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Abstract: The demand for energy has increased tremendously around the whole world due to rapid
urbanization and booming industrialization. Energy is the major key to achieving an improved social
life, but energy production and utilization processes are the main contributors to environmental
pollution and greenhouse gas emissions. Mitigation of the energy crisis and reduction in pollution
(water and air) difficulties are the leading research topics nowadays. Carbonaceous materials of-
fer some of the best solutions to minimize these problems in an easy and effective way. It is also
advantageous that the sources of carbon-based materials are economical, the synthesis processes
are comfortable, and the applications are environmentally friendly. Among carbonaceous mate-
rials, activated carbons, graphene, and carbon nanotubes have shown outstanding performance
in mitigating the energy crisis and environmental pollution. These three carbonaceous materials
exhibit unique adsorption properties for energy storage, water purification, and gas cleansing due to
their outstanding electrical conductivity, large specific surface areas, and strong mechanical strength.
This paper reviews the synthesis methods for activated carbons, carbon nanotubes, and graphene
and their significant applications in energy storage, water treatment, and carbon dioxide gas capture
to improve environmental sustainability.

Keywords: activated carbons; carbon nanotubes; graphene; water treatment; energy storage; CO2 capture

1. Introduction

“Where nature finishes producing its own species, man begins, using natural things
and, with the help of this nature, to create an infinity of species”, as the great scientist/artist
Leonardo da Vinci said. In this regard, the synthesis and application of carbonaceous
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materials towards environmental solicitations are the main goals for scientists [1]. Energy,
the most valuable resource for humans, forges close ties between nature and life. For the
social and economic development of a nation, there are no substitutes for energy. Given
this, the need for energy is increasing daily [2,3]. The primary source of energy is fossil
fuels, which are depleting with time and producing greenhouse gases, particularly carbon
dioxide (CO2), during combustion [4,5]. With the escalation of CO2 levels, energy genera-
tion and utilization are polluting water sources tremendously, as there is a strong positive
relationship between energy and environmental pollution (air and water) [6]. Therefore, it
is highly important to protect the environment by mitigating energy problems. Carbona-
ceous materials offer some of the best solutions to resolve these issues for environmental
sustainability [7].

Carbon (C), the sixth most abundant element in the universe, was first applied by
the Egyptians in 3750 BC in the form of coal to absorb pungent vapors from wounds [8].
The allotropes of carbon are commonly known as activated carbons, graphite, nanotubes,
diamond, graphene, fullerenes, etc. [9]. Among these materials, activated carbons (ACs),
graphene, and carbon nanotubes (CNTs) are considered the most effective adsorbents due
to their high surface areas and distinct chemical and physical properties [10–12]. An AC
is an amorphous, dense carbonaceous material with a three-dimensional arrangement
of carbon and has a large porous surface area and a variety of functional groups [13].
Activated carbons (ACs) are highly effective for adsorption, purification, and filtration
processes [14]. The low-cost byproducts from biomass processing industries have been
established as possible sources of activated carbons [15]. The performances of activated
carbons in the carbon capture and storage (CCS) process are also very promising with
respect to reducing CO2 emissions from point sources [16].

Graphene is referred to as a single sheet of sp2 hybridized carbon atoms arranged
in a 2D honeycomb configuration. A single-atom-thick layer of virgin graphene provides
unique mechanical, thermal, optical, and electrical properties [17]. Graphene has gained
a lot of attention in recent years for its exceptional and distinctive qualities, which include
excellent electrical conductivity, a sizable theoretical specific surface area, and high me-
chanical strength. Graphene oxide (GO), a single layer of graphite oxide, has also shown
effective performance due to the multiple oxygen-containing functional groups embedded
in it (carboxyl, phenol, quinone, and lactone at the sheet edges) [18].

Carbon nanotubes (CNTs) are 1D crystals of sp2 bonded carbon and are normally used
in the nanotechnology industry [9]. Due to their high electrical conductivity, perfect struc-
ture, and chemical stability, they are mostly proposed as emitters in the electron field [19].
Carbon nanotubes consist of single-walled carbon nanotubes (SWCNTs) and multi-walled
carbon nanotubes (MWCNTs) [20]. When CNTs have only one graphitic shell, they are
called single-walled carbon nanotubes, and when they have many concentric graphitic
shells, they are called multi-walled carbon nanotubes [21]. They are electrochemically
intercalated, as they possess large irreversible capacities and voltage hysteresis [22]. CNTs
are also potential theranostics and carriers of drug delivery systems owing to their simple
cell membrane permeability [23].

Another significant application of carbon nanotubes is water treatment for the appro-
priate control of organic, inorganic, and biological water pollutants [24]. Regarding energy
storage applications, MWCNTs and SWCNTs have been used for electrochemical hydrogen
storage [25] and some redox reactions, which can be used for fuel cells [26,27]. Furthermore,
CNTs have been recognized for their excellent adsorbing capacity in capturing CO2, while
MWCNTs have been found to be better adsorbents compared to SWCNTs [28]. The role of
carbon nanotubes as adsorbents can be distinguished from those of other adsorbents by
the van der Waals forces between pollutants and nanotubes, as they stick and agglomerate
in the form of clusters [29]. A new family of carbon-only compounds called fullerenes,
which were initially known as buckminster fullerenes and include 60 carbon atoms (C60)
grouped in a soccer-ball configuration, are also carbon-based materials [30]. However, due
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to their higher price compared to two-dimensional graphene and one-dimensional carbon
nanotubes (CNTs), they have received less attention than other carbon materials [31].

Energy storage is one of the great challenges of the twenty-first century because of
the vast expansion of energy technology. Storage is most essential in remote locations
and depends on the ability to store kinetic energy [32]. To cover the base load for urban
society and evolving ecology, it is critical to find portable, lightweight, low-cost, and
environmentally sustainable energy storage solutions [33]. Storage systems are used in
major energy devices, such as solar panels, batteries, fuel cells, electrolytic capacitors,
supercapacitors, and hydrogen storage. In the present day, energy storage technology,
batteries, and supercapacitors show high performance and efficiency due to their high-
power capabilities and long cycle life [34]. Supercapacitors offer higher peak currents,
lower cyclic costs, good reversibility, and low material toxicity, whereas batteries have
lower purchase costs and stable voltage with complex electronic control. Activated carbons,
graphene, and carbon nanotubes have the ability to increase the capacity of a supercapacitor
with better stability [35].

Along with energy, water is another element that is vital to life, as it maintains the reg-
ulation of the ecosystem of the earth. However, unexpectedly, there is a continual decrease
in the accessibility of safe and clean water, as water pollution has risen tremendously [36].
Some of the factors that heighten the contamination of water are the growth of the world
population, household and cultivation activities, and booming factories, which are directly
or indirectly related to energy [37]. As water pollution poses a considerable threat not only
to human health but also to the environment, it is considered one of the most severe issues
these days [38]. It is highly important to develop an efficient, reliable, and cost-effective
water treatment process and technology [39].

Sea water is significantly polluted in a similar manner to terrestrial water. The per-
centages of significant pollutants entering the oceans annually are shown in Figure 1. To
purify water and maintain environmental cleanliness, a unique strategy for developing
an effective adsorbent is required [40]. Since the early history of science, adsorption has
been used as the standard for separation due to its efficiency and user-friendly approach.
Additionally, this process can treat wastewater by removing all harmful pollutants from
the waste [41]. Besides ACs, nanomaterials are also effective in eliminating pollutants
from wastewater via different chemical functions and are characterized by high sorption
capacities, non-toxicity, and recyclability [42,43].
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Figure 1. Pollutants entering the oceans [44].

Similar to water pollution, air pollution is a critical issue regarding the sustainability of
the environment. The main cause of air pollution is carbon dioxide, which is emitted from
vehicles during the combustion of fossil fuels for electricity production [45]. CO2 capture
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and storage processes have increased significantly in response to global warming and
climate change. According to the Intergovernmental Panel on Climate Change, greenhouse
gases are responsible for more than 95% of unavoidable global warming. From 1970 to
2010, CO2 emissions from fossil fuels and manufacturing activities contributed about 78%
of overall greenhouse gas emissions. Several technologies, including physical absorption,
chemical absorption, adsorption, cryogenic separation, and membranes, are currently used
to capture and isolate CO2 gases [46].

The rise in global CO2 emissions over time is demonstrated in Figure 2 [47]. Due
to its low energy demand, cost–benefit ratio, and ease of use, adsorption is considered
one of the most effective methods for capturing carbon dioxide. The effectiveness of the
process is contingent on the production of adsorbents with high CO2 adsorption capability
as well as the ease of regeneration. Activated carbons, carbon nanotubes, graphene sheets,
graphene oxide, and other adsorbents for CO2 capture are extremely efficient [46]. At low
concentrations and ambient temperatures, carbonaceous materials have proved excellent for
CO2 adsorption. At high temperatures, the potential adsorption capabilities decrease [48].
Since CO2 (Lewis acid) has a poor acidic position, adding Lewis bases to carbon surfaces
would improve the capturing efficiency. Surface oxidation adds electron-acceptor properties
to the carbon surface since the oxygen surface groups have an acidic character [49]. The
overall performances of activated carbons, graphene, and carbon nanotubes in capturing
carbon dioxide are promising.
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The aim of this review is to accumulate information about the methods of synthesizing
activated carbons, graphene, and carbon nanotubes and their potential applications in
energy storage, water treatment, and CO2 removal for environmental sustainability.

2. Synthetization of Carbonaceous Materials

There are several methods for synthesizing or preparing carbonaceous materials, and
the most important, effective, and common methods are discussed here.

2.1. Activated Carbons (ACs)

Activated carbons refers to materials with a high carbon content and well-developed
internal pores. They have many properties that make them flexible substances that can be
used in a variety of applications. Activated carbons are perceived as the oldest and most
commonly used adsorbents in wastewater purification [50]. Owing to their highly defined
porosity, broad surface area (which can exceed 3000 m2/g), high degree of surface reactivity,
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and variable surface-chemistry characteristics, they are noted for their effectiveness as
adsorbents [51]. They were applied as absorbents in industrialized and metropolitan
wastewater, solvent retrieval, and pollution regulators, removing color, taste, and odor.
Furthermore, they have also been used in gas adsorption or gas storage in electronic devices,
such as capacitors [52]. Not only are they used as adsorbents; other applications include
catalysts for the removal of various contaminants from gases and liquids [53].

Generally, activated carbons are produced from agricultural wastes, woody biomass,
and coal through thermochemical conversion and activation at higher temperatures. The
functional groups of activated carbons are bonded to fused aromatic rings. As a result,
the functional groups of the carbon structures may be adjusted using heat, chemical
treatments, or a combination of the two for various applications. The physical and chemical
properties of raw materials and the activation methods are important factors in sorption
efficiency [54]. Due to their abundance, renewability, and affordability, some significant
precursors, including agricultural residues, sewage sludge, and forestry wastes, are used
as sources of activated carbons [55]. Moreover, it was found that wastes from agriculture
and forests have a higher carbon content and a lower ash content (0.2–10 wt%), which is
important for the production of activated carbons [56].

Recently, the application of activated carbons produced from biochar using biomass
resources has gained much attention [57]. Biochar is produced from biomass via ther-
mochemical conversion processes at low temperatures (<700 ◦C) under oxygen-limited
conditions. Such thermochemical methods include pyrolysis, hydrothermal carbonization,
gasification, and flash carbonization [40]. Biochar is beneficial for carbon sequestration,
soil improvement [58], and pollution control [59]. Biochar is a potential carbon source
material for activated carbons due to its high reactivity and other distinct properties [60].
Biochar made from biomass has the potential to be used as an alternative precursor for
activated carbon production due to its advantages. As a result, the number of technologies
for water treatment, energy conservation, and CO2 reduction has grown significantly [61].
Sometimes, the activated carbons derived from biochar perform equally well or even better
than commercially available activated carbons [62].

There are four main methods to produce activated carbons: physical, chemical, phys-
iochemical, and microwave activation (Figure 3) [14]. The chemical activation method is
generally favored due to its higher yield, shorter activation time, simplicity, low tempera-
ture, and the porous structure it produces.
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2.1.1. Physical Activation

Physical activation consists of two steps: carbonization and activation via carbon
dioxide or steam [14]. The reaction mainly consists of carbon oxidation during the activation
process. The reaction occurs as per Equations (1) and (2) [63]:

C + H2O = H2 + CO ∆H: +117 kJ/mol (1)

C + CO2 = 2CO ∆H: +159 kJ/mol (2)

The physical activation procedure is described in Figure 4a [64], which includes
carbonization, activation, cleaning, drying, and sieving. The heat produced during the
process can be used for vapor production and drying. Moreover, waste gases, such as steam
and CO2, are less polluting for the environment.
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This method could optimize the surface structure of biochar effectively. Some notable
physical variations can be achieved, such as changes in pore volume, surface area, and
pore structures. Additionally, physical activation may also influence surface characteristics
(outside functional group, polarity, and hydrophobicity). There are two most common
physical activations: steam activation and gas activation. Steam activation is commonly
used after the carbonization of biomass. This method increases the existing porosity of
biochar. During the activation procedure of the reaction between steam and carbon [65],
three situations occur, which include:

(a) The omission of volatile matter and the degradation of tar;
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(b) The establishment of new micropores;
(c) Additional expansion of the pores present.

During gas activation, similar to steam activation, the surface area can be increased
with higher numbers of pores reacting to the char and gas. This develops the structure with
micropores and mesopores [66]. Carbon dioxide, steam, and nitrogen gases are normally
used for this activation, CO2 being the most effective, as the characteristics of the obtained
material are outstanding [63]. The longer activation time, limited adsorption capacity, and
high energy consumption of the process are the major drawbacks [67].

2.1.2. Chemical Activation

In the chemical activation process, carbonization and activation occur simultaneously
with the utilization of an activating agent. The basic process of chemical activation is shown
in Figure 4b [64]. In this process, the wastes are mixed with the activator or activating agent
to be activated by methods such as carbonization, activation, washing, and drying [14,63].
Changing the ratios of activating agents to biomass alters the properties of the resultant
activated carbons [68]. The factors affecting the carbonization reaction, the structure, and
the features of the activated carbons are the reaction time, temperature, and impregnation
ratio. In this method, acid, alkali, and oxidation treatments are applied to enhance the
physicochemical properties of biochar. Some of the acids used in the acid treatment are
HNO3, H2SO4, H3PO4, and HCl. Some salts are also used to produce activated carbons,
such as K2SiO3 Na2SiO3, K2B4O7, Na2Al2O4, etc. Among these alkaline activating agents,
KOH is the most effective activating agent in preparing ACs with an extremely high specific
surface area.

There are two significant changes after acid treatment. Firstly, there is a development
of the surface area, porosity, and pore properties of biochar because of the elimination of
contaminants on the exterior of the char. Secondly, functional groups, such as carboxylic
groups and amino groups, may be established or increased on the biochar surface. Some
standard bases for alkali treatment include KOH, NaOH, and K2CO3, which enhance
pore characteristics and biochar function [14,63,65]. One drawback of this process is the
requirement for a prolonged and repeated washing procedure to remove the activating
agents from the final mixture after the activation process is executed [67].

