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COMPUTER SCIENCE | RESEARCH ARTICLE

Global output tracking by state feedback for
high-order nonlinear systems with time-varying
delays
Keylan Alimhan1,2*, Orken Mamyrbayev3, Aigerim Erdenova1 and Almira Akmetkalyeva1

Abstract: This paper focuses on the problem of global practical output tracking
for a class of high-order non-linear systems with time-varying delays (via state
feedback). Under mild growth conditions on the system nonlinearities involving
time-varying delays, we construct a state feedback controller with an adjus-
table scaling gain. With the aid of a Lyapunov–Krasovskii functional, the
scaling gain is adjusted to dominate the time-delay nonlinearities bounded by
the growth conditions and make the tracking error arbitrarily small while all
the states of the closed-loop system remain to be bounded. Finally,
a simulation example is given to illustrate the effectiveness of the tracking
controller.

Subjects: Computing & IT Security; Computer Engineering; Computer Science; General

Keywords: practical output tracking; time-varying delay nonlinear systems; state
feedback; homogeneous domination technique
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1. Introduction
In this paper, we consider the problem of global practical output tracking for a class of high-order
nonlinear systems with time-varying delays which is described by

_xiðtÞ ¼ xiþ1ðtÞpi þ φið�xiðtÞ; x1ðt� d1ðtÞÞ; . . . ; xiðt� diðtÞÞÞ;
i ¼ 1; . . . ;n� 1;

_xn ¼ uþ φnðxðtÞ; xðt� diðtÞÞÞ;
y ¼ x1ðtÞ;

(1)

where xðtÞ ¼ ðx1ðtÞ; . . . ; xnðtÞÞT 2 Rn, uðtÞ 2 R, and yðtÞ 2 R are the system state, control input and

output, respectively. �xiðtÞ ¼ ðx1ðtÞ; . . . ; xiðtÞÞT 2 Ri; �xnðtÞ ¼ xnðtÞ, diðtÞ; i ¼ 1; . . . ; n; � 0 are time-
varying delays satisfying 0 � diðtÞ � di; d0

iðtÞ � #i < 1 for constants di and #i. The system initial
condition is xðθÞ ¼ φ0ðθÞ; θ 2 ½�d; 0� with d � max1�i�n dif g and φ0ðθÞ being specified continuous
initial function. The terms φið�Þ represent nonlinear perturbations that are continuous functions

and pi 2 R�1
odd ¼ fp=q 2 ½0; 1Þ : p and q are odd integers, p � q}.

Problems of practical output tracking of nonlinear systems are the most challenging and hot
issues for the field of nonlinear control and it has drawn increasing attention during past
decades. A number of interesting results have been achieved over the past years, see
(Alimhan & Inaba, 2008a, 2008b; Alimhan & Otsuka, 2011; Alimhan, Otsuka, Adamov, &
Kalimoldayev, 2015; Alimhan, Otsuka, Kalimoldayev, & Adamov, 2016; Gong & Qian, 2005,
2007; Lin & Pongvuthithum, 2003; Qian & Lin, 2002; Sun & Liu, 2008; Zhai & Fei, 2011), as
well as the references therein. However, the aforementioned results do not consider the effect
of time delay. It is well known that time-delay phenomena exist in many practical systems. Due
to the presence of time delay in systems, it often significant effect on system performance and
may induce instability, oscillation and so on. Therefore, the study of the problems of global
control design of time-delay nonlinear systems has important practical significance. However,
due to there being no unified method being applicable to nonlinear control design, this problem
has not been fully investigated and there are many significant problems which remain
unsolved. In recent years, by using the Lyapunov–Krasovskii method to deal with the time-
delay, control theory, and techniques for stabilization problem of time-delay nonlinear systems
were greatly developed and advanced methods have been made; see, for instance, (Chai, 2013;
Gao & Wu, 2015; Gao, Wu, & Yuan, 2016; Gao, Yuan, & Wu, 2013; Sun, Liu, & Xie, 2011; Sun, Xie,
& Liu, 2013; Zhang, Lin, & Lin, 2017; Zhang, Zhang, & Gao, 2014) and reference therein. In the
case when the nonlinearities contain time-delay, for the output tracking problems, some
interesting results also have been obtained (Alimhan, Otsuka, Kalimoldayev, & Tasbolatuly,
2019; Jia & Xu, 2015; Jia, Xu, Chen, Li, & Zou, 2015; Jia, Xu, & Ma, 2016; Yan & Song, 2014).
However, the contributions only considered special cases such as pi equal one or constant time-
delay for the system (1) when the case pi greater one. When the system under consideration is
time-varying delays non-linear, the problem becomes more complicated and remain unsolved.
This motivates the research in this paper.

