its local measurements and its indirect estimation
rom the early stages of the Universe. 

Concerning the Kaniadakis parameter, we find that, when � �= 0,
he combination of the data samples constrains β = −0 . 011 + 0 . 515 

−0 . 507 ,
amely β is constrained around 0 as expected, the value in which
aniadakis entropy becomes the standard Bekenstein–Hawking one.
NRAS 512, 5122–5134 (2022) 
o we ver, when � = 0, the joint constraint yields β = 1 . 161 + 0 . 013 
−0 . 013 ,

hich is expected, as we mentioned abo v e, because in the absence
f an explicit CC, one needs a significant deviation from standard
osmology to describe the Universe acceleration. Finally, note that
ue to equation ( 43 ) that holds in the � = 0 case, we acquire a
orrelation between �(0) 

m 

and the Kaniadakis parameter β in the
ower panel of Fig. 1 . 

Let us make a comment on the predicted entropy today, since
his is possible to be calculated through equation ( 2 ). According
o our model, and imposing for the horizon area of our Universe its
resent value, we arrive at the values S K ∼ 1.44 × 10 99 m 

2 kg s −2 K 

−1 

for � �= 0) and S K ∼ 3.15 × 10 99 m 

2 kg s −2 K 

−1 (for � = 0).
n comparison, for the standard Bekenstein–Hawking entropy, we
ave S BH ∼ 2.83 × 10 99 m 

2 kg s −2 K 

−1 ( � �= 0) and S BH ∼
.79 × 10 99 m 

2 kg s −2 K 

−1 ( � = 0). Therefore, the corresponding
atio is S K / S BH � 0.5 for � �= 0 and S K / S BH � 1.12 for � = 0, which
mplies a small difference between Kaniadakis and Bekenstein–
awking entropies. 
Due to the competitive qualities of the fits obtained from both

cenarios, it would be interesting to statistically compare them with
he concordance � CDM cosmology. In order to achieve this, we
pply the standard criteria, namely the Akaike information criterion
orrected for small samples (AICc; Akaike 1974 ; Sugiura 1978 ;
urvich & Tsai 1989 ) and the Bayesian information criterion (BIC;
chwarz 1978 ), since the � �= 0 model contains one extra free
arameter o v er � CDM. The AICc and BIC are defined as AICc =
2 
min + 2 k + (2 k 2 + 2 k) / ( N − k − 1) and BIC = χ2 

min + k ln ( N ), re-
pectively, where χ2 

min is the minimum of the χ2 function, N is the
ize of the data set, and k is the number of free parameters. Following
he rules described in Hern ́andez-Almada et al. ( 2022 ), we find that
 = 0 model and � CDM are statistically equi v alent based on AICc

 � AICc < 4), when the samples are treated separately, but show
trong evidence against (6 < BIC < 10) the scenario when the
oint analysis is applied. On the other hand, although AICc suggests
hat � �= 0 model and � CDM are statistically equi v alent in the
oint analysis, BIC indicates that there is strong evidence against the
andidate model. Additionally, for the two models, we find that the
 = 0 case is preferred by separate data sets, while the � �= 0 case

s statistically preferred for the combined data analysis. 
For completeness, we additionally calculate the deviance informa-

ion criterion (DIC; Spiegelhalter et al. 2002 ; Kunz, Trotta & Parkin-
on 2006 ; Liddle 2007 ). This is defined as DIC = D( ̄θ ) + 2 p D ,
here D( ̄θ) = χ2 ( ̄θ ) is the Bayesian deviation, p D = D̄ ( θ ) − D( ̄θ )

s the Bayesian complexity, which represents the number of ef fecti ve
egrees of freedom, and θ̄ is the mean value of the parameters. The
dvantage of DIC is its use of the full log-likelihood sample instead of
nly the maximum log-likelihood (or minimum χ2 ) as AICc and BIC
o. Based on the Jeffreys scale (Jeffreys 1961 ), for � DIC < 2, both
odels are statistical equi v alent. In contrast, 2 < � DIC < 6 suggests
 moderate tension between models, being the one with lower value
f DIC the best one, and � DIC > 10 implies a strong tension between
he two models. We find that the � �= 0 case and � CDM scenario are
tatistical equi v alent for BAO, the y hav e a moderate tension for OHD
nd SLS, and a strong tension for HIIG and SNIa. On the other hand,
he � �= 0 case and � CDM are statistical equi v alent for OHD, BAO,
IIG, and SNIa. In summary, we confirm the results obtained for the

oint analysis by AICc and BIC for both � �= 0 and � = 0 models.
t is worth mentioning that when a posterior distribution presents a
imodal shape or is asymmetric for a parameter, p D yields ne gativ e
alues and thus DIC may not be a good criterion. This situation is
ainly presented for β in the � �= 0 case in separate data sets. 
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Figure 1. 2D log-likelihood contours at 68 per cent and 99.7 per cent CL, alongside the corresponding 1D posterior distribution of the free parameters, in Kani- 
adakis horizon-entropy cosmology, for � �= 0 (upper panel) and � = 0 (lower panel). We use the various data sets described in the text, as well as the joint analysis. 
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As a next step, we use the constraints from the joint analysis to
econstruct the three cosmographic parameters, namely the Hubble, 
 ( z ), the deceleration, q ( z ), and jerk, j ( z ), parameters according to

quations ( 24 ) and ( 25 ). The cosmic evolution of parameters is shown
 F
n Fig. 2 . Thus, we report the current values of q 0 = −0 . 610 + 0 . 028 
−0 . 035 