2.1.3. Physiochemical Activation

This method involves a combination of physical and chemical activation. Generally,
biomasses are treated with activators before physical activation using high-temperature
activating gases. Chemical activating agents affect organic waste or biomass by increasing
the reactivity of the raw materials and assisting the activating gas in passing through
the precursor, thus enhancing the porosity of the activated carbon. Both physical and
chemical activators perform concurrently in the physiochemical activation process after
carbonization [40]. The physiochemical activation process is described in Figure 4c, which
was generated from Reza et al.’s study [14]. The activation occurred mostly at a higher
temperature of 600–850 ◦C in the presence of chemicals, such as H3PO4, ZnCl2, KOH, CO2,
or H2O (steam). Physiochemical activation can produce activated carbons with substantial
surface qualities, despite the process being expensive and time-consuming. The joint
activation process will cause pore opening, resulting in a well-built porous structure. For
instance, KOH with CO2 gasification can create larger macropore and mesopore structures
within the AC matrix [69]. In this process, the use of zinc chloride, which is used in the
pharmaceutical and food industries, is not recommended for activated carbons, as zinc
contaminates the product [70].

2.1.4. Microwave-Assisted Activation

Microwave (MW) activation has recently become a feasible replacement for conven-
tional methods due to the rapid, steady, adequate heating; the control; and the indirect
interaction between the heat generator and heated material [40]. Moreover, the dimensions



Sustainability 2023, 15, 8815 8 of 56

of the equipment are compact due to the rapid reaction speed of microwave radiation [71].
There are numerous advantages to this method, including higher carbon yield, high energy
efficiency, refinement of the quality of activated carbon, and decreased formation and
emissions of dangerous materials [72]. The MW process is described in Figure 4d, which
was generated from Reza et al.’s study [14]. This process produces activated carbons with
varying pore structures and surface areas, despite the fact that it only provides heat during
the activation process. This is due to the mechanism of pore formation by microwave
plasma [73]. Appropriate activation methods and enhancing parameters can result in better
properties of activated carbons by developing porosity and favorable surface functional-
ities [74]. The major drawback of this process is the inaccurate temperature control and
possible leakage of microwaves [75].

2.2. Carbon Nanotubes

Carbon nanotubes were invented accidentally by Iijima in 1991 and gained recognition
in the scientific community [76]. After two years, in 1993, Iijima and Ichihashi and the
Bethune group synthesized the other type of carbon nanotube, which was the single-
walled carbon nanotube [77]. There are numerous tens of graphitic shells, also termed
multi-walled carbon nanotubes, in the nanotubes, with diameters of around 1 nm and
a high length/diameter ratio, respectively, and adjoining shell separation of approximately
0.34 nm [78].

Generally, three main procedures are used to produce MWCNTs and SWCNTs: arc
discharge, laser ablation, and catalytic growth [79]. Owing to their high Young’s modulus
values and tensile strength, they were considered potential composite materials with en-
hanced mechanical properties [80]. Their number of layers can differentiate SWCNTs from
MWCNTs. They have received considerable attention due to their unique one-dimensional
structures, extraordinary electronic properties, outstanding mechanical properties, and
potential applications [81]. The current and best-known methods that are used to synthesize
CNTs include electrolysis, chemical vapor deposition, mechano-thermal methods, laser
ablation, flame synthesis, and arc discharge (Figure 5). These methods have the same
purpose: to provide energy to a carbon source to create CNTs from carbon atoms.
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2.2.1. Electrolysis

The electrolysis method was invented in 1995 by the deployment of the electrowinning
process of alkali and alkaline earth metals with the CNT-based molten chloride salt phase.
The process occurred between two liquid alkali-alkaline earth metal electrodes through
a DC voltage application, which created multi-walled carbon nanotubes [83]. The formation
reaction is as per Equation (3) [84]:

2Li+ + 2e− + 2C (graphite) → Li2C2 (3)

CNTs can be synthesized in liquid form by creating lithium carbide (Li2C2) molecules
2–10 nm in diameter and 0.5 µm in length. The CNTs produced via this method are
normally multi-walled or single-walled [85]. Different salts, such as NaCl, KCl, LiCl, and
LiBr, can be used to produce carbon nanotubes. Salt density, current floe, electrolysis
systems, time, and temperature are the major parameters related to the quality and quantity
of CNTs. Productivity can be achieved at low temperatures with an efficiency of up to 40%
by optimizing process parameters [86]. The drawbacks of the electrolysis method are the
cracking difficulty of the graphite cathode and the buildup of chlorine gas, alkaline metal,
and carbon nanomaterials in the chamber [76].

2.2.2. Chemical Vapor Deposition (CVD)

The best procedure to manufacture CNTs on a large scale is chemical vapor deposition
at low temperatures and ambient pressure [87]. Chemical vapor deposition is a process
in which the precursors are carbon-based gases, such as CO2, C2H4, C2H2, and other
hydrocarbons, with high temperatures of 350 to 1000 ◦C. The operating time, temperature,
catalyst type, and reactant gases are the parameters influencing CNT production in this
process [88]. The usual CVD methods for CNT production are plasma-enhanced chem-
ical vapor deposition, aerosol-assisted chemical vapor deposition, laser chemical vapor
deposition, water-assisted chemical vapor deposition, oxygen-assisted chemical vapor de-
position with plasma, and catalytic chemical vapor deposition [89]. Apart from CNTs, the
CVD method has been extensively used for the synthesis of fullerenes, carbon nanofibers,
graphene, etc. [90].

Many researchers have reported that the CVD process with aerosol as a catalyst
could enhance the process of synthesizing high-quality single- and multi-walled CNTs [91].
The efficiency of aerogel-based CVD can reach more than 100% for single-walled CNTs
with alumina as a catalyst. Alcohol-based CVD with Fe and Co as catalysts can produce
better-quality CNTs (1 nm in diameter) with higher efficiency and at lower operating
temperatures. This is one of the most effective methods for obtaining high-purity products
with low production costs and high efficiency [92]. In water-assisted CVD, the CNTs can be
2.5 mm in length [93]. In oxygen-supported CVD, high-quality, single-walled CNTs can
be synthesized with higher efficiency using a small amount of oxygen gas. Single-walled
CNTs can be easily achieved by adding oxygen, as it increases the purity and efficiency and
stops damage to the sp2 bonds by removing the amorphous carbons, impurities, and other
destructive precursors [94]. The disadvantage of this process is that the CNTs produced in
the CVD process are usually defective [95].

2.2.3. Mechano-Thermal Methods

The mechanical–thermal process consists of two major steps: producing amorphous
carbon initially and strengthening it in the vacuum furnace [96]. The high-energy ball
milling process can produce amorphous carbon. The operating time, type of gas (argon
or air), cup speed (300 rpm or more), number of balls, and ball-to-powder ratio are the
major parameters related to the quality and quantity of the CNTs. Increasing the ball
milling time decreases the crystallite sizes, and amorphous carbon is finally produced [97].
Produced amorphous carbon was placed in a vacuum furnace at 1400 ◦C for a few hours
to connect the carbon atoms to form CNTs. These CNTs normally have a multi-walled



Sustainability 2023, 15, 8815 10 of 56

structure with a springy shape. The process is simple, enables mass production at a lower
cost, and does not require heavy equipment; however, it is time-consuming [96]. Though
the process is simple in operation, the CNTs can be damaged depending on the variation in
the parameters [76].

2.2.4. Laser Ablation

Another technique is laser ablation, which was first reported in 1995 [98]. In the laser
ablation process, continuous lasers or waves strike the graphite for nucleation to occur
and the development of CNTs [86]. Initially, the matter is hot but is cooled down instantly.
During cooling, the carbon atoms are condensed quickly and form larger clusters by van
der Waals forces, and CNTs are synthesized. To produce MWCNTs, pure graphite rods
are used, and for SWCNTs, a composite block of graphite with a metal catalyst (Fe, Ni, Co,
He-H2, or Ar) is normally used [99]. In the pulsed laser method, laser lights with higher
intensity are used, where the CNTs are 4–30 nm in diameter and about 1 µm in length. Most
common catalysts, such as Co, Pt, Cu, Co/Ni, Co/Pt, Co/Cu, Nb, Ni, and Ni/Pt, are used
in this method. The quality of the CNTs depends on the power ad properties of the laser
beam, the type of catalyst, the type of gas, the temperature of the reactions, and the distance
between the target and substrate. The laser ablation methods mainly produce SWCNTs
because they are costly. Although the production method is expensive, CNTs produced
by this method are highly pure and have a higher yield [89]. One of the drawbacks of this
process is that it is expensive, as it requires expensive lasers and high power [95].

2.2.5. Flame Synthesis

To synthesize CNTs via the flame synthesis method, direct combustion of the carbon
sources (methane, acetylene, ethanol, and ethylene) is performed in the presence of oxygen
gas. There are three basic steps: first, the carbon sources are produced from hydrocarbons
through hydrolysis; second, the carbon atoms are diffused by a metallic catalyst; and
third, the CNTs are nucleated on the surface of the catalyst [100]. The type of flame, the
temperature, the composition of the gas, and the types of catalysts have an essential role
in determining the quality of the CNTs produced. This process is economical for higher
production of single-walled CNTs, but the growth rate is relatively low [101]. In the flame
synthesis of CNTs, it is crucial to establish and maintain a perfect balance between the
optimum carbon supply and the flame temperature, since an excess of carbon leads to the
creation of amorphous carbon [76].

2.2.6. Arc Discharge

The arc discharge method was the first method recognized and utilized for CNT
synthesis. It uses high temperatures (above 1700 ◦C) and produces CNTs with fewer
structural defects compared to CNTs produced by other procedures. The tools used include
a boiler, a stainless-steel vacuum chamber, graphite electrodes, a water-cooled trap, and
a high-voltage power supply. The CNTs produced have high crystallinity and perfection
due to the high temperature used; they also have a higher yield per unit of time than CNTs
produced via other processes [82]. In the arc discharge method, two pure graphite rods are
used as an anode and cathode in the direct current flow. For the power of the produced
arc, the carbons are separated from the anode towards the cathode to form coal [102]. This
process can be performed in liquid nitrogen, toluene, non-ionized water, and different
gas situations (argon, helium), or the plasma spinning arc discharge process can be used.
Plasma spinning is economical and considered a high-yield synthesis method, as the
centrifugal force from rotation accelerates the evaporation of the anode by forming a stable
arc. The major CNTs produced in this method are multi-walled, but single-walled CNTs
can be made by penetrating the graphite rods and metal catalysts. Steam compartment
pressure and flow rates are the key factors in controlling procedure productivity. The speed
of the process is high, and the conditions can be handled easily, but the efficiency of this
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process is low [89]. This process requires extensive purification, as the CNTs produced are
short, dragged, and random in direction [95].

2.3. Graphene

Graphene was successfully synthesized first in 2004 as single-layer graphene sheets by
Profs. Geim and Novoselov by repeatedly pealing graphite crystals [103]. The synthesis of
graphene can be carried out in two main ways: top-down or bottom-up. Top-down methods
depend on the attack of powdered raw graphite, which ultimately separates its layers to
produce graphene sheets. This method is categorized into mechanical exfoliation, chemical
reduction, and chemical exfoliation processes. At the same time, bottom-up approaches
involve the use of carbonaceous gases to produce graphene. The bottom-up strategy
includes pyrolysis, chemical vapor deposition, epitaxial growth, and plasma synthesis [104].
The following subsections describe different graphene synthesis processes [105].

2.3.1. Mechanical Exfoliation

Mechanical exfoliation is one of the most well-known and widely used processes for
producing graphene sheets. As layered materials are subjected to transverse or longitudinal
stress, this method is used. Graphite is formed when a single graphene layer is created by
weak van der Waals forces [104]. Van der Waals forces stack partially filled p orbital overlaps
on the planes of boards, causing piling. Exfoliation is the reversal of stack formation for
weak bonding, in which the lattice spacing is increased in the vertical direction. With
limited spacing, the hexagonal lattice arrangement creates higher bondage [106]. Around
300 nN/µm2 of force has to be applied to separate the graphite into a single atomic
layer [104]. By implementing this method, the layers can be of graphitic substances can be
removed to form graphene sheets with different thicknesses. The exfoliation method can
be executed by ultra-sonication, an electric field, using scotch tape, or the transfer printing
process [107]. The drawback of this method is that it cannot be used at a large-scale for
industrial manufacturing [108].

2.3.2. Chemical Reduction of Graphite

In 1962, the first single-layer graphene sheets were produced through the reduction
of graphite. Chemical reduction is another method used to generate a higher amount of
graphene from graphite. The oxidation of graphite with oxidants, including potassium
permanganate, nitric acid, and condensed sulfuric acid, produces graphene oxide. The
reduction of GO and sonication are two other synthesis methods for producing graphene.
Reducing agents include NaBH4, ascorbic acid, hydroxylamine, glucose, phenyl-hydrazine,
pyrrole, hydroquinone, and alkaline solutions [107]. Graphene production can be carried
out via the electrochemical reduction process by sonicating the graphite oxide into GO
nanoplatelets. Finally, the oxygen groups can be removed by implementing the reducing
agent (hydrazine) [109]. Even then, the flacks may provide some extra oxygen. For a single-
or double-layered GO, sonication in water can be used first, followed by filtration to deposit
the GO onto the surfaces. In addition, forming reduced graphene in an organic solvent
using solvothermal reduction is a simple method [110]. In the direct sonication of graphite,
the production yield is very low, and the separation process is quite tough [104].

2.3.3. Chemical Exfoliation

Chemical exfoliation is the most effective way to increase graphene production in
the top-down phase. It involves two simple stages. Using oxidants such as potassium
permanganate, nitric acid, and powdered sulfuric acid, the interlayer spacing is initially
improved by reducing van der Waals forces. Finally, the graphene is exfoliated in single or
multi-layers through fast heating or sonication [104]. After its invention in 1860, graphene
was synthesized using three different methods: the Brodie, Staudenmaier, and Hummers
methods [107]. Owing to the low toxicity and well-organized structure of the graphene
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produced, the Hummers process has proven to be the best method [111]. In this process,
the cost of ionic liquids is very high [112].

2.3.4. Pyrolysis

Additionally, graphene can be synthesized by the pyrolysis process, which is a bottom-
up method. For example, ethanol and sodium (1:1 molar ratio) can be placed in a reactor
throughout the pyrolysis process. Similarly, sodium ethoxide can also be pyrolyzed through
the sonication process [113]. The class of the graphene sheet can be examined by Raman
spectroscopy, electron diffraction, and transmission electron microscopy. It was found that
the formation of multi-layered graphene sheets derived from pyrolytic carbon can have
an average length of 1~3 µm and a width of 200~350 nm [114]. Large-scale production of
graphene is not possible using this technology [112].