In this paper, under mild conditions on the system nonlinearities involving time-varying delay,
we will be to solve the aforementioned problem with the aid of the basis of the homogeneous
domination technique (Chai, 2013; Polendo & Qian, 2007, 2006) and a homogeneous Lyapunov–
Krasovskii functional. The main contributions of this paper are summarized as follows: (i) By
comparison with the existing results in (Jia & Xu, 2015; Jia et al., 2015, 2016), due to the
appearance of high-order terms, how to construct an appropriate Lyapunov–Krasovskii functional
for system (1) is a nontrivial work. In this paper, we constructing a new Lyapunov–Krasovskii
functional and using the adding a power integrator technique, a number of difficulties emerged
in design and analysis are overcome. (ii) This note extended the results in (Alimhan et al., 2019) to
time-varying delay cases.
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2. Practical output tracking for high-order nonlinear systems
The objective of the paper is to construct an appropriate controller such that the output of system
(1) practically tracks a reference signal yrðtÞ. That is, for any pre-given tolerance ε > 0 to design
a state feedback controller of the form

uðtÞ ¼ gðxðtÞ; yrðtÞÞ; (2)

such that for the all initial condition

(i) All the trajectories of the closed-loop system (1) with state controller (2) are well defined
and globally bounded on ½0;þ1Þ:

(ii) There exists a finite time T > 0, such that

yðtÞ � yrðtÞj j < ε; " t � T > 0: (3)

In this section, we show that under the following three assumptions, the practical output
tracking problem can be solved by state feedback for high-order nonlinear systems with time-
varying delays (1).

Assumption1. There are constants C1; C2and τ � 0 such that

φiðt; �xiðtÞ; x1ðt� d1ðtÞÞ; . . . ; x1ðt� diðtÞÞÞj j
� C1 x1ðtÞj jðriþτÞ=r1 þ x2ðtÞj jðriþτÞ=r2 þ � � � þ xiðtÞj jðriþτÞ=ri

�
þ x1ðt� d1ðtÞÞj jðriþτÞ=r1 þ x2ðt� d2ðtÞÞj jðriþτÞ=r2 þ � � � þ xiðt� diðtÞÞj jðriþτÞ=ri

�
þ C2

(4)

where

r1 ¼ 1; riþ1pi ¼ ri þ τ > 0; i ¼ 1; . . . ;n (5)

and pn ¼ 1.

Assumption2. The time-delays diðtÞ are differentiable and satisfies 0 � diðtÞ � di; d0
iðtÞ � #i < 1, for

constants di and #i, i ¼ 1; . . . ;n.

Assumption3. The reference signal yrðtÞ and its derivative are bounded, that is, there is a constant
D > 0 such that yrðtÞj j � D and _yrðtÞj j � D.

Remark1. Compared with (Alimhan & Inaba, 2008a; Gong & Qian, 2005, 2007; Lin &
Pongvuthithum, 2003; Sun & Liu, 2008), Assumption1 are milder conditions where the power
orders are allowed to be ratios of positive odd integers or ratios of positive even integers over
odd integers. In the Assumption1, when time-delays di ¼ 0, it reduces assumptions in (Alimhan &
Inaba, 2008a, 2008b; Gong & Qian, 2005, 2007; Sun & Liu, 2008; Zhai & Fei, 2011) and this played
an essential role to solve the practical tracking problem by a state or output feedback. Clearly,
when diðtÞ ¼ d�0 or di (where d and di are constants), i ¼ 1; . . . ;n, and pi ¼ 1, i ¼ 1; . . . ;n,
Assumption1 encompasses the assumptions in existing results (Yan & Song, 2014), when di�0
and pi > 1, it reduces assumption in existing results (Alimhan et al., 2019). Assumption3 indicates
condition for the reference signal yrðtÞ. It is a standard condition for solving the practical output
tracking problem of nonlinear systems in (Alimhan & Inaba, 2008a, 2008b; Gong & Qian, 2005,
2007; Sun & Liu, 2008; Zhai & Fei, 2011), (Yan & Song, 2014) and (Alimhan et al., 2019).

Our main purpose are dealt with the practical output tracking problem by delay-independent
state feedback for high-order time-varying delays nonlinear systems (1) under Assumptions 1–3.
To this end, we introduce the following coordinate transformation.
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z1ðtÞ ¼ x1ðtÞ � yrðtÞ; ziðtÞ ¼ xiðtÞ=Lκi ; i ¼ 2; . . . ;n; vðtÞ ¼ uðtÞ�Lκnþ1 (6)

where L � 1 is a constant (scaling gain) to be determined later and κ1 ¼ 0; κi ¼ ðκi�1 þ 1Þ=pi�1,
i ¼ 2; . . . ;n. Using the transformation, the system (1) can be described in the new coordinates ziðtÞ as

_ziðtÞ ¼ Lzpiiþ1 þ ψ ið�ziðtÞ; z1ðt� d1ðtÞÞ þ yrðt� d1ðtÞÞ; . . . ; ziðt� diðtÞÞÞ;
i ¼ 1; . . . ;n� 1;