 −0 . 708 + 0 . 016 
−0 . 016 ) for the deceleration parameter, and j 0 = 1 . 041 + 0 . 051 

−0 . 036 

1 . 137 + 0 . 014 
−0 . 013 ) for the jerk parameter for the � �= 0 ( � = 0) scenario.

urthermore, the transition redshift between the deceleration and the 
MNRAS 512, 5122–5134 (2022) 
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Table 1. Best-fitting values and their 68 per cent CL uncertainties for Kaniadakis horizon-entropy cosmology 
with � �= 0 (upper panel) and � = 0 (lower panel) employing the data sets: OHD (31 data points), BAO (6 data 
points), SLS (143 data points), HIIG (181 data points), SNIa (1048 data points), and the joint analysis of them. 

Sample χ2 
min h �

(0) 
m 

β � AICc � BIC � DIC 

Case � �= 0 
OHD 19 .25 0 . 699 + 0 . 033 

−0 . 034 0 . 354 + 0 . 072 
−0 . 061 −0 . 004 + 1 . 259 

−1 . 255 7 .6 8 .2 − 4 .5 

BAO 2 .91 0 . 599 + 0 . 272 
−0 . 270 0 . 302 + 0 . 027 

−0 . 023 −0 . 016 + 1 . 596 
−1 . 594 14 .1 1 .9 0 .2 

SLS 216 .52 0 . 608 + 0 . 268 
−0 . 277 0 . 077 + 0 . 064 

−0 . 042 −0 . 006 + 2 . 550 
−2 . 526 5 .5 8 .3 − 5 .2 

HIIG 452 .96 0 . 722 + 0 . 018 
−0 . 018 0 . 408 + 0 . 151 

−0 . 137 0 . 043 + 2 . 510 
−2 . 562 19 .3 22 .3 − 19 .6 

SNIa 1042 .99 0 . 598 + 0 . 273 
−0 . 270 0 . 359 + 0 . 126 

−0 . 055 0 . 009 + 1 . 108 
−1 . 124 9 .0 14 .0 − 14 .6 

Joint 1743 .48 0 . 708 + 0 . 012 
−0 . 011 0 . 283 + 0 . 016 

−0 . 015 −0 . 011 + 0 . 517 
−0 . 507 2 .9 8 .1 0 .5 

Case � = 0 
OHD 14 .56 0 . 701 + 0 . 029 

−0 . 030 0 . 353 + 0 . 057 
−0 . 050 1 . 138 + 0 . 043 

−0 . 051 0 .5 0 .0 0 .0 

BAO 2 .33 0 . 602 + 0 . 272 
−0 . 273 0 . 297 + 0 . 023 

−0 . 021 1 . 186 + 0 . 017 
−0 . 020 3 .6 − 0 .4 − 0 .3 

SLS 212 .86 0 . 596 + 0 . 276 
−0 . 270 0 . 057 + 0 . 031 

−0 . 027 1 . 373 + 0 . 020 
−0 . 023 − 0 .2 − 0 .3 0 .0 

HIIG 435 .64 0 . 721 + 0 . 018 
−0 . 018 0 . 298 + 0 . 050 

−0 . 045 1 . 185 + 0 . 038 
−0 . 043 − 0 .1 − 0 .2 − 0 .1 

SNIa 1036 .48 0 . 596 + 0 . 275 
−0 . 271 0 . 402 + 0 . 023 

−0 . 023 1 . 093 + 0 . 021 
−0 . 021 0 .5 0 .5 0 .5 

Joint 1753 .03 0 . 715 + 0 . 012 
−0 . 012 0 . 326 + 0 . 015 

−0 . 015 1 . 161 + 0 . 013 
−0 . 013 10 .4 10 .4 10 .4 

Figure 2. Upper panel, left to right: reconstruction of the H ( z ), q ( z ), and j ( z ), in Kaniadakis horizon-entropy cosmology with � �= 0. Lower panel: same as 
before for the case � = 0. We have used the bound obtained from the joint analysis, and the shaded regions denote the uncertainties at 1 σ . For completeness, 
the red square points represent the results of � CDM cosmology with h = 0.6766 and �(0) 

m 

= 0 . 3111 (Aghanim et al. 2020 ). 
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cceleration stages is estimated to be z T = 0 . 715 + 0 . 042 
−0 . 041 (0 . 652 + 0 . 032 