2.3.5. Chemical Vapor Deposition (CVD)

Another bottom-up technique for producing graphene is chemical vapor deposition,
which involves the deposition of gaseous reactants onto substrates [115]. The films form on
the exterior of the substrate as the substrate is mixed with the gases in the heated compart-
ment. The temperature of the substrate is the main parameter in executing the reactions.
In this process, the coating is smaller in extent and has a lower micron thickness. Then,
the vaporization of solid substances towards condensation onto the substrate is carried
out [116]. Two CVD processes are available for graphene synthesis: low-pressure chemical
vapor deposition (LPCVD) and ultra-high vacuum chemical vapor deposition (UHVCVD).
LPCVD is carried out at sub-atmospheric pressures to boost performance while preventing
unwanted reactions, whereas UHCVD is carried out at very low atmospheric pressures
(around 6–10 Pascal) [117]. The small scale of production is the major disadvantage of this
method [112].

2.3.6. Epitaxial Growth

Epitaxial growth is one of the strategies implemented for the growth of graphene
on surfaces. The epitaxial growth process, which involves heating and cooling a silicon
carbide (SiC) crystal, can be used to make graphene. On the Si face of the crystal, single- or
multilayer graphene is formed, while the C face produces just a few layers of graphene [118].
The outcome depends on the temperature, pressure, and heating rate of the process. The
silicon carbide (SiC) lattice can be made from nickel (III) surfaces through the nickel
diffusion process by evaporation, as their constant lattice difference is about 1.3% [119].
Carbon diffusion occurs through the nickel coating during heating, forming graphene
or graphite on the soil. In comparison to the silicon carbide lattice without nickel, the
produced graphene is easy to distinguish from the exterior. The graphene generated in this
way is not completely homogeneous as a result of grain boundaries and defects [107]. To
increase the economic and practical feasibility, the technical issue of high temperatures and
the expensive cost of SiC should be considered [108].

2.3.7. Plasma Synthesis

Plasma synthesis, which includes both plasma-enhanced chemical vapor deposition
(PECVD) and the plasma doping technique, is another bottom-up method for producing
graphene [120]. Various kinds of plasma are used in the synthesis process, including
energetic particles, electrons, extremely reactive radicals, and photons. Direct current
plasma-enhanced chemical vapor deposition (DC-PECVD), inductively coupled plasma-
enhanced chemical vapor deposition (ICP-PECVD), and microwave plasma-enhanced
chemical vapor deposition (MPECVD) are the three forms of PECVD [107]. In the DC-
PECVD process, plasma ions and atoms strike the cathode, causing sputtered atoms to
disperse through the plasma and cause impure atoms during graphene processing. Wave
heating is used to remove impurities in the ICP-PECVD phase, which produces plasma
in the absence of electrodes. Pressure, temperature, and gas flow rate are all factors that
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influence reaction activity [121]. The plasma is generated in the MW-PECVD using wave
heating and wet etching on graphene films with no polymer contamination, metallic
impurities, or metal catalysts. This plasma synthesis method has many benefits, including
a lower energy requirement, a shorter processing time, increased catalyst stimulation,
minimal environmental pollution, and consistent properties during the process [120].
Despite the fact that gas-phase precursor materials are used, the process is expensive [104].

3. Water Treatment

Treating water is indispensable due to domestic, industrial, commercial, and agricul-
tural activities in both developed and developing countries [122]. It was found that around
2.2 million people die each year due to the consumption of polluted water [123]. The cost of
treating waterborne diseases around the world is approximately USD 7.3 million [124]. At
least 2 billion people utilize polluted water sources worldwide. More than 2 billion people
reside in nations with water scarcity, and the situation is predicted to worsen in some areas
due to population growth and climate change [125].

The water treatment process for the main carbonaceous materials (activated carbons,
graphene, and carbon nanotubes) is explained in Figure 6 [11]. The severity of water
pollution is predicted to increase, as it is affected by human activities. Hence, with the
growth of population and population density, water shortages add to the danger of polluted
water [126]. By 2025, it is expected that 4 billion people will suffer from extreme water
shortage if the current population trend and usage patterns continue [127]. Consequently,
practical and economical technology is essential for water treatment, reuse, and reclamation.
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3.1. Activated Carbons in Water Treatment

The discharge of untreated wastewater into the environment has devastating effects
on humans and can cause difficulties during conventional water treatment. Traditional
water treatment aims to reduce contaminant levels in water and provide safe and filtered
water for consumption and disposal. Some conventional water treatment methods are
coagulation, sedimentation, membrane or media filtration, adsorption by activated carbons,
biological therapy, and oxidation. The most common and widespread method in industrial
wastewater and water treatment is utilizing an activated carbon as an adsorbent [128].
There have been numerous reports on the capability of activated carbons to adsorb various
types of pollutants. Activated carbons are also excellent adsorbents that are more effective
in removing organic compounds than metals and other inorganic contaminants. Many
approaches are still in progress to significantly enhance carbon surface potential by using
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distinct chemicals or appropriate treatment techniques to improve AC performance for
specific contaminants [50].

3.1.1. Dye Removal

Some of the factors affecting the adsorption capability of biochar with respect to numer-
ous pollutants include the activation method, which could enhance the chemical/physical
properties of the biochar. When these properties change, their surface areas change as
well. Pore shapes are improved, surface functional groups are introduced, and surface
hydrophobicity changes. The most notably refined properties of physical and chemical
activation are pore volume and surface area, to different extents [129]. As the surface
areas and pore structures are modified, there is a possible improvement in the removal
of contaminants, as the surface area can be increased and microporous and mesoporous
structures can be created. This is due to the increased availability of contact sites between
activated carbons and contaminants, coupled with the formation of pores that are easily
accessible for pollutants [130].

When the functional groups (hydroxyl, carboxyl, amino, etc.) increase, there are
additional bonding positions for heavy metals, which boosts the driving strength of the
metal adsorption in the biochar, which includes ion exchange, outside complexation, and
electrostatic attraction [131]. Biochar hydrophobicity could increase with the improvement
of the interconnection between the organic pollutants and the surface of the biochar [132].
After the activation step, the activated carbon surface can also be improved by three types
of modifications for water treatment applications: chemical amendment, physical change,
and biological modification. Other surface alteration methods include oxidative and non-
oxidative processes [133]. Some examples of complexing groups that are incorporated into
the surfaces of activated carbons are carboxylic, lactonic, and phenolic groups. There have
been studies reporting the coupling of activated carbons with the coagulation procedure,
resulting in the enhanced elimination of natural organic matter (NOM) by 70% [134].

Furthermore, activated carbons can also eliminate the hydrophilic fraction of natural
organic matter, which cannot be well removed by the coagulation process [135]. Due to
activated carbons (ACs) being widely used as adsorbents, some of the regular applications
include the adsorption of organic materials, such as phenol, dyes, and heavy metal ions
(mercury, chromium, cadmium, arsenic, and lead). The dye adsorption capacities of the
activated carbons derived from lignocellulosic biomass are shown in Table 1. In modern
industry, vast amounts of wastewater containing phenolic compounds and dyes are gen-
erated, the organic compounds and dyes being considered harmful to the environment.
Moreover, most of the colors are found to be entirely unsusceptible to biodegradation
processes [136]. The surface chemical properties of activated carbons are important when
it comes to adsorbing dyes. According to Table 1, wild olive cores activated by H3PO4
have the highest dye adsorption capability of 781.25 mg/g. The dye removed is basic 46 at
a pH of 4. Flamboyant pods have the second-highest dye adsorption capacity in Table 1.
They remove acid yellow 6 at a pH of 2 and have an adsorption capacity of 673.68 mg/g.
Date stones are next, as they have an adsorption capability of 398.19 mg/g. The carbon is
activated using ZnCl2 to remove methylene blue at pH 7.

Table 1. Removal of dyes and heavy metals by activated carbons.

Dye Adsorption by Activated Carbons

Dye
Activating

Agent Raw Material SBET (m2/g) pH
Adsorption

Capacity (mg/g) Ref.

Methylene blue KOH Water hyacinth 6.6 587.92 1765.52 [137]

Methylene blue NaHCO3 Medulla tetrapanacis 9 923 1116.94 [138]

Anionic Phosphoric acid Raffia palm shells 2 - 1762.93 [139]

Methyl orange HNO3 Coffee grounds 3 658 - [140]
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Table 1. Cont.

Dye Adsorption by Activated Carbons

Dye
Activating

Agent Raw Material SBET (m2/g) pH
Adsorption

Capacity (mg/g) Ref.

Basic green 4 CO2 Durian peel - 3 312.5 [141]

Reactive red 120 H3PO4 Jute fiber - 6 200 [142]

Malachite green (mg) K2CO3/CO2 Bamboo 1724 5 263.58 [143]

Methylene blue CO2/steam Oil palm wood 1084 - 90.9 [144]

Acid yellow 6 NaOH Flamboyant pods - 2 673.68 [145]

Eriochrome black T Thermal Rice hulls - 2 0.04 [146]

Acid red 114 H2SO4 Sesame 229.65 3 102.4 [147]

Malachite green ZnCl2 Coconut coir 205.27 - 27.44 [148]

Methylene blue ZnCl2 Date stones 1045.61 7 398.19 [149]

Basic red 46 H3PO4 Wild olive cores 969 4 781.25 [150]

Methylene blue ZnCl2 Pineapple waste 914.67 - 288.34 [151]

Methylene blue HCl Acacia fumosa seeds - 6 10.49 [152]

Acid red 114 H2SO4 Pongam seeds 324.79 3 3.33 [147]

Malachite green NaOH Tea leaves 134 4 256.4 [153]

Yellow 18 ZnCl2 Sour cherry 1704 2 75.76 [154]

Methyl violet CO2 Kapok 647–897 - 160.3 [155]

Amido black 10b H2SO4 Palm flower 9.57 - 4.04 [156]

Malachite green HNO3 Oakwood 68.5180 - 4.34 [157]

Methylene blue H3PO4 Vetiver roots 1004–1185 - 394 [158]

Malachite green H2SO4 Ricinus communis - 7 27.78 [159]

Heavy Metal Adsorption by Activated Carbons

Heavy Metal Activating
Agent Raw Material SBET (m2/g) pH

Adsorption
Capacity (mg/g) Ref.

Cr (VI) Citric acid Waste walnut shells 4.2 75.26 602.47 [160]

Pb (II) Cs2CO3
Palm tree

(Phoenix Dactylifera) 7 - 2704 [161]

Cr (VI) KOH Leather industry waste 5 41.6 0.124 [162]

As (V) KOH Apricot stones 7.3 75.9 733.6 [163]

Fe (III) HNO3 Bulgarian lignite 2.7 - 293 [164]

Pb ZnCl2 Hazelnut husks 1092 5.7 13.05 [165]

Pb H3PO4 Sugar cane bagasse - 4 8.58 [166]

Pb ZnCl2 Van apple pulp 1067 4.0 17.77 [167]

Pb H3PO4 Lemna minor 531.9 6 170.9 [168]

Pb ZnCl2 Coffee residue 890 5.8 63 [169]

Cr Ozone Rice husks 380 2 8.5 [170]

Cr Thermal Olive bagasse 718 2 109.89 [171]

Cr NaOH Longan seeds 1511.8 3 169.5 [172]

Cr H2SO4 Date palm seeds - 1 120.48 [173]

Cr KOH Peanut shells 95.51 2 16.26 [174]
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Table 1. Cont.

Heavy Metal Adsorption by Activated Carbons

Heavy Metal Activating
Agent Raw Material SBET (m2/g) pH

Adsorption
Capacity (mg/g) Ref.

Hg ZnCl2 Walnut shells 780 2 151.5 [175]

Hg H2SO4 Rice straw - 5 142.88 [176]

Hg H2SO4 Sago waste 625 5 55.6 [177]

Hg ZnCl2 Residue of liquorice 1492.4 8 24.78 [178]

Hg KOH Coconut pith 505 - 0.74 mmol/g [179]

Cd KOH Olive stones 1280.71 6 11.72 [180]

Cd HNO3 Oak wood 68.518 9 3.31 [157]

Cd H3PO4 Nutshells 1556.9 10 104.17 [181]

Cd H3PO4 Aguaje 1202 5 26.33 [182]

Cd H3PO4 Olive fruit stones 1283 5 24.83 [182]

3.1.2. Heavy Metal Removal

Heavy metals pose a danger to human health, animals, and plants. Hence, they are
widely studied to minimize the harmful effects they cause. They usually exist in the waste
discharges produced from the mining, petrochemical, tannery, and textile industries [183].
Activated carbons extracted from lignocellulosic materials have been successfully used
by researchers all over the world to study the adsorption of heavy metals, such as iron,
chromium, arsenic, and cadmium. Table 1 reveals that Lemna minor has the largest
adsorption potential for the removal of lead, with 170.9 mg/g. Phosphoric acid and a pH
of 6 are used to activate it [168]. Lead must be avoided because prolonged exposure can
cause edema, mental retardation, liver and kidney injury, decreased hemoglobin synthesis,
miscarriage, and abnormalities in pregnant women [184]. As for chromium removal, longan
seed activated using NaOH at a pH of 3 is found to adsorb the heavy metal at the highest
adsorption capacity of 169.5 mg/g [172].

Chromium is considered one of the top-priority toxic heavy metals in wastewater.
There are two stable oxidation states of chromium, which are Cr (III) and Cr (VI). Cr (VI)
is found to be more noxious than Cr (III), as it is very soluble and can be easily absorbed
and accumulated in the body, especially in the kidneys, stomach, and liver [185]. The other
heavy metal adsorbed is mercury, and it is regarded as one of the most dangerous metals.
The MCLG (Maximum Contaminant Level Goal) for mercury is set at 2 parts per billion
(ppb). According to the Environmental Protection Agency (EPA), at that level, mercury
would not lead to any potential health problems. Based on Table 1, the walnut shells
activated using ZnCl2 at pH 2 were found to remove mercury with the highest adsorption
capability of 151.5 mg/g [175]. Nutshells were found to be the best absorbers of cadmium,
which is a non-biodegradable heavy metal that travels through the food chain. It was
found that concentrations of 10–326 mg Cd2+/L of cadmium are severely harmful; however,
non-fatal symptoms were reported. The nutshells used were activated using phosphoric
acid at a pH of 10. This study also concluded that the adsorption of cadmium on the
adsorbents is pH-dependent, and the pH range of 8–12 is that in which the maximum
adsorption takes place [181].

