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Abstract—The constant emission of polluting gases is causing 

an urgent need for timely detection of harmful gas mixtures in 

the atmosphere. A method and algorithm of the determining 

spectral composition of gas with a gas analyzer using an 

artificial neural network (ANN) were suggested in the article. A 

small closed gas dynamic system was designed and used as an 

experimental bench for collecting and quantifying gas 

concentrations for testing the proposed method. This device was 

based on AS7265x and BMP180 sensors connected in parallel to 

a 3.3 V compatible Arduino Uno board via QWIIC. 

Experimental tests were conducted with air from the laboratory 

room, carbon dioxide (CO2), and a mixture of pure oxygen (O2) 

with nitrogen (N2) in a 9:1 ratio. Three ANNs with one input, 

one hidden and one output layer were built. The ANN had 5, 10, 

and 20 hidden neurons, respectively. The dataset was divided 

into three parts: 70% for training, 15% for validation, and 15% 

for testing. The mean square error (MSE) error and regression 

were analyzed during training. Training, testing, and validation 

error analysis were performed to find the optimal iteration, and 

the MSE versus training iteration was plotted. The best 

indicators of training and construction were shown by the ANN 

with 5 (five) hidden layers, and 16 iterations are enough to train, 

test and verify this neural network. To test the obtained neural 

network, the program code was written in the MATLAB. The 

proposed scheme of the gas analyzer is operable and has a high 

accuracy of gas detection with a given error of 3%. The results 

of the study can be used in the development of an industrial gas 

analyzer for the detection of harmful gas mixtures. 

Keywords—Gas Analyzer; Artificial Neural Network; 

Harmful Gases; Sensor; Gas Mixture. 

I. INTRODUCTION 

Air pollution is one of the current problems in the world, 

especially in urban areas of developing countries [1]-[3]. 

With the growth of technological process in the modern 

world, the number of industrial enterprises increases, the 

safety level of which, must meet high standards. Timely 

detection of combustible gases and vapors in the air of 

industrial premises and territory in concentrations much less 

than explosive ones and their localization is an important task 

for compliance with safety rules and fire safety standards [4]-

[6]. 

Gaseous pollutants with characteristics of easily diffuse, 

difficulty of detection, and harsh treatment have become 

some of the most harmful pollutants to human health among 

all industrial wastes [7], [8]. According to the World Health 

Organization (WHO), in the beginning of August 2023, 91% 

of the world's population lives in places where air quality 

exceeds WHO guideline limits, and 7 million people die 

every year as a result of exposure to fine particles in polluted 

air [9]. Fig. 1 shows data from the WHO Ambient Air Quality 

Database for 2012-2022 [10]. 

 

Fig. 1. Ground measurements of annual mean concentrations of nitrogen 

dioxide (NO2), particulate matter of a diameter equal or smaller than 10 μm 

(PM10) or equal or smaller than 2.5 μm (PM2.5) 

The atmosphere contains many traces of gases such as 

ozone (O3), methane (CH4), carbon monoxide (CO), nitrogen 

dioxide (NO2), hydrogen sulfide (H2S) and sulfur dioxide 

(SO2), which exist from a certain concentration and maintain 

a dynamic equilibrium. Сontinuous emissions of polluting 

gases from industry, power generation, as well as car exhaust 

emissions gradually lead to a decrease in the concentration of 

gas in the atmospheric environment. As a result, increasingly 

serious air pollution problems, such as the greenhouse effect 

and various lung diseases, are occurring [11], [12]. For 

example, Shwetha, Sharath, Guruprasad, Rudraswamy in 

[13] state that carbon dioxide (CO2) has a harmful effect on 

the ecosystem, causing acid rain, increasing global 

temperatures and ultimately affecting human health. 

Therefore, carbon dioxide has traditionally been considered 

one of the most serious pollutants in the atmosphere. X. Yin 

and et al. in their paper [14] explain that hydrogen sulfide 

disrupts the biological process of cell oxidation and prevents 

cellular respiration, which eventually leads to cell suffocation 

and hypoxia. 

Currently, there is a significant technological growth in 

the field of artificial intelligence design [15] and, in 

particular, artificial neural networks [16], [17]. Many new 

features of neural networks have been discovered in recent 
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years Works in this field are becoming important 

contributions to industry, science and technology, and are of 

great economic importance. For example, in healthcare, 

ANNs are used to diagnose diseases [18], develop new drugs 

[19] and treat patients. In finance, ANNs are used to predict 

the prices of stocks [20], bonds and other financial 

instruments. In manufacturing, ANNs are used for process 

optimization, product quality control [21] and logistics 

management [22]. ANNs have the ability to retrain 

themselves to improve their performance when new data 

becomes available. 