−0 . 031 ),
hich is in agreement with the one obtained by � CDM as shown in
ig. 2 . Note that the jerk parameter e volution re veals the dynamical
oS of the ef fecti ve dark energy. 
Finally, to investigate in more detail the Hubble tension, we apply

 new diagnostic, called H 0( z) diagnostic, defined by (Krishnan et al.
021 ) 

 0( z ) = 

H ( z ) 

E � CDM 

( z ) 
, (52) 

here H ( z) is the Hubble function evolution in a given cosmological
cenario alternative to � CDM, and E � CDM 

( z) is the dimensionless
ubble parameter of � CDM paradigm. This diagnostic measures a
NRAS 512, 5122–5134 (2022) 
ossible deviation of H 0 from its � CDM value. Concerning a flat
 CDM, a non-constant path of H 0( z) within error bars suggests a
odification of the Planck- � CDM scenario. In Fig. 3 , we depict the

btained results. 
As we observe, there is an agreement within 1 σ between flat-
 CDM cosmology and Kaniadakis cosmology for z � 0.7 in the �
 0 case, and for 0.7 � z � 1.3 in the � = 0 case. Additionally,

t is interesting that the current value H 0( z = 0) for both models is
onsistent with the one obtained by SH0ES (Riess et al. 2019 ), and
hat the � �= 0 model has a trend to the Planck value in the past
Aghanim et al. 2020 ). This is another verification that the scenario
f Kaniadakis horizon-entropy cosmology may offer an alleviation
o the H 0 tension. Nevertheless, to further investigate whether both

art/stac795_f2.eps
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Figure 3. The H 0( z) diagnostic for Kaniadakis horizon-entropy cosmology 
with � �= 0 (upper panel) and � = 0 (lower panel). We have used the 
bound obtained from the joint analysis, and the shaded regions denote the 
uncertainties at 1 σ . For completeness, the red square points represent the 
results of � CDM cosmology with h = 0.6766 and �(0) 

m 

= 0 . 3111 (Aghanim 

et al. 2020 ). 
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aniadakis models can alleviate the Hubble tension, a parameter 
stimation using the linear perturbation equations together with CMB 

ata should be performed. 
We close this section by investigating one important process in 

very cosmological scenario: the big bang nucleosynthesis (BBN), 
ince the production of light elements in the early Universe can be
ffected in non-standard cosmologies (Pospelov & Pradler 2010 ; 
arrow, Basilakos & Saridakis 2021 ). Considering that the freeze- 
ut of the light elements occurs when the weak interaction rates are
ower than H ( z), a simple test to guarantee that the BBN is not spoiled
s to require that the deviation δH ( z) with respect to the standard
ubble expansion rate at the BBN epoch should be small. Although 

n the Friedmann equations mentioned abo v e, we hav e not included
 radiation component, this can be added and we can perform the
nalysis by expanding E 4 around β = 0 in equation ( 39 ) (resp.
quation 47 ) and neglecting the fourth-order error terms, resulting 
n 

( z) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

√ 

�
(0) 
m ( z + 1) 3 + �

(0) 
� ︸ ︷︷ ︸ 

value from � CDM 

+ 

β2 

4 

[ 
�(0) 

m ( z + 1) 3 + �
(0) 
� 

] −3 / 2 

︸ ︷︷ ︸ 
correction 

, � �= 0 

√ 

�
(0) 
m ( z + 1) 3 / 2 ︸ ︷︷ ︸ 

value from � CDM 

+ 

β2 

4 

[
�(0) 

m 

]−3 / 2 
( z + 1) −1 / 2 

︸ ︷︷ ︸ 
correction 

, � = 0 
. 

(53) 
ence, we can study both Kaniadakis models ( � �= 0 and � = 0)
t z ∼ 10 10 (approximately BBN era). We find that for � �= 0, the
odel is consistent with the BBN constraints, since the correction 

erm at z ∼ 10 10 is of the order of ∼10 −49 , dominating the standard
osmology and not producing significant effects on the formation 
f light elements. In the case � = 0, the correction is larger,
nd calculations at z ∼ 10 10 are of the order of ∼10 −5 . Ho we ver,
uch corrections are still subdominant, allowing the production of 
ight elements. A further analysis could be performed following 
apozziello, Lambiase & Saridakis ( 2017 ), Barrow et al. ( 2021 ),
nd Asimakis et al. ( 2021 ). 