3.1.3. Removal of Pesticides

Pesticides are important for modern agriculture, but they can contaminate water when
they are used. In agriculture and gardening, pesticides such as bentazon, carbofuran, and
2,4-Dichloro-phenoxyacetic acid are widely used. Their optimum water concentrations
are set at certain thresholds because of their carcinogenicity and mutagenicity, which are
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deliberate dangers to the natural ecosystem and human health. For bentazon, carbofuran,
and 2,4-Dichloro-phenoxyacetic acid, the maximum allowable concentrations in water
are 0.05 mg/L, 0.09 mg/L, and 0.1 mg/L, respectively [186]. In light of this, one of the
most powerful separation methods for removing chemicals from water supplies is adsorp-
tion [69]. Table 2 also summarizes how date stones, olive kernels, soya stalks, etc., were
commonly used as pesticide adsorption predecessors. El Bakouri et al. [187] investigated
the adsorption of date-stone ACs on various forms of drin pesticides from aqueous so-
lutions, including dieldrin, aldrin, and endrin. The highest adsorption capabilities for
endrin, dieldrin, and aldrin were 228.05 mg/g, 295.30 mg/g, and 373.23 mg/g, respectively,
indicating an improvement in adsorption potential from endrin to aldrin. Since aldrin had
the lowest solubility in this experiment, it can be inferred that the rise in adsorption was
caused by a decline in pesticide solubility in water.

The adsorption capabilities of physiochemically stimulated date-seed activated car-
bons were investigated by Salman et al. [188]. Date seeds were treated physiochemically
with CO2 and KOH, resulting in adsorption of bentazon and carbofuran of 137.04 mg/g
and 86.26 mg/g, respectively. The disparity in adsorption capacities can be explained by
the fact that the molecular size of carbofuran is smaller than that of bentazon, allowing
for easier diffusion and binding to the AC surfaces. Another researcher repeated the ex-
periment and obtained comparable findings, with bentazon containing 78.13 mg/g and
carbofuran containing 175.4 mg/g. There was also an observation of the adsorption of
2,4-Dichloro-phenoxyacetic acid. According to the report, ACs can remove the pesticides at
175.4 mg/g from an aqueous solution [186]. Physical activation of olive kernels, soya stalks,
and rapeseed stalks developed ACs for the removal of Bromopropylate. The ACs were
stated in the study to have elimination efficacies of up to 100% for all of the feedstock [189].

3.1.4. Phenolic Removal

The chemical and petrochemical sectors produce the majority of phenolic compound-
containing effluents. These contaminants are extremely harmful and carcinogenic, posing
a direct danger to the marine environment and living species [190]. As a result, environmen-
tal and health authorities have specifically restricted phenolic compound concentrations
in water sources, and these contaminants have been prioritized for removal. The Environ-
mental Protection Agency (EPA) has set a limit of 0.1 mg/Lin in industrial wastes for these
toxins, while the World Health Organization has set a limit of 0.001 mg/L for phenols in
water for consumption [70]. The various forms of adsorbents that were used to remove
phenolic compounds, as well as their adsorption capabilities, are illustrated in Table 2. The
adsorption of Bisphenol A by argan-nutshell ACs was investigated by Zbair et al. (2018)
at 293 K, and the optimum adsorption potential was found to be 1250 mg/g [191]. As
compared to commercial ACs, the generated ACs performed better in terms of adsorp-
tion. Durian peel is sometimes used as a precursor for this adsorption. However, despite
the adsorption process lasting a day, the adsorption found with durian-peel ACs was
4.2 mg/g [192].

Table 2. Applications of ACs in phenolic and pesticide removal from water.

Applications of ACs in Phenolic Removal from Water

Adsorbent Activator Adsorbate SBET (m2/g) pH Qm (mg/g) Ref.

Acacia mangium ACs H3PO4 Phenol 1767 3 53.8 [193]

Soybean-curd-residue ACs KOH Phenol 253.14 2 - [194]

Antibiotic-mycelial-
residue ACs - Phenol 1369.76 - - [195]

Kenaf-rapeseed ACs CO2 Phenol 1112 10 84.1 [196]

Date-pit ACs CO2 Phenol - - 161.8 [69]
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Table 2. Cont.

Applications of ACs in Phenolic Removal from Water

Adsorbent Activator Adsorbate SBET (m2/g) pH Qm (mg/g) Ref.

Avocado-kernel ACs CO2 Phenol 206 6 90 [196]

Açaí-seed ACs Ar/CO2 Phenol 496 3.5–8 133 [197]

Baobab-wood ACs H3PO4 Phenol 1682 3 240 [198]

Date-pit ACs ZnCl2 Phenol - 7 169.5 [69]

Coconut-husk ACs KOH 2,4,6-trichlorophenol - 2 716.10 [196]

Loosestrife ACs H3PO4 2,4,6-trichlorophenol 1255.75 - 367.65 [199]

Date-pit ACs H3PO4 o-Nitrophenol - - 142.9 [69]

Date-pit ACs KOH p-Cresol - - 322.5 [69]

Avocado-seed ACs H2SO4
Resorcinol,

3-aminophenol 1432 7 Resorcinol: 407
3-aminophenol: 454 [192]

Durian-peel ACs H2SO4 Bisphenol A - - 4.2 [192]

Argan-nutshell ACs H3PO4 Bisphenol A 1372 - 1250 [191]

Elimination of Pesticides by ACs

Activated Carbon Sources Activator Adsorbate SBET (m2/g) pH Qm (mg/g) Ref.

Coconut charcoal Methanol Monocrotophos 79.4 7 103.9 [200]

Navel orange
(Citrus sinensis L.) H3PO4 Chlorpyrifos 94.26 6.8 - [201]

Dates (Phoenix dactylifera L.) H3PO4 Chlorpyrifos 111.75 6.8 - [201]

Pomegranates
(Punicagranatum L.) H3PO4 Chlorpyrifos 183.89 6.8 - [201]

Bananas (Musa sp.) H3PO4 Chlorpyrifos 289.86 6.8 - [201]

Date stones Steam Aldrin - - 373.23 [187]

Date stones Steam Dieldrin - - 295.30 [187]

Date stones Steam Endrin - - 228.05 [187]

Date seeds CO2/KOH Bentazon 1322 5.5 86.26 [188]

Date seeds CO2/KOH Carbofuran - - 135.14 [186]

Date seeds CO2/KOH Bentazon - - 78.13 [186]

Date seeds CO2/KOH Dichlorophenoxyacetic
acid - 3.6 238.10 [69]

Olive kernels Steam Bromopropylate 600 - Up to 100% removal [189]

Soya stalks Steam Bromopropylate 570 - Up to 100% removal [189]

Rapeseed stalks Steam Bromopropylate 490 - Up to 100% removal [189]

The adsorption of phenols was achieved using lignocellulosic biomass, such as date
pits, avocado kernels, kenaf rapeseed, and Aça seeds. H3PO4-activated baobab-wood ACs
are said to be the strongest adsorbents among these ACs. At 50 ◦C and an optimum pH of 3,
maximum adsorption was achieved in 24 h. In their analysis, Bansal et al. [202] found that
acidic functional groups on AC surfaces reduced adsorption efficacies, while non-acidic or
essential functional groups increased adsorption. Another study found that date-pit ACs
were activated with both KOH and H3PO4 to remove phenolic compounds (o-Nitrophenol
and p-Cresol). The alkali-treated ACs could extract 322.5 mg/g of phenolic compounds,
while the acid-treated ACs could only eliminate 142.9 mg/g [69].
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3.1.5. Pharmaceutical Component Removal

Pharmaceutical compounds are emerging contaminants in the atmosphere, with
widespread application in human, agricultural, and aquaculture activities. The increasing
use of pharmaceuticals has resulted in their persistent discharge into marine ecosystems
over time. They can be persistent in water due to their high steadiness and hydrophilicity,
posing a danger to the ecosystem. Despite the fact that pharmaceuticals have very low
concentrations in water, usually trace amounts, they may also have negative effects on the
atmosphere [203–205]. The removal of pharmaceutical compounds by activated carbons is
explained in Table 3.

Table 3. Activated carbons for pharmaceutical-compound elimination.

Adsorbent Activator Adsorbate SBET (m2/g) pH Qm (mg/g) Ref.

Paper-mill-sludge ACs KOH
Carbamazepine,

sulfamethoxazole,
and ibuprofen

795 8
154 ± 11,

167 ± 12 and
147 ± 8

[206]

Coconut-shell ACs HNO3, H2SO4

2, 2′-azino-bis
3-ethylbenzothiazole-

6-sulphonic acid
1100 5 180.5–735.2 [207]

Granular activated carbons - Peroxymonosulfate
and peroxydisulfate 1040 7.13 - [208]

Cork-powder ACs Steam Ibuprofen - 2–11 378.1 [204]

Mung-bean-husk ACs Steam Ibuprofen - 2 62.5 [204]

Cork-powder ACs K2CO3 Ibuprofen - 2–11 145.2 [204]

Mugwort-leaf ACs H2SO4 Ibuprofen - 2 16.95 [204]

Waste-apricot ACs ZnCl2 Naproxen - 5.82 106.4 [204]

Olive-waste ACs H3PO4 Naproxen - 4.1 39.5 [204]

Olive-waste ACs H3PO4 Ketoprofen - 4.1 24.7 [204]

Sawdust ACs ZnCl2 PC - - 226.71 [209]

Primary-paper-mill-
sludge ACs HCl PAR - - 405 [209]

Lagenaria
vulgaris-shell ACs - Ranitidine 665 2–11 315.5 [210]

Date-stone ACs - Levofloxacin 817 2–12 100.4 [210]

Cyclamen
persicum ACs - Diclofenac 799–880 2–12 22.22 [210]

Paper-mill-sludge ACs K2CO3 SMX, CBZ, PAR 1583 -
SMX = 75%
CBZ = 85%
PAR = 84%

[211]

Ahmed et al. [204] gathered information on and investigated the various forms of
precursors used to remove ibuprofen from aqueous solutions. ACs are made by physically
and chemically activating olive stones, mung-bean husks, cork powder, and mugwort
leaves. The best finding was confirmed to be steam-activated cork powder, which was
capable of dissolving 378.1 mg of ibuprofen in one gram of water. As opposed to K2CO3-
treated cork powder, steam-activated cork powder came out on top. CO2-powered olive
stones performed better than the other activated carbons, with an adsorption potential of
282.6 mg/g compared to 200 mg/g for the others.

In terms of naproxen elimination, the activated carbons from waste apricots and
waste olives can be contrasted. After an adsorption time of 26 h, ZnCl2-treated waste-
apricot ACs absorbed 106.4 mg/g of the pharmaceuticals, while H3PO4-treated olive-
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waste ACs removed just 39.5 mg/g. The adsorption of naproxen and ketoprofen was also
tested for olive waste. The adsorption capacities of ACs were compared using the same
precursor (olive waste) and treatment (phosphoric acid). Olive-waste ACs adsorb naproxen
(39.5 mg/g) more than ketoprofen (24.7 mg/g), according to the findings. Olive-waste
ACs were not to be suitable adsorbents for medicinal composites, as the findings were
disappointing. Primary-paper-mill-sludge ACs, on the other hand, were shown to be strong
adsorbents, with a higher adsorption potential of 405 mg/g for paroxetine and elimination
efficiencies of 75.0, 85.0, and 84.0% for carbamazepine (CBZ), sulfamethoxazole (SMX), and
paroxetine (PAR), respectively [209,211].

3.2. Carbon Nanotubes

Carbon nanotubes are used in a variety of applications due to their smooth construc-
tion and almost cylindrical shape. They are suitable for use as single-walled nanotubes
and multi-walled nanotubes due to their thermal, mechanical, electrical, and physical
properties. Carbon-nanotube manufacturing has exploded in recent years due to their
high performance. Nanomaterials have received greater recognition as being utilizable
in advanced water treatment technologies [212]. They are normally defined as materials
that are less than 100 nm in at least one direction. Owing to their huge surface areas and
modifiable pore sizes, carbon-based nanomaterials, such as charcoal, activated carbons,
carbon nanotubes, and graphene, have been used for filtration and adsorption [213]. There
have been numerous studies on carbon nanomaterials in wastewater treatment.

3.2.1. Dye Removal

Since the surface-area-to-volume ratios of carbon nanotubes are greater than those
of other adsorbents, their mechanical, electrical, and physical properties significantly
affect dye adsorption. As a result, the reactions between dye molecules and CNTs are
more efficient, resulting in increased interaction across the surface area and an increase in
adsorbent performance [214]. The adsorption capabilities of carbon nanotubes for different
dyes are shown in Table S1 [215–230]. Regarding the most used dyes, malachite green
and methylene blue, carbon nanotubes adsorbed 13.95 and 188.68 mg/g, respectively, in
normal pH conditions [215,217]. The basic red 46 dye was eliminated at 38.35 mg/g for
100 min of experiments with pH 9 [218]. For the elimination of reactive black 4 and reactive
black 5, the performance of MWCNTs was effective, with values of 502.5 and 1082.07 mg/g,
respectively [222,223]. The multi-walled carbon nanotubes showed a removal of acid blue
161 of 1000 mg/g for 60 min operation periods [227]. CNTs are made up of graphene or
graphitic sheets with a unique sidewall curve and a conjugative structure that has a highly
hydrophobic surface. The key pathways for CNTs to absorb various dyes are determined by
the cationic or anionic properties of the dyes [231]. The dye adsorption potential of CNTs
is rarely straightforward. Dye-removal performance is affected by hydrophobic behavior,
van der Waals forces, piling, hydrogen bonding, and electrostatic interactions occurring
together or separately [232].

3.2.2. Heavy Metal Removal

CNTs have been used in a variety of studies to remove inorganic pollutants from
aqueous solutions [233]. The vast surface area, porosity, surface functional groups, and
interactions between contaminants and CNTs all influence the adsorption potential of
CNTs against inorganic contaminants [234]. Combined CNTs with polymeric membranes
improve the removal performance of heavy metals and arsenic by adsorption into the CNT
membranes due to these properties. Internal sites, interstitial channels, grooves, and outer
surfaces are the most common sites for pollutant adsorption onto the CNTs. The numerous
sorption sites present on the CNT surfaces bind the heavy metals, causing the adsorption
of heavy metals into CNTs [235]. The electrostatic interaction force between the negative
charge on the surface of CNTs and divalent metal ions is predicted to result in strong CNT
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adsorption [236]. Solution pH is essential for the metal adsorption of CNT membranes
because of the protonation and deprotonation of CNTs [237].

Cation adsorptions are more efficient at raising negative charges on CNT surfaces
at higher pH (alkaline). Due to the protonation of functional groups on CNTs, removal
efficiency is reduced at lower pH (acidic) [238]. The oxidation doping of MWCNT mate-
rials to remove cadmium from an aqueous solution was highly dependent on pH, while
ethylenediamine-functionalized MWCNTs had a high removal efficiency for Cd in the pH
range of 8–9 [239]. The elimination of metal ions is based on the competitive influence of
metal cations and anions on CNTs, in addition to pH. Studies found that the attraction
between divalent cation ions, such as Pb2+ and anionic surfactants, led to the successful
removal of metal ions from CNTs in the presence of sodium dodecylbenzene sulfonate. In
the presence of benzalkonium chloride, on the other hand, the adsorption of Pb2+ decreases
dramatically [240].