The use of gas analyzers makes it possible to determine 

the concentration or type of the analyzed substance in a 

timely manner by measuring its physical or physical-

chemical properties. Using ANN in gas analyzers will allow 

for the detection of a wider variety of gases. Currently, there 

are a number of studies on the development of gas analyzers 

with ANNs. These studies show that ANNs can be used to 

develop gas analyzers that have higher measurement 

accuracy than existing gas analyzers, and can also be used to 

develop gas analyzers that are easier to operate and do not 

require periodic calibration. Table I summarizes examples of 

research on the development of gas analyzers of different 

configurations.  

The purpose of this study was to develop a method and 

algorithm for determining the spectral composition of gas 

with a gas analyzer using an artificial neural network. 

II. RELATED WORK 

A neural network (ANN) is a computational model in the 

form of software and hardware embodiment, inspired by the 

way that biological neural networks work. A neural network 

(NN) is a massively parallel processor consisting of 

elementary units of information processing, learning from 

experience and applying it to other tasks [28]. 

The concept of ANNs arose from the study of the 

processes that occur in the brain and the attempt to model 

these processes. McCulloch and Pitts [29] were the first 

scientists to attempt to describe these processes. They 

demonstrated that the brain consists of a large network of 

neural units, which act as simple and reliable logical 

elements. Abiodun, et al. wrote in [30] that ANNs are a model 

of information management that is similar to the function of 

the biological nervous system of the human brain. 

Artificial neural networks have recently become a popular 

and useful model for classification, clustering, pattern 

recognition, and prediction in many disciplines. ANNs are a 

type of machine learning model, and have become relatively 

competitive with conventional regression and statistical 

models in terms of utility [31]. 

An artificial neural network is a system of connected and 

interacting simple processors, called artificial neurons. These 

processors are typically much simpler than the processors 

used in personal computers. Each processor in the network 

only deals with the signals it receives and sends to other 

processors. However, when connected into a large enough 

network with controlled interaction, these individually simple 

processors can perform rather complicated tasks [32].  

Currently, ANNs are used for prediction [33], [34], 

pattern recognition [35], [36], machine translation [37], audio 

recognition [38] and other tasks in various fields of human 

activity [39]-[41]. 

For example, Lu, et al. developed an artificial neural 

network (ANN) and convolutional neural network (CNN) to 

predict the amorphous forming capacity of various 

amorphous alloys [42]. Bedford and Hanson investigated the 

performance of a recurrent neural network for image 

processing to detect delivery errors during portal dosimetry 

in volume-modulated arc therapy as early as possible in the 

treatment process [43]. Sinzinger, Kerkvoorde, Pahr, and 

Moreno applied spherical CNNs to estimate the apparent 

stiffness tensor of trabecular bone [44]. Raissi, Perdikaris, 

and Karniadakis applied physics-based neural networks to 

solve forward and inverse problems involving nonlinear 

partial differential equations [45]. 

III. METHODS 

A. Development of the Gas Analyzer Circuit 

There are several classifications of gas analyzers, which 

differ in design and functional purpose, and the principle of 

operation of the sensor elements (sensors). Based on the 

principle of operation of sensors (sensitive elements, 

sensors), the authors divide gas analyzers into the following 

types: 

1) Gas analyzers with thermocatalytic (thermochemical) 

sensors [46]; 

2) Gas analyzers with thermoconductometric sensors [47]; 

3) Gas analyzers with infrared sensors (IRS) (also with 

optical sensors) [48]; 

TABLE I.  EXAMPLES OF RESEARCH ON THE DEVELOPMENT OF GAS ANALYZERS 

No. Sensor type 

Number of 

input 

signals 

Detected gases AI presence Error Accuracy Reference 

1 Semiconductor 6 Ethanol vapors No AI 3% - [23] 

2 
Resonant 

photoacoustic 
2 

Carbon monoxide (CO) and hydrogen sulfide 
(H2S) 

No AI - - [14] 

3 Semiconductor 1 Carbon monoxide (CO) and hydrocarbons (HC) No AI - 73,68% [24] 

4 Semiconductor 2 Methane (CH4) and и carbon monoxide (CO) Yes, ANN 5% - [25] 

5 Optical 2 Carbon dioxide (СО2) Yes, ANN - 70,028% [26] 

6 
Thermal 

conductivity 
4 Reference gas 

Yes, Adaptive 
Neuro-Fuzzy 

Inference System 

(ANFIS) 

5% - [27] 
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4) Gas analyzers with semiconductor sensors [49]; 

5) Gas analyzers with electrochemical sensors [50]; 

6) Gas analyzers with flame-ionization sensors [51]; 

7) Flame temperature analyzers [52]; 

8) Gas analyzers with paramagnetic oxygen sensors [53], 

[54]. 