 DY NA M I C A L  SYSTEM  A N D  STABILITY  

NALYSI S  

n this section, we perform a full dynamical system analysis in order
o investigate the global dynamics of cosmological scenarios, and 
btain information on the Universe evolution independently of the 
nitial conditions. In the dynamical system formulation, one starts 
rom a local analysis of the differential equation x ′ ( τ ) = X ( x ),
here x is the state vector, and τ a convenient time variable, near an

quilibrium point x = x̄ , and progressively extends the investigated 
egions of the phase and of the parameter space. Assuming that the
ector field X ( x ) has continuous partial deri v ati ves, the process of de-
ermining the local behaviour is based on the linear approximation of
he vector field X ( x ) ≈ D X ( ̄x )( x − x̄ ) where D X ( ̄x ) is the Jacobian 
f the vector field at the equilibrium point ̄x , which is referred to as the
inearization of the dynamical equations at the equilibrium point . In
his neighbourhood, we acquire the system x ′ ( τ ) = D X ( ̄x )( x − x̄ ) . 
ach of the equilibrium points can be classified according to the

eal parts of the eigenvalues of D X ( ̄x ) (if none of these are zero).
hus, this approach provides a general description of the phase 
pace of all possible solutions of the system, their equilibrium points
nd stability, as well as the asymptotic solutions (Ferreira & Joyce
997 ; Wainwright & Ellis 1997 ; Copeland, Liddle & Wands 1998 ;
erko 2000 ; Coley 2003 ; Copeland, Sami & Tsujikawa 2006 ; Chen,
ong & Saridakis 2009 ; Giambo & Miritzis 2010 ; Cotsakis & Kittou
013 ; Papagiannopoulos, Basilakos & Saridakis 2022 ). If some real
arts of the eigenvalues are zero, the equilibrium point is non-
yperbolic, and the analysis through linearization fails. Then, we 
se numerical tools for the analysis. 
In the following subsections, we perform the global dynamical 

ystem analysis for the two cases, namely � �= 0 and � = 0. 

.1 Case I: � �= 0 

efining the dimensionless variables θ , T as 

= arctan 

(
1 − 8 πGρDE 

3 H 

2 

)
, θ ∈ 

[ 
−π

2 
, 
π

2 

] 
, T = 

H 0 

H + H 0 
, 

(54) 

ith 

m 

: = 

8 πGρm 

3 H 

2 
= tan ( θ ) , (55) 

hen equation ( 10 ) becomes 

� 

3 H 

2 
0 

= 

(1 − T ) 2 
{ 

cosh 
[ 

T 2 β

(1 −T ) 2 

] 
− tan ( θ) 

} 

T 2 
− βshi 

[
T 2 β

(1 − T ) 2 

]
. 

(56) 
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Table 2. The equilibrium points of the dynamical system ( 58 ) and ( 59 ) of 
Kaniadakis horizon-entropy cosmology with � �= 0. We use dS to denote 
the de Sitter, dark-energy-dominated solutions, and M to denote the matter- 
dominated ones. 

Label θ T Existence Stability 

dS + 2 πc 1 Arbitrary c 1 ∈ Z Stable 
dS 

(0) 
+ 2 πc 1 0 c 1 ∈ Z Stable 

dS 
(1) 
+ 2 πc 1 1 c 1 ∈ Z Stable 

dS − π(1 + 2 c 1 ) Arbitrary c 1 ∈ Z Stable 
dS 

(0) 
− π(1 + 2 c 1 ) 0 c 1 ∈ Z Stable 

dS 
(1) 
− π(1 + 2 c 1 ) 1 c 1 ∈ Z Stable 

M 

(0) 
− 2 πc 1 − 3 π

4 0 c 1 ∈ Z Unstable 
M 

(0) 
+ 2 πc 1 + 

π
4 0 c 1 ∈ Z Unstable 

M 

(1) 
− 2 πc 1 − 3 π

4 1 c 1 ∈ Z , β = 0 Saddle 
M 

(1) 
+ 2 πc 1 + 

π
4 1 c 1 ∈ Z , β = 0 Saddle 
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Figure 4. Phase-space plot of the dynamical system ( 58 ) and ( 59 ) of 
Kaniadakis horizon-entropy cosmology with � �= 0, for the best-fitting value 
of Kaniadakis parameter obtained by the observational analysis, namely for 
β = −0.011. Upper panel: unwrapped solution space. Lower panel: projection 
o v er the cylinder S defined in Cartesian coordinates ( x , y , z) through equation 
( 61 ). At late times, the Universe results in a dark-energy-dominated, de Sitter 
solution, while the past attractor is the matter-dominated epoch. 
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t pro v es conv enient to introduce the ne w time deri v ati ve as 

 

′ ≡ d f 

d τ
= 

cosh 
(

πK 

GH 

2 

)
H 

ḟ . (57) 

herefore, we finally extract the dynamical system 

′ ( τ ) = 3 sin ( θ ) 

{
sin ( θ ) − cos ( θ ) cosh 

[
T 2 β

(1 − T ) 2 

]}
, (58) 

 

′ ( τ ) = 

3 

2 
(1 − T ) T tan ( θ ) . (59) 

ote that this system diverges at T = 1 and at θ = ±π/2. 
Lastly, the deceleration parameter ( 24 ) is written as 