Furthermore, owing to the presence of negative and positive charges, the interactions
between CNTs and heavy metals vary. Adsorption of Cr(III) with nitrogen-doped magnetic
CNTs, for example, occurred due to chemical adsorption, while adsorption of Cr(III) with
acid-modified CNTs occurred due to electrostatic interactions between CNTs and Cr (III).
The unique surface areas of CNTs are available for inorganic pollutant adsorption, and the
productivity improves as the diameter of the CNTs decreases. As a result of the interaction,
metal ion adsorption on CNTs is determined by the functional groups present on CNT
surfaces rather than CNT distance. The adsorption of As(III) and As(V) by CNTs of the
same diameter with two separate functional groups (zirconia nanohybrid and iron oxide)
was studied, and it was discovered that both As(III) and As(V) were strongly associated
with CNTs for zirconia nanohybrids relative to iron oxide-coated CNTs [241]. The removal
efficiency of heavy metals by different CNTs is explained in Table 4.

Table 4. Experimental observations were obtained by utilizing multifunctional CNTs.

Material Type Surface Area (m2/g) Pollutant Effect on Water Purification Ref.

NiO/MWCNTs 245.3 Cadmium (Cd) (II) - [242]

CNTs-TMPDET 120 Platinum (Pt) (IV) 260 mg/g [243]

CNTs-MnO2 110.4 Silver (Hg) (II) 58.8 mg/g [244]

CNTs/Fe3O4-NH2 90.7 Lead (Pb) (II) 75.0 mg/g [245]

AA-CNTs 203.0 Chromium (Cr) (VI) 264.5 mg/g [246]

SWCNTs 400.0 Cadmium (Cd) (II) 21.2 mg/g [247]

OH-SWCNTs/RGO - Cupper (Cu) (II) 256 mg/g [248]

Purified SWCNTs 423.0 Zinc (Zn) (II) 41.8 mg/g [249]

Oxidized CNTs - Cobalt (Co) (II) 85.7 mg/g [250]

CNTs can be utilized for physical adsorption owing to the Van der Waal forces; physical
and chemical adsorption are also possible when surface functional groups are present [251].
Carbon nanotubes have exceptional performance as adsorbent media for multiple organic
(drug particles, insecticides, dyes, and other organ halides), inorganic, and biological (fungi
and algae) water pollutants. CNTs have different functions in photocatalysis, disinfection,
desalination, composites, hybrids, and detection. As for doped CNTs, they have been
utilized for desalinating seawater and brackish water [252]. Their ideal adsorption material
is due to their structure, as they have bigger surface areas and a robust hollow structure.
According to one study, it was found that the morphologies of carbon nanotubes have
a significant influence on their adsorption capabilities [253].

There have been many studies carried out on CNTs as adsorbents. Recently, a study
compared the adsorption capability of copper ions (Cu2+) from water by non-functionalized
and functionalized carbon nanotubes. It was found that CNTs functionalized with sul-
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furic acid (H2SO4) and HNO3 showed better removal efficiency. The CNTs were able to
remove up to 94.5% in the ideal conditions (pH 5 and 0.2 g) for 101 min of contact time
at a temperature of 90 ◦C [254]. Another study reviewed the different types of raw and
surface-oxidized CNTs used to adsorb metal ions (Cu2+, Cd2+, Zn2+, Ni2+, Pb2+, etc.) from
a water solution [255]. The results showed that oxidized CNTs from NaOCl, KMnO4,
and HNO3 adsorbed better than raw CNTs. The contact of ions on the CNT surfaces by
hydroxyl, carboxyl, and carbonyl functional groups, which are available after the func-
tionalized procedure, as well as metal ions, constitutes the mechanism of adsorption. It
was also reported that MWCNTs can be used as sound absorbents for the elimination of
Reactive Red M-2BE textile dye from aqueous solutions [224], as they removed at least
98.7% of the dye in a high-saline-concentration medium.

Other than heavy metals discharged by industry as a major water pollution source,
bacteria and viruses have also been recognized as significant contaminants. Researchers
have studied the effect of CNTs on removing these contaminants from water. They applied
severe cytotoxicity and pulmonary poisoning to animal cells. SWCNTs were found to
have the highest toxicity level, followed by MWCNTs, quartz, and C60 [256]. Some factors
need to be taken into account to maximize the disinfecting ability of CNTs, including the
degree of aggregation, the correlating stabilization effects by NOM, and the bioavailability
of the CNTs [257]. CNTs with a very high purity level exhibit reliable antimicrobial
performance [258], with dangerous destruction to cell membranes occurring; this is due to
the straight interaction with SWCNTs.

3.2.3. Pathogen Removal

Bacteria, viruses, and protozoa are the most common pathogenic microorganisms
present in drinking water and drainage effluents [259]. CNTs have the capability to inacti-
vate or remove bacteria (Micrococcus lysodeikticus, Salmonella, Escherichia coli, and Strep-
tococcus mutans), viruses (MS2 bacteriophages), and protozoa (Tetrahymena pyriformis).
SWCNTs were found to effectively inactivate E. coli, such that they could penetrate the cell
walls. Chemically engineered CNTs have a greater affinity for microorganism cell walls
than pristine CNTs and polymeric membranes. Microorganisms in direct interaction with
CNTs can have negative effects on metabolic function, cell-wall integrity, and bacterial
(E. coli) morphology. The ability of CNTs to inactivate bacteria depends on their ability to
penetrate the cell wall of the microorganisms [260].

Bacterial removal performance can be improved by using functionalized CNTs with
silver nanoparticles. For example, three distinct forms of Ag-doped CNTs with different
impregnation ratios (1, 10, and 20 wt.%) effectively removed 100% of E. coli bacteria. The
toxic effects of nanosized Ag-CNTs are attributed to their ability to destroy or remove
microorganisms from water. The diameter of CNTs was found to play a significant role in
the elimination of bacteria and other microbes from wastewater in the majority of studies
performed [261]. The removal characteristics of microorganisms by CNTs are demonstrated
in Table S2 [262–269]. It goes without saying that the surface areas, pore volumes, and
structures of CNTs are not the only factors that influence microorganism adsorption perfor-
mance. Some factors simultaneously increase and decrease the potential of CNTs. Other
factors, such as environmental chemical characteristics, such as pH, temperature, toxins,
and ionic water pressure, may also play a role in changing the adsorption rate of CNTs.
As a result, for a thorough understanding of CNT adsorption, all parameters should be
double-checked [270].

3.2.4. Removal of Other Contaminants

Organic contaminants in the form of dissolved materials with a wide molecular-
weight range may be present in water, causing animal, plant, and human decay [238].
Based on their preference for nonionic resin and aquagenic activity, organic matter that
forms in water is known as hydrophilic or hydrophobic. Pedogenic, hydrophobic, and
aquagenic polysaccharides are among these entities, and they play a significant role in
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natural organic matter [271]. Organics, such as poisons, herbicides, and pharmaceuticals,
are introduced into water as a result of human activities. Since these organics have harmful
health consequences, it is important to handle water in which they are present with CNTs,
since organics are difficult to extract using conventional low-pressure membranes, such as
RO and NF [272]. As a result, developing novel CNT membranes with high permeability is
critical for efficiently removing organic pollutants from water.

For small dissolved organics and depth filtration, CNT membranes are effective at
removing natural organic matter through filtration [273]. CNTs were able to remove 95%
of pharmaceuticals and personal-care items (PPCPs) by increasing the aromatic rings
and surface areas [274]. The π-π interactions, chemical adsorption, hydrogen bonding,
and van der Waals forces between them all contribute to the removal performance of
CNT membranes with respect to organic contaminants. Due to the higher electrostatic
repulsion forces and lower interactions, the adsorption of natural organic matter by CNTs
reduces as the number of oxygenated functional groups on the surfaces increase. The same
thing happened when the pH was raised, which increased the electrostatic repulsion force
between CNTs and organic matter [275]. The broad surface areas of CNT membranes and
the π-π interactions between the aromatic rings of CNT membranes and natural organic
matter resulted in a high removal of natural organic matter by CNTs [276]. Removal
efficiencies of organic contaminants by CNT membranes are presented in Table 5.

Table 5. Removal of organic contaminants by CNT membranes.

Adsorbate Pollutants Removal Efficiency Ref.

MgAl2O4@CNTs MgAl2O4 100% [277]

CNTs Polyacrylonitrile Above 95% [278]

CNTs Polyaniline 93.4% [279]

CNT nanocomposites PPCP Improvement
of 45% [280]

CNT nanocomposites PPCP 95% [274]

M-MWCNTs coated with Calcium Humic acid 90.2% [281]

Functionalized CNT buckypaper Humic acid >93% [276]

Polyelectrolyte CNTs Bovine serum albumin
(BSA) 99.9% [282]

b-cyclodextrin grafted MWCNTs
(MWCNT-g-CDs)

Polychlorinated
biphenyls >96% [283]

The adsorption competition between organic chemicals in water and CNT surfaces
in organic pollutant removal is similar to that which occurs in inorganic pollutant re-
moval [284]. The proportion of organic pollutants removed will often be unaffected by the
initial concentration of the feeds. As a result, tailoring the surface properties of CNTs is
critical for increased adsorption of various organic materials and improved water treatment.
Similarly, wastewater pretreatment may be an effective way to address these issues. Pre-
coagulation of wastewater effluents, for example, is successful for NOM removal through
competitive adsorption [239].

3.3. Graphene-Based Materials

Antibiotic-polluted water, as well as other biological and inorganic contaminants,
can be successfully treated with graphene-based adsorbents. Graphene-based products
demonstrate the economic and environmental benefits of graphene-based technology. For
contaminants in the adsorption phase, single-layered graphene has two basal planes [285].
Since the functional groups are responsible for the adsorption of metal ions by GO pads,
this is a significant advantage of the material. Graphene-based materials were used to
remove toxins from aqueous fluids in a number of experiments [286]. Graphene, as an
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adsorbent, has excellent removal properties. First, graphene is made up of a single-layered
carbon structure, which means that all of the atoms are exposed to the atmosphere on both
sides, making it possible for them to come into contact with antibiotics (primarily through
π-π interactions). Second, in contrast to conventional adsorbents, graphene adsorbents
have a porous structure and a large surface area, making them an excellent candidate for
quicker antibiotic diffusion or surface reactions, resulting in quick and efficient adsorption.
Third, although the adsorption capabilities of antibiotics are equal, the cost of large-scale
processing of graphene adsorbents is lower than that of other high-performance adsorbents
(e.g., carboxyl multi-walled carbon nanotubes and single-walled carbon nanotubes). There
has been significant progress in the development of graphene adsorbents, but they do have
some intrinsic drawbacks which need to be overcome [287].

3.3.1. Heavy Metal Removal

The majority of studies have focused on using graphene oxide (GO) to remove metal
ions from water [288]. The significance of oxygen-containing functional groups was identi-
fied by comparing the adsorption of Pb (II) by pristine and oxidized graphene sheets [289].
Metal oxides can be mixed with GO and graphene nanosheets (GNs) to form compos-
ite materials. Metal oxide and GO composites have distinct properties and can be used
as effective adsorbents for the treatment of various contaminants. Zn2+, Cd2+, and Pb2+

ions were removed from water using flower-like TiO2 on a GO hybrid (GO-TiO2) [290].
The Zn2+, Cd2+, and Pb2+ adsorption capacities of the GO-TiO2 hybrid were 88.9 mg/g,
72.8 mg/g, and 65.6 mg/g, respectively [291]. Several graphene-based nanocomposites for
heavy-metal ion and organic ion elimination are presented in Table 6.

Table 6. Graphene-based nanocomposites for the elimination of heavy metals and organics.

Graphene Based Nanocomposites for the Elimination of Heavy Metals

Adsorbate Adsorbent SBET (m2/g) Adsorption Capacity (mg/g) Ref.

Lead (II) GO-MnFe2O4 196 673 [292]
Uranium (VI) ZrO2/GO 37.86 128 [293]

Copper (II) GO/Fe3O4 - 18.3 [294]
Cadmium (II) GO/Fe3O4/sulfanilic acid - 55.4 [295]

Chromium (VI) CdO-GO - 399 [296]
Lead (II) rGO/COFe2O4 169.9 299.4 [297]

Cadmium (II) and cupper (II) GO/Mn-doped Fe(III)oxide 180 87.2 and 129.7 [298]
Chromium (VI) GO/SiO2 - 181.81 [299]

Cupper (II) GO/Fe3O4/sulfanilic acid 92.79 50.7 and 56.8 [300]
Copper, lead, and cadmium GO/Fe3O4 49.9 23.1, 38.5 and 4.4 [301]

Lead (II) TiO2/GO - 65.6 [291]
Lead (II) SiO2–GNs 252.5 113.6 [302]

Organic Pollutant Adsorption Using Graphene-Based Materials

Organic Pollutants Adsorbent SBET (m2/g) Adsorption Capacity (mg/g) Ref.

Methylene blue PDOP-GO 20 270 [303]
Ethylene glycol GO-Fe3S4 7.71 21.87 [304]
Methylene blue rGO >1000 174 [305]
Methylene blue Polyethersulfone/GO 24.98 62.50 [306]

Methylene blue, Neutral Red (NR) Fe3O4/GO hybrids - 167.2, 171.3 [307]
Rhodamine B (RhB), Methylene blue Reduced GO-MFe2O4 hybrids - 92% and 100% [308]
Methylene blue, methyl violet (MV) GO sponge 48.409 397, 467 [309]

Methylene blue, Congo Red (CR) Fe3O4-GNs 118.175 45.3, 33.7 [310]
Methylene blue GO 28 351 [311]
Methylene blue Reduced-GO 0.60 2000 [312]
Methylene blue GNs 295.56 154–204 [313]

For the available carboxyl groups to improve the adsorption process, graphene,
GNS500, and GNS700 (exfoliation at temperatures of 500 or 700 ◦C) revealed higher adsorp-
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tion of Pb(II) compared to pristine graphene [289]. Heavy metal removal from wastewater
is influenced by a number of factors, including initial dosage, graphene properties, metal
ions, pH, temperature, interaction length, acidic organic ligands, and coexisting ions [314].
Strong metals (cadmium (II), lead (II), copper (II), chromium (VI), and other toxic heavy
metals) are removed using graphene and graphene oxide-based products. Heavy metals
are also non-biodegradable and therefore dangerous to living beings. Fe3O4/mesoporous
silica/GO, magnetic manganese-doped iron(III) oxide nanoparticle implanted graphene,
and iron(III) oxide/graphene oxide/1-ethyl-3-methylimidazolium tetrafluoroborate will be
eliminated [107].

The products used to remove lead include antimicrobial graphene polymers, few-
layered GO, manganese ferrite/graphene oxide, ethylenediaminetetraacetic acid/magnetic
graphene oxide, chitosan/graphene oxide, hyperbranched polyethylenimine/graphene ox-
ide (HPE), and amino-functionalized graphene oxide. The products used to remove copper
ions are L-tryptophan-functionalized graphene oxide, chitosan/sulfydryl-functionalized
graphene oxide, chitosan/graphene oxide (Chitosan-GO), poly (allylamine hydrochlo-
ride)/graphene oxide, and polyethylenimine-adapted magnetic graphene oxide with
Fe3O4 nanoparticles.