_zn ðtÞ ¼ Lvþ ψnð�ziðtÞ; z1ðt� d1ðtÞÞ þ yrðt� d1ðtÞÞ; . . . ; znðt� diðtÞÞÞ;
yðtÞ ¼ z1ðtÞ þ yrðtÞ

(7)

where �ziðtÞ ¼ ðz1ðtÞ þ yrðtÞ; z2ðtÞ . . . ; ziðtÞÞT; and

ψ1ðz1ðtÞ þ yrðtÞ; z1ðt� d1ðtÞÞ þ yrðt� d1ðtÞÞÞ
¼ φ1ðz1ðtÞ þ yrðtÞ; z1ðt� d1ðtÞÞ þ yrðt� d1ðtÞÞ � _yrðtÞ;

ψ ið�ziðtÞ; z1ðt� d1ðtÞÞ þ yrðt� d1ðtÞÞ; . . . ; ziðt� diðtÞÞÞ
¼ φið�ziðtÞ; z1ðt� d1ðtÞÞ þ yrðt� d1ðtÞÞ; . . . ; ziðt� diðtÞÞ=Lκi ; i ¼ 2; . . . ;n:

Using Assumption 1 and L � 1, we can be obtained following inequalities

ψ1ðz1ðtÞ þ yrðtÞ; z1ðt� d1ðtÞÞ þ yrðt� d1ðtÞÞÞj j
� C1 z1ðtÞ þ yrðtÞj jðr1þτÞ=r1 þ z1ðt� d1ðtÞÞ þ yrðt� d1ðtÞÞj jðr1þτÞ=r1

� �
þ C2 þ _yrðtÞj j

ψ ið�ziðtÞ; z1ðt� d1ðtÞÞ þ yrðt� d1ðtÞÞ; . . . ; ziðt� diðtÞÞÞj j
� C1

Lκi
z1ðtÞ þ yrðtÞj jðriþτÞ=r1 þ Lκ2z2ðtÞj jðriþτÞ=r2
h

þ � � � þ Lκi ziðtÞj jðriþτÞ=ri
i�

þ z1ðt� d1ðtÞÞ þ yrðt� d1ðtÞÞj jðriþτÞ=r1 þ Lκ2z2ðt� d2ðtÞÞj jðriþτÞ=r2
h

þ � � � þ Lκi ziðt� diðtÞÞj jðriþτÞ=ri
i�

þ C2
Lκi

By Assumption 3 and Lemma A3, there exists constants �Ci, i ¼ 1;2 only depending on constants
C1; C2;D; τ ; κi and L, then above inequality becomes

ψ1ðz1ðtÞ þ yrðtÞ; z1ðt� d1ðtÞÞ þ yrðt� d1ðtÞÞÞj j
� C1 2ðr1þτÞ=r1�1 z1ðtÞj jðr1þτÞ=r1 þ yrðtÞj jðr1þτÞ=r1

� ��
þ 2ðr1þτÞ=r1�1 z1ðt� d1ðtÞÞj jðr1þτÞ=r1 þ yrðt� d1ðtÞÞj jðr1þτÞ=r1

� ��
þ C2 þ _yrðtÞj j

� 2ðr1þτÞ=r1�1C1 z1ðtÞj jðr1þτÞ=r1 þ z1ðt� d1ðtÞÞj jðr1þτÞ=r1
� �

þ 2ðr1þτÞ=r1C1Dþ C2 þ D

¼ �C1 z1ðtÞj jðr1þτÞ=r1 þ z1ðt� d1ðtÞÞj jðr1þτÞ=r1
� �

þ �C2;

ψ ið�ziðtÞ; z1ðt� d1ðtÞÞ þ yrðt� d1ðtÞÞ; . . . ; ziðt� diðtÞÞÞj j
� C1

Lκi
2ðr1þτÞ=r1�1 z1ðtÞj jðr1þτÞ=r1 þ yrðtÞj jðr1þτÞ=r1

� �
þ Lκ2z2ðtÞj jðriþτÞ=r2

h
þ � � � þ Lκi ziðtÞj jðriþτÞ=ri

i�
þ 2ðr1þτÞ=r1�1 z1ðt� d1ðtÞÞj jðr1þτÞ=r1 þ yrðt� d1ðtÞÞj jðr1þτÞ=r1

� �h
þ Lκ2z2ðt� d2ðtÞÞj jðriþτÞ=r2þ � � � þ Lκi ziðt� diðtÞÞj jðriþτÞ=ri

i�
þ C2
Lκi

� 2ðr1þτÞ=r1�1C1 L�κi z1ðtÞj jðr1þτÞ=r1 þ Lκ2ðriþτÞ=r2�κi z2ðtÞj jðriþτÞ=r2
h

þ � � � þ LκiðriþτÞ=ri�κi ziðtÞj jðriþτÞ=ri
i�

þ L�κi z1ðt� d1ðtÞÞj jðr1þτÞ=r1 þ Lκ2ðriþτÞ=r2�κi z2ðt� d2ðtÞÞj jðriþτÞ=r2 þ � � � þ LκiðriþτÞ=ri�κi ziðt� diðtÞÞj jðriþτÞ=ri
h i�

þ 2ðr1þτÞ=r1C1Dþ C2
Lκi
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¼ 2ðr1þτÞ=r1�1C1 L�κi z1ðtÞj jðr1þτÞ=r1 þ L1�1þκ2ðriþτÞ=r2�κi z2ðtÞj jðriþτÞ=r2
h

þ � � � þ L1�1þκiðriþτÞ=ri�κi ziðtÞj jðriþτÞ=ri
i�

þ L�κi z1ðt� d1ðtÞÞj jðr1þτÞ=r1 þ L1�1þκ2ðriþτÞ=r2�κi z2ðt� d2ðtÞÞj jðriþτÞ=r2 þ � � � þ L1�1þκiðriþτÞ=ri�κi ziðt� diðtÞÞj jðriþτÞ=ri
h i�

þ 2ðr1þτÞ=r1C1Dþ C2
Lκi

� �C1L1�min 1�ðκjðriþτÞ=rj�κiÞ; 2�j�i; 1�i�nf g z1ðtÞj jðr1þτÞ=r1 þ z2ðtÞj jðriþτÞ=r2
h

þ � � � þ ziðtÞj jðriþτÞ=ri
i�

þ z1ðt� d1ðtÞÞj jðr1þτÞ=r1 þ z2ðt� d2ðtÞÞj jðriþτÞ=r2 þ � � � þ ziðt� diðtÞÞj jðriþτÞ=ri
h i�

þ �C2
Lκi ;

¼�C1L1�vi ∑
i

j¼1
zjðtÞ
�� ��ðriþτÞ=rj þ zj t� djðtÞ

� ��� ��ðriþτÞ=rj
� �

þ �C2
Lκi ; i ¼ 2; . . . ;n

(8)

where �C1 ¼ 2ðr1þτÞ=r1�1C1 ; �C2 ¼ 2ðr1þτÞ=r1C1Dþ C2 þ D and

νi :¼ min ðκjðri þ τÞ�rj � κiÞ; 2 � j � i; 1 � i � n
� 	

> 0, i,e., 0 < νi < 1 are some constants. Since it

can be seen that by definition rj :¼ τκj þ 1
�ðp1 . . .pj�1Þ so

κjðri þ τÞ�rj � κi ¼ κj
riþ1pi
rj

� κi

¼ κj τκi þ 1=p1 . . .pi�1 þ τð Þ
τκj þ 1

�
p1 . . .pj�1

� κi

¼ τκj þ κj
�
p1 . . . pi�1 � κi

�
p1 . . . pj�1

τκj þ 1
�
p1 . . . pj�1

� τκj
τκj þ 1

�
p1 . . .pj�1

< 1; j ¼ 2; . . . ; i; i ¼ 1; . . . ;n:

In what follows, we first design a state feedback controller for the nominal nonlinear system of
the system (7), i.e.,

_ziðtÞ ¼ Lzpiiþ1ðtÞ; i ¼ 1; . . . ;n� 1; _znðtÞ ¼ LvðtÞ; yðtÞ ¼ z1ðtÞ þ yrðtÞ (9)

We explicitly can construct a state feedback controller for the system (9), via similar the approach
in (Chai, 2013; Polendo & Qian, 2007), which can be described in the following Proposition.

Proposition1. For the system (9), Suppose there exists a state feedback controller of the form

v ¼ �βrnþ1=σ
n �

rnþ1=σ
n ¼ � ∑

n

i¼1

�βiz
σ=ri
i

 !rnþ1=σ

(10)

with a positive definite, C1 and radially unbounded Lyapunov function,

Vn ¼ ∑
n

i¼1

ðzi
z�i

sσ=ri � z�σ=rii

� � 2σ�τ�rið Þ=σ
ds (11)

Such that

_Vn � �L ∑
n

j¼1
�2j ; (12)

where �i ¼ zσ=rii � z�σ=rii , z�i ¼ �βri=σi�1�
ri=σ
i�1 , z

�
1 ¼ 0, σ � max1�i�n τþ rif g and �βi ¼ βn � � � βi; i ¼ 1; . . . ; n

are positive constants. Then, the closed-loop system (9) and (10) is globally asymptotically stable.

Since the prove of the Proposition1 is very similar (Alimhan & Inaba, 2008a, 2008b; Zhai & Fei,
2011), (Chai, 2013), so omitted here.

Next, we use the homogeneous domination approach to design a global tracking controller
for the system (1) which can be described in the following main theorem in this paper.
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Theorem 1. Under Assumptions 1–3, the global practical output tracking problem of the high-order
time-varying delays nonlinear system (1) can be solved by the state feedback controller u ¼ Lκnþ1v
in (7) and (10).

Proof

By (10), it is not difficult to prove that u preserves the equilibrium at the origin.