Each type of these gas analyzers has a number of 

advantages and disadvantages and is used in certain cases. 

For the present study, gas analyzers with infrared sensors are 

of the greatest interest. 

The principle of operation of optical infrared sensors is 

based on the absorption of energy from a light beam by the 

molecules of the gas being detected in the ultraviolet, visible, 

or infrared region of the spectrum [55]. Existing gas analyzers 

mainly operate in the infrared region of the spectrum. Infrared 

sensors do not alter the sample and do not require oxygen to 

operate. The output signal of infrared sensors is relatively 

independent of the sample flow rate. They have a long service 

life and are not susceptible to corrosion, contamination, or 

mechanical damage. This type of sensor can be used for self-

diagnostics to verify the sensitivity to the component being 

detected. Other advantages of this method include: 

a) high stability; 

b) no ambiguity of readings at concentrations exceeding the 

lower concentration limit of flame propagation; 

c) resistance to poisoning; 

d) less frequent maintenance due to self-diagnostics 

Automatic calibration, the ability to monitor the infrared 

source for proper operation, and the ability to compensate for 

optical contamination can extend maintenance-free 

operation. However, special attention should be paid to the 

timely cleaning of the protective filters in the gas channel, as 

self-diagnostic tools usually do not detect their 

contamination. A schematic of the gas analyzer used in this 

study is shown in Fig. 2.  

 

 

Fig. 2. Schematic diagram of the gas analyzer 

The gas analyzer consists of a gas chamber (1), a set of 

visible, infrared, and ultraviolet radiation sources (2), 

controlled by the control unit (4), a sensor matrix (3), a 

preprocessing unit (5), a recognition unit (6), a display unit 

(7). 

In operation, the gas mixture under analysis enters the gas 

chamber (1) through a parabolic diffuser (8). Pulsed radiation 

is generated by the corresponding radiation source (matrix of 

LEDs) (2), controlled by the control unit (4), and enters the 

chamber (1). The radiation passes through the measuring 

chamber (1), where part of the radiation energy is absorbed 

by the gas components, causing the formation of acoustic 

waves. These waves are detected by the sensor matrix (3), 

which consists of a set of spectral sensors and temperature 

and pressure sensors. The electrical signals from the sensors 

(3) are fed to the input of the preprocessing unit (5). The 

preprocessing unit (5) extracts several hundred parameters of 

the gas mixture. The signal with the results of calculating the 

parameters of the gas mixture from the preprocessing unit (5) 

is fed to the input of the recognition unit (6), which consists 

of a trained neural network and a database of gas mixtures. 

The trained neural network, interacting with the database of 

gas mixtures, outputs a state "1" on one of its outputs, and 

this state is displayed by the display unit (7). 

If a beam of radiation interrupted at a certain frequency is 

directed into a vessel containing a gas that can absorb infrared 

radiation, then a pressure pulsation will occur in the gas, 

which is subjectively perceived as sound. The pressure 

pulsation occurs because the gas molecules, absorbing 

photons of incident radiation, go to an excited state, and then 

the excitation energy of their vibrational-rotational degrees of 

freedom is transferred, as a result of inelastic collisions 

between molecules, into the translational motion energy of 

the latter, i.e. into heat, which corresponds to an increase in 

pressure. The use of a parabolic emitter (8) in this design will 

provide multiple passages of the rays through the chamber 

(3), thereby increasing the gas pressure in the chamber. 