 : = −1 − Ḣ 

H 

2 
= −1 + 

3 

2 
tan ( θ ) sech 

[
βT 2 

(1 − T ) 2 

]
. (60) 

Note that, for an expanding universe ( H > 0), we have T ∈ [0, 1],
hile θ is a periodic coordinate with period π, and thus we can set
∈ [ −π/2, π/2] (modulo a periodic shift c π, c ∈ Z ). Moreo v er, the

hysical condition 0 ≤ �m 

≤ 1 implies that the region of physical
nterest is θ ∈ [0, π/4] (modulo a periodic shift c π, c ∈ Z ). The
on-physical region �m 

> 1 is θ ∈ ( π/4, π/2] (modulo a periodic
hift c π, c ∈ Z ). Hence, we have obtained a global phase-space
ormulation. For the representation of the flow of the system ( 58 )
nd ( 59 ), we integrate in the variables T , θ and project in a compact
et using the ‘cylinder-adapted’ coordinates 

S : 

⎧ ⎨ 

⎩ 

x = cos ( θ ) , 
y = sin ( θ ) , 
z = T , 

(61) 

ith 0 ≤ T ≤ 1, θ ∈ [ −π, π], with inverse θ = arctan ( y /x ) , and
 = z. Thus, the region of physical interest is θ ∈ [0, π/4], modulo a
eriodic shift c π, c ∈ Z . 
We proceed by extracting the equilibrium points and characterizing

heir stability. There are two equi v alent hyperbolic equilibrium points
 ± for which q = 1/2, i.e. they are associated with matter domination,

nd two equilibrium points dS ± corresponding to dark-energy-
ominated de Sitter solutions for which q = −1. The equilibrium
oints of the dynamical system ( 58 ) and ( 59 ) of Kaniadakis horizon-
ntropy cosmology with � �= 0 are presented in Table 2 . 

In Fig. 4 , we display an unwrapped solution space of the system
 58 ) and ( 59 ) (upper panel), and the projection o v er the c ylinder S ,
efined in Cartesian coordinates ( x , y , z) by equation ( 61 ), for the
est-fitting value β = −0.011 obtained through the observational
nalysis. For the points that are non-hyperbolic, their stability is
nalysed numerically. The two dashed lines, indicated by dS − (blue)
NRAS 512, 5122–5134 (2022) 
nd dS + 

(red), are the late-time de Sitter attractors. The early-time
ttractors are M 

(0) 
± for which q = 1/2, and they correspond to matter-

ominated solutions. Hence, at late times, the Universe results in
 dark-energy-dominated solution, while the past attractor of the
niverse is the matter-dominated epoch. At the intersection of the

nvariant set T = 1 with the singular lines θ = ±π/2, we obtain
he equilibrium points L ±. Considering that equations ( 58 ) and ( 59 )
iverge at L ±, we should introduce suitable variables for the analysis.
For the analysis at T = 1, it proves convenient to define the variable 

 = 

{
1 + exp 

[ | β| T 2 
(1 − T ) 2 

]}−1 

, � ∈ [0 , 1] , (62) 
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Figure 5. Phase-space plot of the system ( 64 )–( 65 ) of Kaniadakis horizon- 
entropy cosmology with � �= 0, for dust matter. The late attractor corresponds 
to θ = 0, and thus to a dark-energy-dominated solution with �DE = 1. 
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Figure 7. Phase-space diagram of the 1D dynamical system ( 68 ) of Kani- 
adakis horizon-entropy cosmology with � �= 0, for dust matter and any value 
β. 
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s well as the time rescaling 

 

′ ≡ d f 

d ζ
= (1 − � ) 2 

d f 

d η
= 

tanh 2 
(

π| K| 
2 GH 

2 

) + 1 

4 H 

ḟ . (63) 

ence, using also the variable θ from equation ( 54 ), we finally obtain
he autonomous system 

′ ( ζ ) = −3 

2 
sin ( θ ) [ 2( � − 1) � ( sin ( θ ) + cos ( θ )) + cos ( θ ) ] , (64) 

 

′ ( ζ ) = 3(1 − � ) 2 � 

2 tan ( θ ) ln [ �/ (1 − � ) ] . (65) 

In Fig. 5 , we depict the phase-space flow of the system ( 64 )
nd ( 65 ). Asymptotically, θ → 0 and � tends to a constant
 0 . Therefore, the late attractor corresponds to the dark-energy- 

ominated solution with �DE = 1. The current values � 0 = 1/(e | β| +
), θ0 = arctan 

(
�(0) 

m 

)
lead to the de Sitter solution a( t) = e H 0 ( t−t U ) . 