By the definitions of ri’s and σ, we easily see that u ¼ Lκnþ1v is a continuous function of z and u ¼ 0 for
z ¼ 0. This together with Assumption1 implies that the solutions of z system is defined on a time interval
[0, tM], where tM > 0 may be a finite constant or +∞, and u preserves the equilibrium at the origin.

In what follows, we define the following notations

z ¼ z1; . . . ; znð ÞT; EðzÞ ¼ zp12 ; . . . ; zpn�1
n ; v

� �T
and FðzÞ ¼ φ1; φ2=L

κ2 ; . . . ; φn=L
κnð ÞT (13)

Then, the closed-loop system (7)–(10) can be written as the following compact form by the same
notations (6) and (13),

_z ¼ LEðzÞ þ FðzÞ (14)

Introducing the dilation weight Δ ¼ ðr1; . . . ; rnÞ, from Definition A1, it be not difficult to prove that
Vn is homogeneous of degree 2σ—τ with respect to the weight Δ.

Therefore, using the same Lyapunov function (11) and by Lemma A2 and Lemma A3, it can be
concluded that

_VnðzÞ ¼ L
@Vn

@z
EðzÞ þ @Vn

@z
FðzÞ � �m1L zk k2σΔ þ∑n

i¼1
@Vn

@zi
ψ i (15)

where m1 > 0 is constant.

By (8), Assumption 1 and L > 1, it can be found constants δi > 0 and 0 < γi � 1 such that

ψ ij j � �C1 ∑
i

j¼1
LκjðriþτÞ=rj�κi zjðtÞ

�� ��ðriþτÞ=rj þ zjðt� djðtÞÞ
�� ��ðriþτÞ=rj

� �
þ

�C2
Lκi

� δiL
1�γi zðtÞk kriþτ

Δ þ ∑
i

j¼1
zðt� djðtÞÞ


 

riþτ

Δ

 !
þ

�C2
Lκi

(16)

and noting that for i ¼ 1; . . . ;n, by Lemma A2, @Vn=@zi is homogeneous of degree 2σ � τ� ri,

@Vn

@zi

����
���� � m2 zðtÞk k2σ�τ�ri

Δ ; m2 > 0 (17)

and by

m2 zðtÞk k2σ�τ�ri
Δ

�C2
Lκi

¼ L1�γi zðtÞk k2σ�τ�ri
Δ

m2
�C2

Lκiþ1�γi
;

� L1�γi
2σ � τ� ri

2σ
zðtÞk k2σΔ þ τþ ri

2σ
m2

�C2

Lκiþ1�γi

� �2σ=ðτþriÞ

� L1�γi zðtÞk k2σΔ þ m2
�C2

� �2σ=ðτþriÞ

L2σðκiþ1�γiÞ=ðτþriÞ

Hence,
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@Vn

@zi
ψ i

����
���� � m2 zðtÞk k2σ�τ�ri

Δ δiL1�γi zðtÞk kriþτ
Δ þ ∑

i

j¼1
zðt� djðtÞÞ


 

riþτ

Δ

 !
þ

�C2
Lκi

" #

� ð1þm2δiÞL1�γi zðtÞk k2σΔ þL1�γi ð1þm2δiÞ zðtÞk k2σ�τ�ri
Δ ∑

i

j¼1
zðt� djðtÞÞ


 

riþτ

Δ þ m2
�C2

� �2σ=ðτþriÞ

L1�γi

(18)

where 2σ�τ�ri
2σ � 1, τþri

2σ � 1, and 2σðκiþ1�γiÞ
τþri

� 1� γi.

Substituting (18) into (15) yields

_VnðzÞ � �L m1 zðtÞk k2σΔ �ð1þ ð1þm2δÞÞL�γmin zðtÞk k2σΔ
�

�ð1þm2δÞL�γmin ∑
n

i¼1
zðtÞk k2σ�ri�τ

Δ ∑
i

j¼1
zðt� djðtÞÞ


 

riþτ

Δ

!
þ
n ∑

n

i¼1
m2

�C2
� �2σ=ðτþriÞ

L1�γmax

(19)

where δ ¼ max1�i�n δif g, γmin ¼ min1�i�n γif g and γmax ¼ max1�i�n γif g.

By Lemma A4, there exists a constant m3 > 0 such that

m2ð1þ δÞ zðtÞk k2σ�ri�τ
Δ zðt� diðtÞÞk kriþτ

Δ � zk k2σΔ þm3 zðt� diðtÞÞk k2σΔ ; (20)

which yields

_VnðzðtÞÞ � �L m1 zðtÞk k2σΔ �ð2þm2ð1þ δÞÞL�γmin ∑
n

i¼1
L�γi zðtÞk k2σΔ �m3L�γmin ∑

n

i¼1
zðt� diðtÞÞk k2σΔ

 !