In addition, the elimination of chromium (VI) ions necessitates research into materials
such as graphene oxide-alpha cyclodextrin-polypyrrole nanocomposites, chitosan/graphene
oxide, reduced graphene oxide/nickel oxide (RGO/NiO), magnetic ionic liquid/chitosan/
graphene, 2-imino-4-thiobiuret–partially reduced graphene oxide, and graphene oxide func-
tionalized with magnetic cyclodextrin-chitosan. Such heavy metals as cobalt, uranium (U(VI)),
and rhenium (Re(VII)) can be extracted using graphene oxide-based nanomaterials [107].

3.3.2. Organic Pollutants

In addition, graphene-based compounds are used to remove different organic contam-
inants from liquids. Table 6 shows how graphene-based adsorbents remove organic com-
pounds from water. Polyethersulfone/GO can remove methylene blue (MB) at
62.50 mg/g [306], while Fe3O4/GO hybrids showed removal efficiencies for methylene blue
and neutral red of 167.2 mg/g, and 171.3 mg/g, respectively [307]. Reduced GO-MFe2O4
hybrids exhibited removal efficiencies for rhodamine B and methylene blue of 92% and
100%, respectively [308]. An excellent removal capability was achieved for methylene
blue (397 mg/g) and methyl violet (467 mg/g) with a GO sponge. The Fe3O4-GNs, GO,
and GNs also showed better performance in eliminating methylene blue from aqueous
solutions [313]. At pH 7.0, modified GO developed by the Hummers process effectively
removes brilliant green and methylene blue at 416.67 mg/g and 476.19 mg/g, respec-
tively [315]. The π-π interactions or electrostatic attraction between positively charged dyes
and negatively charged GO is used to remove the dyes [316]. Without sonication, fabricated
GO-chitosan demonstrated a high adsorption potential for MB (402.6 mg/g) which was
equivalent to those of other GO materials [317].

3.3.3. Pharmaceutical Compound Removal

Given their adsorption potential in various laboratory environments, graphene-based
materials are effective adsorbents for treating pharmaceutical-laden wastewater [314]. The
removal of pharmaceutical pollutants by graphene-based materials is demonstrated in
Table 7.
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Table 7. Pharmaceutical pollutant adsorption by graphene-based materials.

Pharmaceutical Pollutants Adsorbent Adsorption Capacity (mg/g) Ref.

AlFum-CoFe2O4/GO Tetracycline and Doxycycline 230 [318]
Ag3PO4/Fe3O4/graphene oxide Carbamazepine - [319]

CNC-PVAm/rG Diclofenac 605.87 [318]
Tetracycline Graphene oxide 313.48 [320]
Doxycycline GO 398.40 [320]

Oxytetracycline F–GO with MNPs 45.0 [321]
Chlortetracycline F–GO with MNPs 42.6 [321]

Doxycycline F–GO with MNPs 35.5 [321]
Tetracycline GO 381.77 [322]

Ciprofloxacin Single-layer GO 379 [323]
Ciprofloxacin KOH-activated graphene 194.6 [324]
Ciprofloxacin Porous graphene hydrogel 235.6 [325]

Graphene oxides (GOs) and reduced graphene oxides (RGOs) are two essential
branches of graphene materials with oxygen functional groups that have a lattice of heavy
hydroxyl, epoxy, and carboxyl groups. These organizations enable the GOs to form stable
suspensions in an aqueous solution, allowing for further possibilities for antibiotic adsorp-
tion due to dispersion. GOs and RGOs are made from various negatively charged inorganic
and organic reducing agents with fewer oxygen atoms [287]. At pH 5.0, both ciprofloxacin
(CIP) and sulfamethoxazole (SMX) were adsorbed by GOs with capacities of 379 and
240 mg/g, respectively [323]. Other research has shown that GOs can efficiently remove
tetracycline (TC) through π-π interactions [322]. Furthermore, both doxorubicin (DOX)
(1428.57 mg/g) [326] and levofloxacin (LEV) (256.6 mg/g) adsorb better with GOs. The
ability of RGOs to remove sulfonamide antibiotics from water is also encouraging [327]. As
a result, GOs and RGOs have a high capacity for consuming various medicinal compounds.

3.3.4. Other Pollutants

GO mixed with lanthanum-substituted manganese ferrites (LMFs) can remove per-
fluorooctanoic acid (PFOA) from aqueous solutions in an effective way. The electrostatic
interaction and hydrogen bonding properties of PFOA and GO are shown by the sur-
face charge densities and crystalline changes. Additionally, the PFOA adsorption by
these nanohybrids was unaffected by coexisting pollutants, such as anions, cations, and
other organic compounds [328]. A multifunctional, chitosan-attached, plasmonic Au NP-
conjugated GO was designed and created for the delivery of safe and sanitary drinking
water. The three-dimensional porous membrane was used to separate pharmaceutical tox-
ins from water and destroy methicillin-resistant Staphylococcus aureus. Using an extremely
porous membrane, this GO substance can quickly capture MRSA bacteria. It shows around
100% removal of MRSA by killing through the porous membrane [329]. Single-layered
graphene with nanopores was shown to effectively sieve NaCl salt from vapor. Moreover,
chemical groups bonded to graphene edges might roughly increase water fluidity due to
their hydrophilic nature [329]. For magnetic separation applications, a GO nanocomposite
demonstrated higher antibacterial performance against both Gram-positive and -negative
bacteria [330]. Recently, graphene-based nanocatalysts (G-, GO-, and rGO-based) were
studied for the modification of nanocomposites to demonstrate their exceptional properties
in water treatment. These characteristics include surface area (2630 m2/g), good electron
conductivity (7200 Sm−1), high thermal/chemical stability, and excellent capacity for many
nanoparticles (metal oxides, noble metals, and magnetic nanoparticles) [331].

4. Energy Storage

Energy is crucial for improving human life, influencing the development of society and
the economy [332,333]. It is predicted that the demand for worldwide energy will double
in about 20 years [334]. The available energy supplies are currently fossil fuels, such as oil,
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coal, and gases, which are quickly depleting, and this is exacerbated by the destruction of
forests and biodiversity, species degradation, and waste [335,336]. Furthermore, fossil fuels
are not long-term renewable [337]. As a result, high-performance energy storage systems
are needed to satisfy the rising demand for electrical energy [338], which is commonly used
in electronic devices and accessories. Over the last few decades, research into alternative
energy sources and electrochemical energy storage systems, such as supercapacitors, has
grown [339]. In 1957, supercapacitors were first experimented with by General Electric
engineers. Supercapacitors can be utilized commercially in portable electronics, transporta-
tion, and the aerospace industry [340]. Improvements have also been made to the various
components of supercapacitors, such as cathodes, electrolytes, anodes, and separators,
reduction in their costs having also been researched comprehensively [341].

As for the performance of supercapacitors, this is greatly affected by the electrode
materials. The commonly used electrode materials are carbon-based materials, transition
metals, and conducting polymers [342]. Carbon is mainly utilized due to its low cost,
ampleness, and environmental benignity. Furthermore, its ability to derive a family of
new carbon materials makes it an excellent choice for energy applications. Due to the
high cost of preparing activated carbons from fossil sources, biomass-derived carbon
electrodes are used as an alternative solution [343]. Moreover, ACs, graphene, and CNTs
are also effective for supercapacitors, as they have a high specific surface area and excellent
electrical conductivity, which is suitable for energy storage applications (Figure 7). Carbon
nanomaterials have properties that are influenced by size and surface, which can improve
energy conversion and storage performances [344].

Sustainability 2023, 15, x FOR PEER REVIEW 28 of 59 
 

by General Electric engineers. Supercapacitors can be utilized commercially in portable 
electronics, transportation, and the aerospace industry [340]. Improvements have also 
been made to the various components of supercapacitors, such as cathodes, electrolytes, 
anodes, and separators, reduction in their costs having also been researched comprehen-
sively [341]. 

As for the performance of supercapacitors, this is greatly affected by the electrode 
materials. The commonly used electrode materials are carbon-based materials, transition 
metals, and conducting polymers [342]. Carbon is mainly utilized due to its low cost, am-
pleness, and environmental benignity. Furthermore, its ability to derive a family of new 
carbon materials makes it an excellent choice for energy applications. Due to the high cost 
of preparing activated carbons from fossil sources, biomass-derived carbon electrodes are 
used as an alternative solution [343]. Moreover, ACs, graphene, and CNTs are also effec-
tive for supercapacitors, as they have a high specific surface area and excellent electrical 
conductivity, which is suitable for energy storage applications (Figure 7). Carbon nano-
materials have properties that are influenced by size and surface, which can improve en-
ergy conversion and storage performances [344].  

 
Figure 7. Use of carbon-based materials for energy storage applications with a supercapacitor. 

4.1. Activated Carbons in Energy Storage 
Activated carbons are the carbon-based materials that have been most studied for use 

as electrodes in higher-quality supercapacitors due to their upper-surface pores and beĴer 
surface areas [345]. Electrochemical double-layer capacitors (EDLCs) have excellent po-
tential as high-power energy sources for a variety of applications that call for high cycle 
efficiency, high power density, and long cycle life [346]. One of the materials used in com-
mercial EDLCs is activated carbon. The performance of activated-carbon-based materials 
as supercapacitors (two-electrode cell systems) is shown in Table S3 [347–363]. According 

Carbon  
Nanotube Activated Carbon 

Graphene 

Energy Storage 

Structure 
of 
Supercapacitor 

Activated 
Carbon  

Figure 7. Use of carbon-based materials for energy storage applications with a supercapacitor.

4.1. Activated Carbons in Energy Storage

Activated carbons are the carbon-based materials that have been most studied for
use as electrodes in higher-quality supercapacitors due to their upper-surface pores and
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better surface areas [345]. Electrochemical double-layer capacitors (EDLCs) have excellent
potential as high-power energy sources for a variety of applications that call for high
cycle efficiency, high power density, and long cycle life [346]. One of the materials used
in commercial EDLCs is activated carbon. The performance of activated-carbon-based
materials as supercapacitors (two-electrode cell systems) is shown in Table S3 [347–363].
According to Table S3, O-rich bituminous coal-based ACs exhibited the highest capacitance
of 370 F/g with a surface area of 1950 m2/g and KOH electrolyte. The excellent performance
is due to the large upper surface area, high oxygen content, superior electronic conductivity,
and broader pore size distribution. This type of activated carbon is recommended to be
used as an electrode material for the EDLC industry because bituminous coal is abundant
and not costly [348].

O- and N-doped ACs have exhibited a capacity of 368 F/g when added to a sul-
furic acid (H2SO4) electrolyte. The high electrochemical performance was attributed to
a wide distribution of micropores and mesopores of 2–4 nm. The existence of electro-
chemically active quinone oxygen groups and nitrogen functional groups also supports
the operations [358]. The third highest capacitance of 279 F/g was obtained from peach-
stone-derived AC with a top surface area of 2692 m2/g. The result was acquired at room
temperature, which makes it an appropriate candidate for low-temperature operation in
electrochemical capacitors [351]. Petroleum coke-based AC, Si-doped AC, activated carbon
aerogel, activated templated carbon, straw-based AC, N-doped activated templated carbon,
activated carbon nanoplates, activated CNTs, and activated graphene-like nanosheets can
be used for supercapacitors as well.

The performance of supercapacitors depends on the porous network of activated
carbon, which can be enhanced by proper activation. Moreover, it can also be improved
by the presence of a microporous and mesoporous structure [364]. It was found that the
capacitance notably improved by nearly 2.8 times compared to the raw biochar when using
the oxygen plasma activation method. These developments are due to the formation of
extensive spreading in pores and large surface areas [365]. The activated carbon electrode
revealed a very high total capacitance of 222–245 F/g with a significant microporous matrix,
which is attributed to its high micropore content. Another factor that is responsible for the
application of supercapacitors is the altered chemical properties of activated biochar [366],
which has been proven to have a seven-times-higher capacity for biochar activated in nitric
acid (HNO3) at room temperature [367]. This improvement is caused by an increase in the
exposure of surface oxygen groups. It was reported that the ability of activated biochar as
a supercapacitor is equal to or sometimes higher than that of other blended carbonaceous
materials, such as carbon nanotubes, graphene, and commercial activated carbon [368].
Hence, activated biochar has the potential to be effective and cheap for specific applications.

4.2. Carbon Nanotubes for Energy Storage

Several decades ago, there was a significant development in alternative technologies
with a shift towards using clean, sustainable energy. Research was carried out on novel
carbon materials, such as carbon nanomaterials, to determine their potential as crucial
additions for optically clear, electrically conductive films for solar cells [369]. Carbon
nanotubes have been utilized to develop batteries and supercapacitors. CNTs also display
characteristics such as not requiring uniform chirality and orientation, which gives them
the potential to be used in energy storage applications [370]. Furthermore, CNTs can also be
introduced into electrochemical cells for modern energy storage, as they have been shown
to have suitable morphological dimensions and exceptional electricity conductivity. CNTs
are recognized as attractive electrode materials for creating high-performance supercapaci-
tors because of their unique characteristics, including high charge transfer capacity, high
mesoporosity, high electrolyte accessibility, high specific surface area, and high electrical
conductivity [371]. The performances of carbon nanotubes as supercapacitors are shown in
Table 8.
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Table 8. Performances of carbon nanotubes as supercapacitors.

Material Operationg Conditions Capacitance Ref.

SWNTs KOH Solution 180 F/g [372]

PVA/SF-SWNTs Facile solution-cast technique 26.4 F/g [373]

SWCNTs 350 ◦C-oxidized 15 to 135 F/g [374]

CNTs Polypyrrole treated 170 F/g [375]

CNTs Manganese oxide (MnO2) 140 F/g [376]

SWCNTs/TiO2
SWCNT/TiO2 nanocomposites as electrodes and

PVA/H2SO4 as gel electrolyte 144 F/g [377]

SWCNTs/phthalocyanine
polymer composite Self-nitrogen-doping 228 F/g [378]

MnO2/CNTs Nanocomposite MnO2 580 F/g [379]

MWNTs Chemical evaporation deposition 340 mAh/g (reversible) [380]

PANI/SnS2@CNTs Radial orientation and high
chemical/physical stability 891 F g−1 [381]

NiCo2S4/N-CNTs 1428 F/g [382]

NiCo2S4 733.5 F/g [382]

S-PANI/OCNT and
S-PANI/SCNTs

Doping of long-chain protonic acids during
in situ polymerization 316.8 F/g and 345.4 F/g [383]

Cobalt hydroxide/porous
graphene/functionalized MWNTs Hydrothermal method 1426 F/g [384]

CNTs Nanosized lithium manganese oxide (LMO) 107 mAh/g (reversible) [385]

Hybrid CNTs 0.5 M H2SO4 electrolyte 145 F/g [386]

CNTs V2O5 850 mAh/g [387]

Ti3C2/CNTs/MnCo2S4

Electrostatic self-assembly between positively
charged multi-walled carbon nanotubes (CNTs)

and negatively charged Ti3C2, followed by
subsequent anchoring of bimetallic sulphide

MnCo2S4 nanoparticles to Ti3C2/CNT hybrids via
a two-step hydrothermal method

823 F/g [388]

Activated-carbon-coated
MWCNTs Nitrogen (N-AC-MWCNT) 103.1 F/g [389]

The first type of CNT material that was examined for supercapacitors was randomly
entangled CNTs, as they are easy to form. CNTs are found to only possess average specific
surface areas compared to activated carbons, which have a high surface area. However, the
capacitance of CNTs is higher, with SWCNTs having a capacity of 180 F/g [372], in contrast
activated carbons, which have capacities of only tens of F/g. In order to measure the level
of capacitance, mesoporosity was found to be the main factor. It can be demonstrated that
CNTs that are very accessible to the electrolyte due to tube entanglement have a distinctive
mesoporosity, which leads to a high capacitance [390].