B. Development of a Prototype Gas Analyzer for Data 

Collection 

There are a large number of different sensors available for 

making measurements [56], [57]. Sensors are widely used in 

various fields, such as scientific research, testing, quality 

control, automated control systems, and others [58]-[60]. As 

part of the development of a prototype gas analyzer designed 

to determine the concentration of multicomponent gas 

mixtures in air in laboratory and industrial conditions, the 

AS7265x and BMP180 sensors were used. 
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The SparkFun Triad spectroscopic sensor is a powerful 

optical control sensor, also known as a spectrophotometer 

[61]. Three AS7265x spectral sensors are combined with UV 

and IR LEDs to illuminate and test various surfaces for light 

spectroscopy. The triad consists of three sensors: the 

AS72651, AS72652, and AS72653, which can detect light 

from 410 nm (UV) to 940 nm (IR) (Fig. 3). Each sensor has 

six independent see optical filters. There are a total of 18 

output channels. The use of spectral sensors combined with 

ultraviolet and infrared LEDs greatly simplifies the design of 

the gas analyzer and increases the measurement accuracy 

[62]. 

 

Fig. 3. 18 Chanel spectral respons 

The BMP180 sensor can be used to measure absolute 

atmospheric pressure in the range of 300 to 1100 hPa (+9000 

to -500 meters above sea level) [63]. It can be used in home 

weather stations, flying vehicles, as an altimeter, and other 

applications. The GY-68 module, which is based on the 

BMP180 chip, combines an atmospheric pressure sensor and 

a thermometer. 

Fig. 4 shows a multispectral sensor system with artificial 

intelligence (AI) support. The AS7265x and BMP180 sensors 

are connected in parallel to a 3.3 V compatible Arduino Uno 

[64] board using a QWIIC cable. The Arduino board is used 

as a microcontroller to receive and transmit digitized sensor 

signal data to a laptop computer via the USB port. The 

received spectral data are stored for preprocessing [65]. The 

preprocessed sample data is transferred to a non-linear neural 

network for further analysis. These preprocessed data are 

used to train, test, and validate the neural network [66]. 

Fig. 5 shows a block diagram of the gas analyzer 

operation. To create the tested devices, an experimental 

bench was built. It is a small, closed gas dynamic system for 

collecting and quantitatively determining the gas 

concentration using sensors. The system consists of the 

following main components: an Arduino microprocessor 

board, AS7265x and BMP180 sensors, a container for 

circulating the analyzed gas mixture, a container for 

generating gas, a power supply unit and a circulation pump 

(Fig. 7). 

 

Fig. 4. Multispectral sensor system with Artificial Intelligence (AI) support 

 

Fig. 5. General view of the laboratory bench for gas collection and analysis 

C. Data Collection and Preprocessing 

The spectral data collected from the Arduino module is 

transferred to a PC via the USB port. The data is then 

formatted in a form that machine learning algorithms can 

accept using the MS Excel spreadsheet editor. Outliers, 

duplicate data, and redundant data beyond the standard size 

were also removed [67]. 

D. Neural Network Model 

The pre-processed spectral data is fed as input to the 

neural network architecture. Fig. 6 shows the neural network 

architecture, which has 20 input layers, followed by hidden 

layers, and a multilayer output for multiclassification. 

 

Fig. 6. Neural network architecture 
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Fig. 7. Block diagram of the gas analyzer

From Fig. 6, the preprocessed spectral data fed to the 

input layer has 20 inputs, since our circuit has 20 channels 

with different wavelengths. In this network layout, i1, i2, ..., 

i20 represent the input neurons, wij represent the weights 

connecting the input to the hidden layer, wjm represent the 

weights present in the interconnected hidden layers, and wlk 

represent the weights connecting the hidden layer to the 

output layer. 

Training of the neural network is performed using the 

backpropagation of error method [68], [69]. In the training 

process, the weights are adjusted so that a set of inputs leads 

to the required set of outputs. It is initially assumed that each 

input set corresponds to its paired target set, which specifies 

the required output. Together, they form a training pair [70], 

[71]. 

Initially, the weights and offsets are assigned randomly 

and processed together with the input data using the forward 

propagation method. The output error value is calculated by 

comparing the actual value and the predicted value. The 

output error is then minimized using a gradient descent 

algorithm. The cross-entropy is used as a loss function [72]. 

To constrain the search space during training, the task is 

to minimize the NS target error function, which is found 

using the least squares method [73] as shown in (1). 

𝐸(𝑤) =
1

2
∑(𝑦𝑗 − 𝑑𝑗)

2

𝑝

𝑗=1

 (1) 

Where, 𝑦𝑗 is the value of the j-th output of the neural network; 

𝑑𝑗 is the target value of the j-th output; 𝑝 is the number of 

neurons in the output layer. 

The combination of the least squares method with the 

gradient descent method is called the Levenberg–Marquardt 

algorithm [74]. The block diagram of the backpropagation of 

error method algorithm is shown in Fig. 8. 