.1.1 Heteroclinic sequences 

n the phase portrait of a dynamical system, a heteroclinic orbit is a
ath in phase space that joins two different equilibrium points. If the
quilibrium points at the start and end of the orbit are the same, the
rbit is a homoclinic orbit (Guckenheimer & Holmes 1983 ). 
From the abo v e analysis, we can see that the invariant sets

 = 0 and 1 are of interest in the determination of possible
eteroclinic sequences. The direction of the flow can be determined 
y considering the monotonic function 

 1 = 

T 

1 − T 
, M 

′ 
1 ( τ ) = 

3 tan ( θ ) 

2 
M 1 . (66) 

f tan ( θ ) < 0, the orbits mo v e from T = 1 to 0, and if tan ( θ ) > 0,
he orbits mo v e from T = 0 to 1. In the invariant manifold T = 0 ( H

 ∞ ), the dynamics is given by the 1D flow 

′ ( τ ) = 3 sin ( θ ) ( sin ( θ ) − cos ( θ ) ) . (67) 

n Fig. 6 , we present the 1D dynamical system ( 67 ), in which we can
ee the heteroclinic sequences M 

(0) 
+ 

→ dS 
(0) 
+ 

and M 

(0) 
− → dS 

(0) 
− . 
Similarly, analysing the 1D flow in the invariant set T = 1, which
orresponds to � = 0, we find that the dynamics on this invariant set
s given by the 1D dynamical system 

′ ( ζ ) = −3 

2 
sin ( θ ) cos ( θ ) , (68) 

hich has a behaviour shown in Fig. 7 , where the heteroclinic
equences L + 

→ dS 
(1) 
+ 

and L − → dS 
(1) 
− are presented. Finally, to

nd heteroclinic sequences M 

(0) 
± → dS 

(1) 
± , the intersection of the

nstable manifold of M 

(0) 
± with the stable manifold of dS 

(1) 
± should

e analysed. Since the former is R 

2 , then it is required to examine
he stable manifold of dS 

(1) 
± . This is given locally by the graph {

( �, θ ) ∈ R 

2 : � = h ( θ ) , h (0) = 0 , h 

′ (0) = 0 
}

, | θ | < δ, (69) 

or δ > 0 suitably small. By the invariance of the stable manifold,
e obtain the quasi-linear differential equation for h given by 

 

 

sin ( θ ) h 

′ ( θ )(2( h ( θ ) − 1) h ( θ )( sin ( θ ) + cos ( θ )) + cos ( θ )) 

+ 3( h ( θ ) − 1) 2 h ( θ ) 2 tan ( θ ) ln 

(
h ( θ ) 

1 − h ( θ ) 

)
= 0 . (70) 

ntroducing the ansatz h ( θ ) = a 1 θ2 + a 2 θ3 + a 3 θ4 + . . . , we obtain
 i = 0 at any order. Therefore, the dynamics at the stable manifold
f dS 

(1) 
+ 

is given by equation ( 68 ). Then, it is easy to construct
eteroclinic sequences M 

(0) 
+ 

→ dS 
(1) 
+ 

, which pass near the singularity
MNRAS 512, 5122–5134 (2022) 
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 + 

by assuming, for instance, the initial value ( � , θ ) = ( ε, π/4), ε ≈
 and evolving the system back and forward in ζ . Similar arguments
an be used to construct heteroclinic sequences M 

(0) 
− → dS 

(1) 
− , which

ass near the singularity L −, with the initial value ( � , θ ) = ( ε,
3 π/4), ε ≈ 0. 
Summarizing, for 0 ≤ θ ≤π/2 (the physical region is 0 ≤ θ ≤π/4),

here exist the heteroclinic sequences M 

(0) 
+ 

( �m 

→ 1 , H → ∞ ) →
 + 

( �m 

→ +∞ , H → 0) → dS 
(1) 
+ 

( de Sitter , �m 

→ 0 , H → 0) 
nd M 

(0) 
+ 

→ dS 
(0) 
+ 

( de Sitter , �m 

→ 0 , H → ∞ ), and in the region
π ≤ θ ≤ −π/2 (the physical region is −π ≤ θ ≤ −3 π/4),

here exist the heteroclinic sequences M 

(0) 
− ( �m 

→ 1 , H → ∞ ) →
 −( �m 

→ −∞ , H → 0) → dS 
(1) 
− ( de Sitter , �m 

→ 0 , H → 0) 
nd M 

(0) 
− → dS 

(0) 
− ( de Sitter , �m 

→ 0 , H → ∞ ). 

.1.2 Bounce and a turnaround 

nother interesting cosmological possibility is the possible existence
f a bounce and a turnaround (Saridakis 2009 ; Cai, Gao & Saridakis
012 ; Zhu et al. 2021 ). Let us assume that, for the state vector ( a , H ,
 ), the field equations can be written as 

˙ = aH , (71) 

˙
 = 

1 

6 

(
R − 12 H 

2 
)
, (72) 

˙
 = g( a, H , R) , (73) 

uch that the function g ( a , H , R ) satisfies g ( a , H , R ) = −g ( a , −H ,
 ). Hence, the system ( 71 )–( 73 ) is invariant under time inversion
 �→ −t if also H �→ −H and R �→ R , and by definition a ≥ 0. Those
olutions can be related to symmetric cyclic solutions with respect
o the origin, chosen to correspond to the possible bounce point
 bounce = 0. Therefore, if the bounce exists, the system ( 71 )–( 73 ) is a
eversible system in the sense that it has a reversing symmetry under
ime inversion. 