þ
n ∑

n

i¼1
m2

�C2
� �2σ=ðτþriÞ

L1�γmax

(21)

Next, we construct a Lyapunov–Krasovskii functional as follows:

VðzðtÞÞ ¼ VnðzðtÞÞ þ UðzðtÞÞ;

Vn ¼ ∑
n

i¼1

ðzi
z�i

sσ=ri � z�σ=rii

� � 2σ�τ�rið Þ=σ
ds; UðzðtÞÞ ¼ ∑

n

i¼1

λ

1� #i

ðt
t�diðtÞ

zðsÞk k2σΔ ds;
(22)

where λ is a positive parameter to be determined later. Because VnðzðtÞÞ is positive definite, C1,

radially unbounded and by Lemma 4.3 in (Khalil, 1996), there exist two class K1 functions α
^

1 and

α
^

2, such that

α
^

1ð zðtÞj jÞ � VnðzðtÞÞ � α
^

2ð zðtÞj jÞ (23)

According to the homogeneous theory, there are positive constants η1 and η2 such that

η1 zðtÞk k2σΔ � WðzðtÞÞ � η2 zðtÞk k2σΔ (24)

where W(z(t)) is a positive definite function, whose homogeneous degree is 2σ. Therefore, the
following inequality holds

�α1ð zðtÞj jÞ � WðzðtÞÞ � �α2ð zðtÞj jÞ (25)

with two class K1 functions �α1 and �α2.

With the help 0 � diðtÞ � di and d0
iðtÞ � #i < 1, it follows that
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∑
n

i¼1

λ

1� #i

ðt
t�diðtÞ

zðsÞk k2σΔ ds � �ηi

ðt
t�di

~α2ð zðsÞj jÞds � �ηi

ð0
�di

~α2ð zðςþ tÞj jÞdðςþ tÞ

� ~ηi sup
�di�ς�0

~α2ð zðςþ tÞj jÞ � α
_

2ð sup
�di�ς�0

zðςþ tÞj jÞ
(26)

where ~α2 and α
_

2 are class K1 functions and �ηi and ~ηi are positive constants, because zðtÞj j �
sup

�d�ς�0
zðςþ tÞj j and sup

�di�ς�0
zðςþ tÞj j � sup

�d�ς�0
zðςþ tÞj j.

Defining α2 ¼ α
^

2 þ α
_

2 from (22), (23), and (26), it follows that

α
^

1ð zðtÞj jÞ � VnðzðtÞÞ � α2ð sup
�d�ς�0

zðςþ tÞj jÞ (27)

It follows from (21) and (22) that

_V ¼ L
@Vn

@z
EðzÞ þ @Vn

@z
FðzÞ þ ∑

n

i¼1

λ

1� #i
zðtÞk k2σΔ � ∑

n

i¼1
λ zðt� diðtÞÞk k2σΔ

� � m1L� ð2þm2ð1þ δÞÞL1�γmin � ∑
n

i¼1

λ

1� #i

 !
zðtÞk k2σΔ � λ�m3L1�γmin

� �
∑
n

i¼1
zðt� diðtÞÞk k2σΔ

þ ρ1
L1�γmax

:

(28)

Therefore, by choosing a large enough L as L > max 1; ððð2þm2ð1þ δÞ þm3Þ=m1ÞÞ�γminf g and

λ ¼ m3L1�γmin , where ρ1 ¼ n ∑
n

i¼1
m2

�C2
� �2σ=ðτþriÞ. Then, the inequality (28) becomes

_V ðzðtÞÞ � �L zðtÞk k2σΔ þ ρ1
L1γmax : (29)

In (22), VnðzÞ and UðzÞ are homogeneous of degree 2σ � τ and 2σ with respect to the dilation
weight Δ, respectively. Therefore, it follows from Lemma A2 (in Appendix) that there exist positive
constants λ1; λ2; $1 and $2 such that

λ1 zðtÞk k2σ�τ
Δ � VnðzðtÞÞ � λ2 zðtÞk k2σ�τ

Δ and (30)

$1 zðtÞk k2σΔ � UðzðtÞÞ � $2 zðtÞk k2σΔ : (31)

Moreover, by Lemma A4 (in Appendix), we have

λ2 zðtÞk k2σ�τ
Δ ¼ L λ2=Lð Þ1=τ

� �τ
zðtÞk k2σ�τ

Δ � 2δ� τ

2σ
L zðtÞk k2σΔ þ τL τ�2σð Þ=τ

2σ
λ2σ=τ2 (32)

Then, we have

VðzðtÞÞ � ρ2L zðtÞk k2σΔ þ τ

2σL 2σ�τð Þ=τ λ
2σ=τ
2 ; (33)

or

1
ρ2

VðzðtÞÞ � L zðtÞk k2σΔ þ τ

2σρ2L 2σ�τð Þ=τ λ
2σ=τ
2 ; (34)

where ρ2 ¼: $2 þ ð2δ� τÞ=2σð Þ.