 

Fig. 8. Block diagram of the error backpropagation algorithm 

The Neural Network Start (NNStart) package of 

MATLAB [75], [76] was used to implement ANN training. 

The NNStart package allows for curve approximation, image 

recognition, object clustering, and time series approximation. 
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IV. RESULTS 

For experimental tests of the laboratory bench (Fig. 6), a 

sample of air from the laboratory room, carbon dioxide 

(CO2), and a mixture consisting of pure oxygen (O2) with 

nitrogen (N2) in a 9:1 ratio were fed in turn into the container 

for circulation of the analyzed gas mixture. The experiments 

were performed in a well-ventilated room of 20 m2. 

Using the NNStart package, a neural network (NS) with 

one input, one hidden, and one output layer was designed. 

The neurons on the hidden layer have a sigmoidal activation 

function [77], and those on the output layer have a linear 

function [78].  

At the initial stage of an neural network design, the 

volume of training, validation, and test samples is 

determined. The training sample is used to train the ANN. 

The test sample is used to evaluate the generalization 

properties of the network, and to stop training when the 

generalization stops improving. The test sample has no effect 

on training, but serves to test the quality of training on data 

that was not used in training the network. The more sample 

volume is, the more accurate results the neural network will 

produce. 

Two types of analysis were performed to determine the 

number of neurons in the hidden layer. The first consisted in 

revealing the dependence of the training time on the number 

of neurons (Fig. 9). 

 

Fig. 9. Dependence of NN training time on the number of neurons in the 

hidden layer 

As can be seen from the graph, the training time of the 

neural network increases sharply when the number of 

neurons is more than 20. The second analysis showed how 

the number of neurons affects the magnitude of the gradient 

of the error function (Fig. 10). 

 

Fig. 10. Dependence of the gradient of the neural network error function on 

the number of neurons in the hidden layer 

As can be seen from the graph, the gradient of the training 

error sharply increases in the range of 20 to 50 neurons. This 

indicates the appearance of overfitting. In such cases, it is 

usually recommended to reduce the number of hidden 

elements and/or layers, because the network is too powerful 

for the task. The most favorable situation is when the training 

error decreases. On the graph, this situation is observed in the 

range of 4 to 15 layers. 

After analyzing both graphs, it was decided to build three 

neural networks with 5, 10, and 20 neurons and compare the 

results. 

A) A Neural Network Model with Five Neurons in a Hidden 

Layer 

The spectral data samples were organized such that 70% 

of the data set was used for training, 15% was used for 

validation, and the remaining 15% was used for testing. The 

training data was used to train the network, and the network 

was also tuned according to the error. The validation sample 

was used to evaluate the performance of the network and to 

stop training when the network was no longer improving. The 

test samples were used to measure the accuracy of the 

network on unseen data. The results of training are shown in 

Table II. In Table III shows the number of observations, root 

mean square error (MSE), and R-squared during training. 

TABLE II.  NEURAL NETWORK TRAINING RESULTS 

Unit Initial Value Stopped Value Target Value 

Epoch 0 16 1000 

Elapsed Time - 00:00:00 - 

Performance 2.12 1.39e-15 0 

Gradient 3.92 6.9e-08 1e-07 

Mu 0.001 1e-15 1e+10 

Validation Checks 0 0 0 

TABLE III.  LEARNING OUTCOMES 

Stage Number of Observations MSE R-squared 

Training 52 1.3872e-15 1.0000 

Validation 11 1.2682e-15 1.0000 

Test 11 4.0661e-15 1.0000 

 

Training, testing, and validation error analyses are 

performed to find the optimal number of epochs. The 

gradient, cross-entropy, and validation loss during neural 

network training are shown in Fig. 11.  

 

Fig. 11. Results of the training process 
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Fig. 12 shows a graph of the relationship between the root 

mean square error (MSE) and the training epoch. The 

variations of the error for three data sets are shown: training, 

validation, and test. We can see that the error decreases 

significantly by the end of the training process. 

The best validation accuracy is achieved at epoch 16. The 

error rate is minimized and reaches zero at epoch 16 during 

validation. This may be a function of the loss to train the 

model. The cross-entropy loss decreases as the number of 

iterations increases, which means that the model learns very 

well from the data. It minimizes the distance between the 

predicted value and the actual sample value. From the entire 

error analysis, we can conclude that the model requires only 

16 epochs to train and set the optimal weight value. 