Of the many different types of devices for energy storage, the lithium-ion battery
and the supercapacitor are the center of attention and dominate the current market for
energy storage devices [391]. CNTs have been widely applied in electrode production
for the unique lithium-ion battery and the supercapacitor [392]. It was found that LixC
formation has a high capacity during the lithiation process and that lithium ions that are
introduced into the CNT-based electrode by the structural flaws and the interlayer rooms
display good involvement regarding the energy storage capacity [393]. As for CNTs used as
supercapacitors, electrodes based on CNTs have outstanding electrochemical performances
due to their promising properties, such as rapid transport of charge, greater surface-area-
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to-volume proportion, high electron conductivity, and larger electrolyte available capacity.
However, relative to conventional materials, such as solid carbon, amorphous carbon, black
carbon, and graphite, pure CNT-based electrodes are expensive and inappropriate for
large-scale production due to the harsh synthesis conditions and intricate manufacturing
methods required [394].

Carbon nanotubes (multi- and single-walled), which are also carbonaceous materials,
have a wide variety of surface areas and capacitance values that typically range from 15
to 135 F/g [374]. There are a few methods to enhance charge storage in carbon superca-
pacitors. One approach allows for a greater capacity than those which can be attained by
chemical or thermal (or both) char treatments. Thus, the available surface area and the
functional groups can be increased. Another technique to improve the operation involves
coating the carbonaceous material with conducting polymers, such as polypyrrole and
polyaniline or redox-active metal oxides [395]. The effect has been displayed, for example,
by polypyrrole-treated CNTs, which had a capacity of 170 F/g [375], and manganese oxide
(MnO2)-covered CNTs, which achieved a 140 F/g capacitance [376]. For electrochemical
applications, it was emphasized that patterned CNTs are greatly preferred for their struc-
tures and properties, which ease their integration into devices [396]. In addition, vertically
aligned CNTs were recently discovered to be better than randomly entangled CNTs for
supercapacitor applications.

Hybrid carbon nanotubes performed efficiently as supercapacitors, with a capacity of
145 F/g. Modification and doping of compounds in CNTs are some of the best methods
to improve the electronic properties of CNTs. This helps to insert the majority of existing
materials inside carbon nanotubes with precise encapsulation. These types of modifications
are highly effective for applications in electrodes, energy storage, supercapacitors, catalytic
support, and bio-sensing [386].

4.3. Graphene for Energy Storage

Graphene has a layer of sp2-bonded carbon atoms that are bound tightly in a honey-
comb structure with a hexagonal shape [397]. With respect to macrostructure, free-standing
graphene dots and particles are zero-dimensional, fiber- and yarn-type structures are one-
dimensional, graphene and graphene-based films are two-dimensional, and graphene
foams and composites are three-dimensional graphene-based electrode products. Since
graphene-based supercapacitors are widely utilized for energy storage devices, such as
next-generation portables in the textile industry, wearables, and smart electronics, including
smart watches, electronic skins, sensors, and many other devices [398–400], new avenues of
research are constantly being opened on this subject. The performances of graphene-based
materials as supercapacitors are detailed in Table 9.

Table 9. Performances of graphene-based materials as supercapacitors.

Materials Synthesis Method Electrolyte Reference Electrode Capacitance (F/g) Ref.

F-rGO Modified
Hummers method 1.1 M LiPF6 Ag/AgCl 210.0 [401]

N-doping PG-Ni Modified
Hummers method 1.0 mol/L KOH Saturated calomel 575.0 [402]

MnO2 nanoparticles
on reduced

graphene oxide (RGO)

Modified
Hummers method

GO particles
(0.5 mg·mL−1)

Saturated
calomel electrode 432 [403]

ACP/GOx - 0.8 g gel H3PO4 Ag/AgCl (3 M KCl) 16.5 [404]

COF/rGO Modified
Hummers method Aqueous 1 M H2SO4 Ag/AgCl (3 M KCl) 321.0 [405]
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Table 9. Cont.

Materials Synthesis Method Electrolyte Reference Electrode Capacitance (F/g) Ref.

MoS2/graphene Surface methodology 1 M H2SO4(aq) solution – 76.0 [406]

MW-GNPs Modified
Hummers‘method

Solid-state electrolyte
(1.0 g of PVA in 10 mL

of deionized water)
– 78.1 [407]

Graphene/MnO2 Sonication 1 M Na2SO4 Saturated calomel 320.0 [408]

Ni(OH)2/NG Tube furnace
calcination 6 M KOH Saturated calomel 1350.0 [409]

RG/NiO Microwave 5 M NaOH – 617.0 [410]

Fe2O3/NG Hydrothermal 1M Na2SO4 Saturated calomel 260.1 [411]

A number of works on graphene-based supercapacitors have already caught the atten-
tion of researchers. Tsai et al. introduced an exceptional graphene-based supercapacitor,
MEGO, prepared by microwave irradiation. In their study, (PIP13-FSI)0.5 (PYR14-FSI)0.5
ionic liquid electrolyte was used to raise the specific capacitance drastically. MEGO pow-
ders, a three-electrode Swagelok® nylon cell, and a piston as a separator were assembled.
Electrochemical characterizations were examined via cyclic voltammetry. For the specific
ionic liquid electrolyte, an outstandingly high capacitance of about 150 F/g, with the
highest voltage of 3.5 V, was achieved at 130 ◦C [412].

rGO/Ni(OH)2 was examined to determine its performance as a supercapacitor. The
modified Hummers technique was used to create composites whose shapes resembled flakes,
sticks, flowers, and cubes. The positive electrode in this experiment was rGO/Ni(OH)2,
the negative electrode was rGO, the separator consisted of non-woven textiles, and the
electrolyte solution consisted of 6 M KOH. With a basic capacitance of 1670.4 F/g at a charge
and discharge current density of 1 A/g and a high rate capability, the nanoflake-like
rGO/Ni(OH)2 composites had the highest overall electrochemical efficiency according to
Lai et al. The capacitance of the stick-like composites was 1866.8 F/g, that of the flower-like
composites was 890.6 F/g, and that of the cube-like composites was 366.9 F/g [413]. A short
time ago, a paper describing an aqueous fibrous supercapacitor with a graphene/PEDOT
electrode and an Ag/AgCl reference electrode coupled with Pt wire as a counter electrode
and 1 M H2SO4 as an electrolyte was published. A network resembling a continuous rose
blossom was built into PSS hydrogel fiber. Galvanostatic charge/discharge (GCD) and
cyclic voltammetry were used to measure the electrochemical outputs at room temperature
(RT). In comparison to an aerogel fiber-based supercapacitor, the hydrogel fiber and PVA
electrolyte-based all-gel-state supercapacitor had a high capacitance of 281.2 F/g (0.1 A/g)
at 25 ◦C [414].

5. Carbon Dioxide (CO2) Capture

Carbon dioxide is highly connected with global climate change as its level in the
atmosphere increases through combustion (particularly that which occurs in fossil-fuel
power plants) [415]. Due to this issue, many methods have been proposed to reduce CO2
levels in the atmosphere. Capturing carbon dioxide is one of the techniques that can be
used to manage climate change and utilize the byproducts of fossil-fuel power plants [416].
In gas-phase adsorption processes, a high micropore volume is the main requirement
for an effective adsorbent. The surface area and porosity of carbonaceous materials are
very significant parameters when it comes to capturing CO2 [417]. CO2 capture can be
performed using carbonaceous materials, such as activated carbon, biochar, and carbon
nanotubes. Furthermore, there are a few properties of carbonaceous materials that can be
assessed by CO2 gas, such as surface area and surface porosity [418].

Some of the proposed methods used to seize CO2 include absorption, adsorption,
membranes, and cryogenics. The global commercial method used to separate a large



Sustainability 2023, 15, 8815 32 of 56

quantity of CO2 is absorption [419]. Although monoethanolamine (MEA) is the most
popular and widely used absorbent, it has some drawbacks, such as oxidation degradation,
energy consumption for regeneration, the decomposition of the material [420], and the
complication of absorbing CO2 diluted in flue gas streams at low concentrations. To
overcome these drawbacks, porous adsorbents that can capture CO2 effectively and release
it in pressure or temperature swipe adsorption–desorption cycles [421] are receiving greater
attention. Specifically, the reason adsorption is preferred is due to its specialty in handling
dilute solutions. To improve the adsorption performance of CO2, the amine group can be
implanted onto the surface of adsorbents as it results in carbamate creation (-COO-), and
MEA is also the standard solvent for absorbing CO2. Some of the types of adsorbents with
amine surface modification are zeolite, activated carbons, and carbon nanotubes [422].

5.1. Activated Carbon for CO2 Capture

Activated carbon is a form of physical adsorbent with the ability to absorb CO2 due to
its unique properties. It is classified as a solid adsorber because of its ease of regeneration,
low cost, high specific surface area, high mechanical efficiency, moisture impassivity,
sufficient pore size distribution, high CO2 adsorption potential at atmospheric conditions,
and low energy demand [423]. Some factors, however, affect the effectiveness of activated
carbon to seize CO2, including the activation method and the nature of the raw materials
used, which therefore influence properties such as porosity and surface chemistry. The
activation of raw materials should be performed easily, resulting in a lower degradation rate
and hence the maintenance of their physicochemical properties [424]. Therefore, the raw
materials must be selected thoroughly, as the physicochemical properties will be affected
by the composition of the material structures, such as carbon, nitrogen, oxygen, hydrogen,
and sulfur. The CO2 adsorption capacities of activated carbon derived from biomass are
shown in Table 10.

Table 10. Carbon dioxide adsorption capacities of activated carbons.

Biomass Production
Temperature (K)

BET Surface Area
(m2/g) Activating Agent Adsorption

Capacity (mmol/g) Ref.

Bamboo 1073 2000 KOH 7.00 [425]

Fir bark 973 1242 KOH 6.10 [426]

Longan shells 1073 3260 KOH 5.60 [427]

Eucalyptus sawdust 1073 2850 KOH 5.20 [428]

Paulownia sawdust 1073 1555 KOH 7.14 [429]

Wheat 1073 2192 KOH 5.70 [430]

Black locust 1103 2511 KOH 5.86 [431]

Celtuce leaves 1073 3404 KOH 6.04 [432]

Pulverized semi-coke 973 120.5–590.2 HCl 1.80 [433]

Commercial activated
carbon 1073 1374 ZnCl2 - [434]

Soya beans 673 710–1193 KOH 4.24 [435]

Activated carbon 200–1000 ◦C - 53 mg/g [436]

African palm shells 1073 473–1361 Cu(NO3)2 103–217 mg/g [437]

Granular activated carbon
(GAC) - 954 3-aminopropyl-

triethoxysilane 34.6 [438]

GAC - 954 3-aminopropyl-
triethoxysilane 79.5 Cin:50%, T:25 ◦C [438]
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From Table 10 above, it can be concluded that Paulownia sawdust has the highest
carbon dioxide adsorption capacity of 7.14 mmol/g at 273 K. It was prepared with an ideal
mass ratio of 4:1 for KOH and Paulownia sawdust and activated at 700 ◦C for 1 h [429].
Using bamboo to prepare activated carbon resulted in the second-highest adsorption
capacity of 7.00 mmol/g at 273 K among the other precursors. This was due to the formation
of some narrow micropores, which are assisted by the distinctive textural structure of
bamboo [425]. According to Table 10, the biomass with the third-highest adsorption
capacity was fir bark, with a value of 6.10 mmol/g [426]. These three biomasses, when
compared to commercial activated carbon, possess higher adsorption capacities. These
results encourage the derivation of activated carbon from biomass. Other biomasses
have also been used in research to determine their carbon dioxide adsorption capacities,
including longan shells, eucalyptus sawdust, wheat, black locust, and celtuce leaves.

Currently, the post-combustion system is a widely utilized technology for CO2 capture.
In this system, the flue gas is separated after the fossil fuel is combusted. This system is
commonly adopted as it is easy to incorporate into existing power plants, and the process
is adaptable to different circumstances, which still enables power plants to operate even
if the capturing system malfunctions [439]. Activated carbon and zeolites are commonly
the only suitable solid adsorbents for this system as the operating temperatures are low,
and these adsorbents are made for low-temperature adsorption applications, in addition
to their substantial applications in industrial processes [440]. Other advantages of these
adsorbents are that their properties as physiosorbed materials are environmentally safe
and that they are reasonably priced for manufacturers [441].

However, activated carbon is found to be a better CO2 adsorbent for the flue gas
stream, which is attributed to its hydrophobicity properties, which enable the elimination
of moisture before CO2 adsorption occurs. Another application of ACs for CO2 arrest is in
sound-assisted fluidization, where CO2 is absorbed from flue gases using fine activated
carbon [442], resulting in an increase in adsorption. Although activated carbon was found
to be an attractive CO2 adsorbent, its utilization has not been broadly analyzed. Since
it has not been used on a large scale, only in pilot-scale power plants, more research is
needed to establish its application on a large scale and at a lower cost [443]. Regarding
granular activated carbon, the character of the adsorbent was improved by modification,
which enhanced the capture affinity of the CO2 molecules and the adsorbent. It displayed
a maximum removal efficiency of 79.5 mmol/g under analogous situations [438].

The CO2 activation at 700 ◦C increased the surface area and micropore content of the
activated carbon derived from palm kernel shells, allowing it to absorb 7.32 mmol/g of
CO2 (89.50%) [444]. ACs from almond shells and olive stones with oxygen concentrations
of 3%, 5%, and 21% were successful with respect to CO2 adsorption at temperatures of 400
and 650 degrees Celsius [417]. The different ACs produced from KOH activation suggested
different CO2 uptake performances. The association between physical properties and CO2
adsorption potential at high pressure was verified by the different BET surface areas and
pore depths [445].