Therefore, it follows from (22) and (33) that

_V ðzðtÞÞ � � L zðtÞk k2σΔ þ τ

2σρ2L 2σ�τð Þ=τ λ
2σ=τ
2

� �
þ τ

2σρ2L 2σ�τð Þ=τ λ
2σ=τ
2 þ ρ1

L1�γmax

� � 1
ρ2

VðzðtÞÞ þ �ρ1;

(35)
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where �ρ1 ¼ τ
2σρ2L 2σ�τð Þ=τ λ

2σ=τ
2 þ ρ1

L1�γmax
. That is

d
dt

et=ρ2VðzðtÞÞ� � � et=ρ2�ρ1 (36)

taking integral on both sides,

et=ρ2VðzðtÞÞ � Vðzð0ÞÞ � �ρ1 et=ρ2 � 1
� �

: (37)

Hence, there exists a T > 0, for all t > T

VðzðtÞÞ � e�t=ρ2Vðzð0ÞÞ þ �ρ1 1� e�t=ρ2
� � � 3�ρ1 (38)

This leads to

yðtÞ � yrðtÞj j ¼ z1ðtÞj j � 3τ
2σρ2L 2σ�τð Þ=τ λ

2σ=τ
2 þ 3ρ1

L1�γmax
, " t > T > 0.

Thus, for any tolerance ε > 0, there is a sufficiently large Lsuch that

yðtÞ � yrðtÞj j � ε, " t > T > 0.

This completes the proof of our main Theorem.

Remark2. It should be noted that the proposed controller can only work well when the whole state
vector is measurable. Therefore, a natural and more interesting problem is how to design feedback
output tracking controller for the time-varying delay nonlinear systems studied in the paper if only
partial state vector being measurable, which is now under our further investigation. Although
(Alimhan & Inaba, 2008a, 2008b; Gong & Qian, 2007; Sun & Liu, 2008; Zhai & Fei, 2011) studies
global practical tracking problems by output feedback, it does not include the time delay. In
addition, in recent years, many results on nonlinear fuzzy systems have been achieved (Chadli &
Borne, 2013; Chadli & Guerra, 2012; Chadli, Maquin, & Ragot, 2002; Khalil, 1996), and so forth. An
important problem is whether the results in this paper can be extended to nonlinear fuzzy systems.

3. An illustrative example
This section gives a numerical example to illustrate the effectiveness of Theorem 1.

Example 1. Consider the following uncertain nonlinear system:

_x1ðtÞ ¼ x7=32 ðtÞ þ x1=51 ðt� sinðtÞ=5Þ sinðx1ðtÞÞ
_x2ðtÞ ¼ x5=33 ðtÞ þ 2x2ðtÞ
_x3ðtÞ ¼ uðtÞ þ 2x1=53 ðtÞ
yðtÞ ¼ x1ðtÞ

(39)

where p1 ¼ 7=3; p2 ¼ 5=3; p3 ¼ 1and dðtÞ ¼ sinðtÞ=5 represent a time-varying delays. Our objec-
tive is to design a state feedback practical output tracking controller such that the output of the
system (39) tracks a desired reference signal yr, and all the states of the system (39) are globally
bounded. Clearly, the system is of the form (1). It is worth pointing out that although system (39) is
simple, it cannot be solved the global practical tracking problem using the design method pre-
sented in (Alimhan & Inaba, 2008a, 2008b; Gong & Qian, 2005, 2007; Sun & Liu, 2008) and

(Alimhan et al., 2019), because of the presence of time-varying delay term x1=51 ðt� sinðtÞ=5Þ.
Choose τ ¼ 2=3 and r1 ¼ 1; then r2 ¼ r3 ¼ 3=5 and r4 ¼ 1. Next, choose the reference signal
yr ¼ cosðt=3Þ þ sin t. Then,

yrðtÞj j ¼ cosðt=3Þ þ sin tj j � 2; _yrðtÞj j ¼ � sinðt=3Þ=3þ cosðtÞj j � 4=3: (40)

Further, by Lemma A4, it can be verified that
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φ1ð�Þj j ¼ x1ðt� dðtÞÞj j1=5 � 26=5 x1ðt� dðtÞÞj j1=5 � 1
7

x1ðt� dðtÞÞj j7=5 þ 6
7
27=5;

φ2ð�Þj j ¼ 2x2ðtÞj j � 23=2� �2=3
x2ðtÞ � 3

5
x2ðtÞj j5=3 þ 2

5
25=3;

φ3ð�Þj j ¼ x3ðtÞj j1=5 � 26=5 x3ðtÞ3
�� ��1=5 � 1

7
x3ðtÞj j7=5 þ 6

7
27=5 (41)

and

0 � dðtÞ � 1=5; d0ðtÞ ¼ cosðtÞ=5 � 1=5 � 1 (42)

Clearly, Assumptions 1–3 holds with C1 � 26=35; C2 � 176=35 and D � 4: Following the design
procedure in Section2 (by Theorem1), after some tedious calculations, one obtains a state feed-
back tracking controller

uðtÞ ¼ �2L13=7 x3ðtÞ
�
L6=7Þ þ 2 x2ðtÞ

�
L3=7 � yrðtÞ

� �� �7=5
(43)

In the simulation, by choosing the initial values as z1ðθÞ ¼ 3; z2ðθÞ ¼ �5;
z3ðθÞ ¼ �2; θ 2 ½�1=5; 0�; where dðtÞ ¼ sinðtÞ=5 and the reference signal yr ¼ cosðt=3Þ þ sin t.
Then, we have the following (i) and (ii).