Let us consider the simplest case where there is exactly one
ouncing and exactly one turnaround point. Note that both at the
ounce and turnaround points we have H = 0. In this case, the line
onnecting these points and corresponding to H = 0 defines a plane
hat separates all points on the trajectory in this phase space to the
nes corresponding to either the expanding ( H > 0) or contracting ( H
 0) phase. As discussed in P avlo vi ́c & Sossich ( 2021 ), it is natural

hat in cyclic models the value of the Ricci scalar would approach
ts maximum around the bounce and since Ḣ > 0, from equation
 72 ), it follows that this maximum Ricci scalar value is positive, and
oreo v er that Ḧ = 0 at the bounce. 
In summary, at the bounce, we have R = R bounce > 0, H = 0,

nd a = a min . The bounce is then followed by a phase in which
˙
 > 0, H > 0, ȧ > 0, and Ṙ < 0. Then, the Universe enters the

hase characterized by Ḣ < 0 and approaches the turnaround point,
hich is determined by H = 0, a = a max , and R = R turnaround < 0,
here the last condition follows from equation ( 72 ). 
To obtain g ( a , H , R ) in equation ( 73 ), we use equations ( 8 ), ( 9 ),

 11 ), ( 12 ), and ( 14 ), where for simplicity we focus on the dust case.
herefore, we obtain 

 = 6 Ḣ + 12 H 

2 = −24 πGp DE 

= 3 

{
− 8 πGρm 

[
sech 

(
βH 

2 
0 

H 

2 

)
− 1 

]

+ 3 βH 

2 
0 shi 

(
H 

2 
0 β

H 

2 

)
− 3 H 

2 

[
cosh 

(
βH 

2 
0 

H 

2 

)
− 1 

]
+ � 

}
. 

(74) 
NRAS 512, 5122–5134 (2022) 
ntroducing the dimensionless quantities E = 

H 

H 0 
and R = 

R 

12 H 

2 
0 

, and

sing z as the independent variable, we extract the general system
or ( a, E, R ): 

d a 

d z 
= −a 2 , (75) 

d E 

d z 
= −2 

(
R − E 

2 
) a 

E 

, (76) 

d R 

d z 
= −9 β�(0) 

m 

2 
tanh 

(
β

E 2 

)
sech 2 

(
β

E 2 

)
4 E 

4 a 5 
. (77) 

Finally, in order to examine whether the above requirements are
ulfilled in the present scenario, we use the best-fitting values β =
0.011 and �(0) 

m 

= 0 . 283 in equations ( 75 )–( 77 ), and we find 

d a 

d z 
= −a 2 , (78) 

d E 

d z 
= −2 

(
R − E 

2 
) a 

E 

, (79) 

d R 

d z 
= −0 . 0019822 tanh 

(
0 . 011 
E 2 

)
sech 2 

(
0 . 011 
E 2 

)
E 

4 a 5 
. (80) 

n the case of dust matter and � �= 0, this system cannot satisfy the
bo v e requirements, and hence the present scenario cannot exhibit
ounce and turnaround solutions. 

.2 Case II: � = 0 

n the case � = 0, equation ( 10 ) becomes 

8 πGρm 

3 H 

2 
= −3 πK shi 

(
K π

GH 

2 

)
3 GH 

2 
+ cosh 

(
πK 

GH 

2 

)
. (81) 

his expression is used as a definition of ρm 

. If β �= 0, and rescaling
he time deri v ati ve d/d ν = (1 − T )d/d τ , we obtain 

 

′ ( ν) = 

3 

2 
(1 − T ) 2 T cosh 

(
βT 2 

(1 − T ) 2 

)
− 3 

2 
βT 3 shi 

(
T 2 β

(1 − T ) 2 

)
. 