The surface area and pore structure of ACs, as well as the chemical properties of both
the adsorbate and adsorbents, determine their CO2 adsorption abilities. The addition of
nitrogenous functional groups to the AC surface was shown to increase CO2 adsorption
capability [446]. An AC with N-functional groups and a large surface area is beneficial
for CO2 adsorption. The biomass should be pre-deashed by HF (hydrofluoric acid) with
high-temperature ammonia treatment to increase the CO2 adsorption potential of nitrogen-
enriched AC. The findings showed that primary amides, amines, azo compounds N=N,
secondary amide groups, and aliphatic C-N/C-O are strong CO adsorbents [447]. For CO2
adsorption, both the physical (surface area and pore structure) and chemical (functional
group) properties of ACs are essential. They are low-cost, long-term replacements for
commercially available products for CO2 capture from flue gas and air [368].
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5.2. Carbon Nanotubes for CO2 Capture

Some of the technologies being studied to capture CO2 are absorption, membranes,
cryogenics, adsorption, and there are many more [448]. Carbon nanotubes are considered
promising adsorbents that are used to eliminate the many types of organic and inorganic
pollutants in air streams [449]. Moreover, sorption on the solid adsorbent is an excellent
alternative to capture the CO2 from flue gases efficiently. Due to their porous assembly
and the presence of a broad range of functional groups that can be attained by thermal or
chemical treatments, carbon nanotubes have been found to have a high adsorption capacity.

Not long ago, there were studies on the alterations of pore materials by adding ele-
mentary positions that resulted in higher carbon dioxide capture capability and selectivity.
These alterations were attributable to the durable contact between the functional groups
and CO2. Normally, the basic groups that are introduced into pore materials are the alkaline
carbonates with several amine groups [450]. Grafting can be performed to prepare the
solid adsorbents, where the amine groups are chemically bonded to the support [451].
Another method that can be used is impregnation, which inactivates liquid amines within
the pores of the support [452]. Comparing these two methods, impregnation is better, as its
preparation procedures are simple [453]. The carbon nanotubes modified by 3-aminopropyl-
triethoxysilane could remove CO2 by 40.9 mg/g [438]. The carbon dioxide adsorption
capacities of carbon nanotubes are detailed in Table 11.

Table 11. Carbon dioxide adsorption capacities of carbon nanotubes.

Adsorbents Modification Chemicals Adsorption
(mg/g) Conditions Ref.

CNTs 3-aminopropyl-triethoxysilane 43.3 Influent concentration
mgL−1: 15%, T:20 ◦C [454]

CNTs 3-aminopropyl-triethoxysilane 114.0 Cin:50%, T:20 ◦C [454]

SWCNT - 87 Cin:99%, T:35 ◦C [455]

Chitosan/MWCNTs Chitosan 3 mg/g At 45◦C, 1.1 bar [456]

CNTs 3-aminopropyl-triethoxysilane 40.9 Cin: 10%, T: 25 ◦C [438]

CNTs 3-aminopropyl-triethoxysilane 96.3 Cin: 50%, T: 25 ◦C [438]

CNTs Tetraethylenepentamine (TEPA) 3.87 mmol/g 2 v.% of CO2 and 2 v.% of
H2O at 40 ◦C [452]

MWCNT/Cd-nanozeolite
composites Polyethylenimine 5.7 mmol/g At 25 ◦C, 1 bar [457]

MWCNTs Polyethylenimine (PEI) 93 mg/gfiber PEI load at 20 wt.-% [458]

MWCNTs Polyaspartamide (PAA), 99.5% 100 ◦C [459]

Modified carbon nanotubes
(MCNTs) Tetraethylenepentamine 5 mmol CO2/g Containing 10 vol% CO2 in

N2 with 1 vol% H2O [460]

Microcrystalline cellulose Amidoxime 3.85 mmol/g 120 ◦C, 1.01325 bar [461]

CNTs Pebax-1657 membrane 5 wt% CNTs [462]

Functionalized
carbon nanotubes Carbon nanofibers (CNFs) 6.3 mmol g−1 At 1.0 bar and 298 K [463]

Amine-loaded carbon nanotubes Temperature/vacuum
swing adsorption 67% after TVSA [463]

There is a study in which CNTs were altered using 3-aminopropyltriethoxysilane
(APTS), which resulted in 1 mmol/g of optimal CO2 adsorption capacity for 15 v.% CO2 at
20 ◦C [454]. Another study used the impregnation of CNTs with tetraethylenepentamine
(TEPA), where adsorption capability was recorded at around 3.87 mmol/g for 2 v.% of
CO2 and 2 v.% of H2O at 40 ◦C [452]. Based on these findings, it can be hypothesized that
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altering CNTs improves CO2 adsorption capability. After modification, CNTs show the
largest increases in CO2 adsorption potential (96.3 mg/g), followed by zeolites, and finally
GAC [438].

The modified carbon nanotubes with tetraethylenepentamine modification eliminate
5 mmol of carbon dioxide per gram [452]. On the other hand, the functionalized carbon
nanotubes can absorb 6.3 mmol of carbon dioxide per gram [463]. It was also determined
that B2CNTs (6, 0) are very effective in CO2 removal and gas separation because of their
larger diameter and negative charge [464]. Pyridinic-nitrogen combinations with CNTs
increased CO2 adsorption for electron injection. The functionality of CO2 removal can be
controlled by the charge-carrying system [465].

5.3. Graphene

Graphene is another carbon nanomaterial that possesses a hierarchical porous structure
with high porosity. These parameters are critical for CO2 capture, since they allow for
low-resistance pathways and micropore entry. Individual carbon nanomaterials (carbon
nanotubes, graphene, and so on) were tested for CO2 capture, and their special thermal,
mechanical, electrical, and chemical properties resulted in higher efficiencies [466]. The
carbon nanomaterials for CO2 capture are described in Table S4 [467–473]. Graphene
oxide-decorated biobased chitosan hybrid aerogels captured CO2 in the range of 1.92 to
4.14 mmol/g with high stability [468]. While graphene materials are more time-consuming
and costly to manufacture, they can be used to capture CO2 with high selectivity and
power. With high thermal stability and good recovery, functionalized graphene sheets
will capture CO2 at 4.3 mmol/g (25 ◦C, 1 atm) [474]. The cupper-based graphene oxide,
Cu-BTC/GO composite, could arrest 9.59 mmol/g CO2 at normal atmospheric pressure
and temperature [472].

6. Recommendations for Future Directions

The three main carbonaceous materials are being used in extremely promising ways for
the purification of water, storing energy, and removing carbon dioxide from the atmosphere.
The steps of the basic process for synthesizing these carbonaceous materials and their
practical applications described in the current work are depicted in Figure 8. Furthermore,
the recommendations for future directions are as follows:

i. Carbonaceous materials have so many allotropes with different applications. These
allotrope materials can be used for sensitive applications, such as fuel cells, medicine,
cosmetics, catalysts, etc. Similarly, other carbonaceous materials (fullerene, carbon
onions, peapods, nanohoms, etc.) can also be investigated.

ii. The applications of activated carbons are concentrated mostly in water treatment,
whereas the applications of ACs in energy storage and CO2 capture are relatively few
and can be further improved. Applications of activated carbons for CO2 adsorption
from soil can amend soil quality by reducing greenhouse gases.

iii. Improving the surface properties of carbon nanotubes for precise organic matter
adsorption may be a major research project in the near future to further improve
water treatment. The degree of oxidation of the surface of carbonaceous adsorbents
should be considered since the actual surface areas of CNTs are about 1000 m2/g (the
theoretical maximum is 1315 m2/g).

iv. Surface hydrophobicity and fast agglomeration in aqueous solutions are two major
drawbacks of graphene, limiting its adsorption potential in practical applications.
Therefore, the performance of graphene can be improved by functionalizing it to
overcome these shortcomings. Moreover, surfactants can be used to change the
surfaces of hydrophobic materials.

v. The reduction of graphene oxide to produce graphene is a promising field for low-
cost graphene production on a large scale in the future. Furthermore, the less
costly graphene manufacturing technology has made little progress. As a result,
new graphene synthesis techniques will increase the range of potential applica-
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tions and enable the development of new green synthesis methods to regenerate
sustainable resources.

vi. Carbonaceous materials are currently being employed as catalysts in fuel cells. The
improved performance of these catalysts in comparison to an industry standard may
be developed by overcoming the weaknesses of the present catalytic technology and
boosting lifespan to fulfill the durability criterion.

vii. Comparisons of these carbonaceous materials can be evaluated in terms of character-
istics, advantages, and disadvantages for a specific application.

viii. Additional modifications to activated carbons, graphene, and carbon nanotubes may
be made to improve properties while lowering costs and improving efficiency, and
environmentally friendly paths will be built to open new trails based on the attributes,
allowing for more research into highly replicable real-time applications.

Sustainability 2023, 15, x FOR PEER REVIEW 37 of 59 
 

 
Figure 8. Pathways for processing and applications of carbonaceous materials. 

i. Carbonaceous materials have so many allotropes with different applications. These 
allotrope materials can be used for sensitive applications, such as fuel cells, medicine, 
cosmetics, catalysts, etc. Similarly, other carbonaceous materials (fullerene, carbon 
onions, peapods, nanohoms, etc.) can also be investigated.  

ii. The applications of activated carbons are concentrated mostly in water treatment, 
whereas the applications of ACs in energy storage and CO2 capture are relatively few 
and can be further improved. Applications of activated carbons for CO2 adsorption 
from soil can amend soil quality by reducing greenhouse gases. 

iii. Improving the surface properties of carbon nanotubes for precise organic maĴer ad-
sorption may be a major research project in the near future to further improve water 
treatment. The degree of oxidation of the surface of carbonaceous adsorbents should 
be considered since the actual surface areas of CNTs are about 1000 m2/g (the theo-
retical maximum is 1315 m2/g). 

Carbonaceous Materials 

Synthesis and Fabrication of Carbonaceous Materials  

Modifications to Improve Performance 

Evaluate the 
Performance on a Trial-

and-Error Basis 

Activated 
Carbon 

Carbon 
Nanotubes Graphene 

Major Applications 

Energy 
Storage 

CO2  
Capture 

Water 
Treatment 

Figure 8. Pathways for processing and applications of carbonaceous materials.



Sustainability 2023, 15, 8815 37 of 56

7. Conclusions

In this review, three major classes of carbon allotropes (activated carbons, carbon
nanotubes, and graphene) have been investigated with respect to their important synthesis
methodologies and three sustainability applications (water treatment, energy storage,
and carbon dioxide removal), which are connected to each other. The success of these
carbon allotropes in resolving the energy crisis, water treatment, and air purification is
commendable and is due to their solid mechanical strength, super chemical stability, high
surface area, and enormous functional groups.

Regarding the preparation of activated carbon, it can be produced from various types
of household, municipal, and industrial solid wastes through different activation processes
(physical, chemical, physiochemical, and microwave). Chemical activation is more frequent
than the physical activation process, as it requires a lower activation temperature and
a shorter processing time. However, the chemical activation process is more corrosive
and requires an additional washing step for purification. Activated carbon synthesized
by physiochemical activation has a larger porosity and a higher surface area than those
synthesized by other activation processes. In the activation of AC, phosphoric acid and
potassium hydroxide are preferable to zinc chloride for environmental friendliness and less
toxicological contamination.

In the synthesis of CNTs in a conventional process, high temperatures are applied to
enable the catalyst and disintegrate the carbon sources. Arc discharge and laser ablation
procedures are costly ways to synthesize CNTs on a large scale, despite the fact that they
produce CNTs of high quality. The most effective and practical way to produce carbon
nanotubes on a wide scale is by using CVD; however, the application is better suited to the
creation of SWNTs. The synthesis of high-quality graphene is achieved using a variety of
synthetic techniques, where epitaxial growth and CVD processes are more suitable. The
chemical exfoliation process is highly effective for producing chemically modified graphene
in high yields and has a wide range of uses. The synthesis of these carbonaceous materials
mainly depends on the carbon precursor, the activation type, the activation temperature,
the processing time to develop the microstructure, the textural properties, the surface
chemistry, and the adsorption capacity of the produced carbons.

For water treatment, activated carbon has been counted as one of the most-usable
carbon-based materials for a long time, due to its availability and economical cost of
production. However, in the sophisticated filtering procedure for removing particular
contaminants from water, CNTs and graphene are highly developed materials. Carbon
nanotubes showed better performance in removing microorganisms from water than
activated carbon and graphene. Effective pollutant neutralization by CNTs and graphene
devices also provides a benefit over the action of AC in circumstances when access to treated
water is constrained. One of the significant qualities of CNTs and graphene-based materials
is that they require very little material to purify water effectively. The development of next-
generation water filtration technologies may greatly depend on carbon-based nanomaterials
or a mixture of these materials.

Regarding energy storage applications, carbonaceous materials have shown efficient
performances, with mechanical stability and electronic conductivity. AC is significant in
the mainstream electrochemical double-layer capacitors (EDLCs), while thin electrodes
composed of CNTs or graphene structures may serve in specialized applications focused on
ultra-high performance rates and competition with electrolytic capacitors. Processing CNTs
and graphene into flexible, strong, and highly electrically conductive fabrics may allow
them to serve as electrodes in weight-sensitive applications in aerospace or the military.
CNTs and graphene may also serve as high-surface-area conductive substrates for the
deposition of conductive polymers or metal oxides for higher-energy-density asymmet-
ric capacitor applications. Porous carbon materials with an excessive number of large
mesopores or macropores simply cannot compete with the microporous carbons used in
commercial supercapacitors.
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Regarding CO2 removal, the adsorption method using carbon-based solid adsorbents
has gained significant interest in recent years among the various methods. These adsorbents
are highly selective, environmentally friendly, economical, and less energy-intensive. The
adsorption of CO2 mainly depends on the physical interactions (Lewis acid–base interac-
tions, π-π interactions, and hydrogen bonding interactions) of the functional groups of the
base materials with the CO2 molecules. The carbonaceous materials (activated carbons,
carbon nanotubes, and graphene) contain more functional groups with a large surface
area, which makes them very promising adsorbents for the adsorption of carbon dioxide
molecules. Moreover, the adsorption process of CO2 is governed by van der Waals and
electrostatic forces, temperature, surface area, pressure, functional groups, and vapors.
Adsorption on carbonaceous adsorbents is very attractive owing to their easy availability,
amenable surface properties, low moisture sensitivity, and high thermal stability. Moreover,
the distribution of micropores significantly governs the adsorption of carbon dioxide, where
the carbonaceous adsorbents have a significant pore volume.

The comparisons of adsorption capacities between nanotubes, graphene, and activated
carbons have led to opposing views on the functionality of those particular carbonaceous
materials in promoting adsorption capabilities. Moisture has a detrimental impact on
adsorbent potential by reducing the active surface regions of ACs, graphene, and CNTs. It
is critical to provide a sufficient set of precursors, carbonization, and activation conditions
to enhance and maximize the adsorption capacities of these carbon allotropes and eliminate
both organic and inorganic contaminants. There is a huge scope to develop the performance
of carbonaceous materials for environmental sustainability.

Finally, it can be concluded that the 1D (carbon nanotubes), 2D (graphene), and 3D
(activated carbons) carbonaceous materials are highly promising for sustainable water
treatment, energy storage, and CO2 capture.
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