(a) (b)

Figure 1. (a) Tracking error yðtÞ �
yrðtÞ for L= 50. (b). The trajec-
tories of x1ðtÞ,yrðtÞ for L= 50.

(a) (b)

Figure 2. (a) Tracking error yðtÞ �
yrðtÞ for L= 300. (b). The trajec-
tories of x1ðtÞ,yrðtÞ for L= 300.
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(i) When the scaling gain L is chosen as L ¼ 50, the tracking error obtained is about 0.2 as
shown in Figure 1.

(ii) When the scaling gain L is chosen as L ¼ 300, the tracking error obtained is about 0.075 as
shown in Figure 2.

4. Conclusion
In this paper, we extend the result in (Alimhan et al., 2019) to solve the global practical tracking
problem for a class of high-order nonlinear time-varying delays systems by state feedback. Under
some mild-growth conditions, we first construct a state feedback controller with an adjustable
scaling gain. Then, With the aid of a Lyapunov–Krasovskii functional, the scaling gain is adjusted to
dominate the time-delay nonlinearities bounded by the growth conditions and make the tracking
error arbitrarily small while all the states of the closed-loop system remain to be bounded.
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Appendix
To design state feedback controllers for the time-varying delay systems (1), we recall in this
section the definition of homogeneous function and some useful lemmas to be used throughout
this paper.

Definition A1 (Rosier, 1992). For a set of coordinates x ¼ x1; . . . ; xnð Þ 2 Rn and an η-tuple
r ¼ ðr1; . . . ; rnÞ of positive real numbers we introduce the following definitions.

(i) A dilation ΔsðxÞ is a mapping defined by Δr
sðxÞ ¼ sr1x1; � � � ; srn xnð Þ; "x ¼ ðx1; . . . ; xnÞ 2 Rn;

"s > 0, where ri are called the weights of the coordinate. For simplicity of notation, the dilation

weight is denoted by Δ ¼ ðr1; . . . ; rnÞ.
(ii) A function V 2 CðRn; RÞ is said to be homogeneous of degree τ if there is a real number τ 2 R

such that VðΔr
sðxÞÞ ¼ sτVðx1; � � � ; xnÞ; "x 2 Rn � 0f g .

(iii) A vector field f 2 CðRn; RnÞ is said to be homogeneous of degree τ if the component fi is homo-
geneous of degree τ þ ri for each i, that is, fiðΔr

sðxÞÞ ¼ sτþri fiðx1; � � � ; xnÞ; "x 2 Rn; "s > 0; for
i ¼ 1; . . . ;n.

(iv) A homogeneousp-norm is defined as xk kΔ;p ¼ ∑n
i¼1 xij jp=ri

� �1=p
; " x 2 R

n; p � 1.

For the simplicity, write xk kΔ for xk kΔ;2.

Next, we introduce several technical lemmas which will play an important role and be frequently
used in the later control design.

Lemma A1 (Rosier, 1992). Denote Δ ¼ ðr1; . . . ; rnÞ as dilation weight, and suppose V1ðxÞ and V2ðxÞ
are homogeneous functions with degree τ1 and τ2, respectively. Then, V1ðxÞV2ðxÞ is also homo-
geneous function with a degree of τ1 þ τ2 with respect to the same dilation Δ.

Lemma A2 (Rosier, 1992). Suppose V : Rn ! R is a homogeneous function of degree τ with respect
to the dilation weight Δ. Then, the following (i) and (ii) hold:
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(i) @V=@xi is also homogeneous of degree τ � ri with ri being the homogeneous weight of xi.

(ii) There is a constant σ > 0 such that VðxÞ � σ xk kτΔ. Moreover, if VðxÞ is positive definite, there is
a constant ρ > 0 such that ρ xk kτΔ� VðxÞ.

Lemma A3 (Polendo & Qian, 2006). For all x; y 2 R and a constant p � 1 the following inequalities
hold:

(i) xþ yj jp � 2p�1 xp þ ypj j, xj j þ yj jð Þ1=p � xj j1=p þ yj j1=p � 2 p�1ð Þ=p xj j þ yj jð Þ1=p

If p 2 R�1
odd, then

(ii) x� yj jp � 2p�1 xp � ypj j and x1=p � y1=p
�� �� � 2 p�1ð Þ=p x� yj j1=p:

Lemma A4 (Polendo & Qian, 2007). Let c;d be positive constants. Then, for any real-valued
function γðx; yÞ > 0, the following inequality holds:.

xj jc yj jd � c
cþ d

γðx; yÞ xj jcþd þ d
cþ d

γ�c=dðx; yÞ yj jcþd:
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