(82) 

he equilibrium points of equation ( 82 ) are T = 0, which is
nstable, and the equilibrium point T = T c , where T c is a solution
f the transcendental equation (1 − T c ) 2 cosh 

(
βT 2 c / (1 − T c ) 2 

) −
T 2 c shi 

(
T 2 c β/ (1 − T c ) 2 

) = 0, 0 < T c < 1, corresponding to the de

itter solution a( t) ∝ e 
H 0 t 

(
1 
T c 

−1 
)

, is stable. In Fig. 8 , we depict a
hase-space plot of the 1D dynamical system ( 82 ) of Kaniadakis
orizon-entropy cosmology with � = 0, for dust matter, and the join
alue β = 1.161. Note that all orbits originate from the invariant
ubset T = 0, classically related to the initial singularity with H →
 . The late-time attractor is T = T c ≈ 0.521, and it corresponds to

 de Sitter solution. 
Finally, in order to examine whether the present scenario exhibits

 bounce, we use the best-fitting values β = 1.161 and �(0) 
m 

= 0 . 326
n equations ( 75 )–( 77 ), and we find 

d a 

d z 
= −a 2 , (83) 

d E 

d z 
= −2 

(
R − E 

2 
) a 

E 

, (84) 

d R 

d z 
= 

0 . 277619 tanh 
(

1 . 161 
E 2 

)
sech 2 

(
1 . 161 
E 2 

)
E 

4 a 5 
. (85) 

n the case of dust matter and � = 0, we deduce that the system
annot fulfil the bounce requirements, and therefore it cannot exhibit
ounce and turnaround solutions. 
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Figure 8. Phase-space diagram of the 1D dynamical system ( 82 ) of Ka- 
niadakis horizon-entropy cosmology with � = 0, for dust matter and for 
the best-fitting value of Kaniadakis parameter obtained by the observational 
analysis, namely for β = 1.161. The physical region is 0 ≤ T < 1. The 
equilibrium point T = 0 is unstable, dominated by dark energy, and the de 
Sitter equilibrium point T = T c ≈ 0.521 is stable. 
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 SU M M A RY  A N D  DISCUSSION  

his work was devoted to explore Kaniadakis horizon-entropy 
osmology, which arises from the application of the gravity- 
hermodynamics conjecture using the Kaniadakis modified entropy. 
he resulting modified Friedmann equations contain extra terms 

hat constitute an ef fecti v e dark energy sector. Moreo v er, we used
ata from OHD, SNIa, HIIG, SLSs, and BAO observations, and 
e applied a Bayesian MCMC analysis in order to construct the 

ikelihood contours for the model parameters. 
Regarding the Kaniadakis parameter β, we found that it is 

onstrained around 0, namely around the value in which standard 
ekenstein–Ha wking is reco v ered. Furthermore, the present matter 
ensity parameter �(0) 

m 

is consistent with the expected value from 

he � CDM scenario, having a lower value for the � �= 0 case and a
lightly higher value for the � = 0 case. 

Ho we ver, the interesting result comes from the constraint on the
ormalized Hubble parameter h . In particular, for � �= 0, we extracted 
 = 0 . 708 + 0 . 012 

−0 . 011 , while for � = 0, we found h = 0 . 715 + 0 . 012 
−0 . 012 . Thus,

he obtained value of H 0 for � �= 0 deviates 2.67 σ from the Planck
alue and 1.74 σ from the SH0ES one, while in the � = 0 case, the
eviation is 3 σ from the Planck value and 1.36 σ from the SH0ES
ne. Additionally, in order to verify this result in an independent way,
e performed the H 0( z) diagnostic. Hence, our analysis reveals that 
aniadakis horizon-entropy cosmology is an interesting candidate 

o alleviate the H 0 tension problem. This is one of the main results
f this work. 
We proceeded by investigating the cosmographic parameters, 

amely the deceleration and jerk ones, by using the data in order
o reconstruct them in the redshift region 0 < z < 2.5. As we
howed, the transition from deceleration to acceleration happens 
t z T = 0 . 715 + 0 . 042 

−0 . 041 for the � �= 0 case and at z T = 0 . 652 + 0 . 032 
−0 . 031 for

he � = 0 case, in agreement within 1 σ with that found in Herrera-
amorano, Hern ́andez-Almada & Garc ́ıa-Aspeitia ( 2020 ) for � CDM 

osmology. Furthermore, we applied the AICc and BIC information 
riteria, and we found that although AICc suggests that � �= 0 model
nd � CDM are statistically equi v alent in the joint analysis, BIC
ndicates that there is strong evidence against the candidate model. 
astly, applying the DIC criterion, we found that the � �= 0 case
nd � CDM are statistical equi v alent for BAO, they have a moderate
ension for OHD and SLS, and a strong tension for HIIG and SNIa
ata sets, while the � �= 0 case and � CDM are statistical equi v alent
or all data sets. 

Finally, we performed a detailed dynamical system analysis, 
roviding a general description of the phase space of all possible
olutions of the system, their equilibrium points and stability, as well
s the late-time asymptotic behaviour. As we showed, the Universe 
ast attractor is the matter-dominated epoch, while at late times, the
niverse results in the dark-energy-dominated solution, for both � = 

 and � �= 0 cases. Moreo v er, we showed that the scenario accepts
eteroclinic sequences, but it cannot lead to bounce and turnaround 
olutions. 

In summary, the scenario of Kaniadakis horizon-entropy cosmol- 
gy exhibits very interesting phenomenology and is in agreement 
ith observational behaviour. Hence, it can be an interesting candi- 
ate for the description of nature. 
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