 

Fig. 12. Variation of network error during the training process 

The error histogram provides an additional check on 

network performance. The blue bars represent training data, 

the green bars represent validation data, and the red bars 

represent testing data. The histogram can give you an idea of 

outliers, that is, data points that match significantly worse 

than most data. As you can see in Fig. 13, the model is well-

optimized at the expense of less error. 

 

Fig. 13. Error histogram 

An additional tool for evaluating the ANN training results 

is to build regression functions from the ANN output values 

(Output) to the target values that have been set in the training 

sample. Fig. 14 shows a linear regression between the ANN 

output and the targets for the training, validation, and testing 

datasets. 

For a perfect match, the data must lie along a line at a 45-

degree angle where the network output is equal to the target 

values. As you can see in Fig. 14, the perfect match for all 

datasets has an R value of 1. 

 

Fig. 14. Linear regression of neural network output and targets 

B) A Neural Network Model with Ten Neurons in a Hidden 

Layer 

Sample division parameters: training -70%, validating - 

15%, testing: 15%. The number of hidden neurons is 10. The 

results of training are shown in Table IV. In Table V shows 

the number of observations, root mean square error (MSE), 

and R-squared during training. Fig. 15 shows the gradient, 

cross-entropy, and failure rate during neural network training. 

TABLE IV.  NEURAL NETWORK TRAINING RESULTS 

Unit Initial Value Stopped Value Target Value 

Epoch 0 19 1000 

Elapsed Time - 00:00:00 - 

Performance 2.92 3.26e-16 0 

Gradient 6.68 6.03e-08 1e-07 

Mu 0.001 1e-15 1e+10 

Validation Checks 0 0 0 

TABLE V.  LEARNING OUTCOMES 

Stage Number of Observations MSE R-squared 

Training 52 3.2631e-16 1.0000 

Validation 11 2.1441e-07 1.0000 

Test 11 6.3369e-08 1.0000 
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Fig. 15. Results of the training process 

Fig. 16 shows a plot of the root mean squared error (MSE) 

as a function of training epochs. From the error analysis, we 

can conclude that the model requires 19 epochs to train and 

set the optimal weight value. As you can see in Fig. 17, the 

model is well-optimized because the error value is lower. 

 

Fig. 16. Variation of network error during the training process 

 

Fig. 17. Error histogram 

Fig. 18 shows a linear regression of the neural network's 

output and targets for the training, validation, and testing 

datasets. 

 

Fig. 18. Linear regression of neural network output and targets 

C) A Neural Network Model with Twenty Neurons in a 

Hidden Layer 

Sample division parameters: training -70%, validating - 

15%, testing: 15%. The number of hidden neurons is 20. The 

results of training are shown in Table VI. In Table VII shows 

the number of observations, root mean square error (MSE), 

and R-squared during training. 

TABLE VI.  NEURAL NETWORK TRAINING RESULTS 

Unit Initial Value Stopped Value Target Value 

Epoch 0 50 1000 

Elapsed Time - 00:00:01 - 

Performance 6.06 1.08e-12 0 

Gradient 18.3 9.4e-08 1e-07 

Mu 0.001 1e-08 1e+10 

Validation Checks 0 0 0 

TABLE VII.  LEARNING OUTCOMES 

Stage Number of Observations MSE R-squared 

Training 52 1.0777e-12 1.0000 

Validation 11 0.0043 0.9971 

Test 11 0.0062 0.9951 

 

Fig. 19 shows the gradient, cross-entropy, and failure rate 

during neural network training. Fig. 20 shows a graph of the 

root mean squared error (MSE) as a function of training 

epochs. From the error analysis, it can be concluded that the 

model requires only 50 epochs to train and set the optimal 

weight value, which is significantly more than in the two 

previous neural network variants. As you can see in Fig. 21, 

the model is well-optimized because the error value is lower.  
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Fig. 19. Results of the training process 

 

Fig. 20. Variation of network error during the training process 

 

Fig. 21. Error histogram 

Fig. 22 shows a linear regression of the neural network's 

output and targets for the training, validation, and testing 

datasets. 

 

Fig. 22. Linear regression of neural network output and targets 

D) Approval of the Neural Network Model 

To test the neural network, we wrote a program in 

MATLAB. In turn, we fed a sample of laboratory air, carbon 

dioxide (CO2), and a mixture of pure oxygen (O2) and 

nitrogen (N2) in a 9:1 ratio into the circulation container for 

the analyzed gas mixture of the assembled laboratory bench. 

The sensor data from the assembled laboratory bench was fed 

sequentially into the program input. After additional 

preparation, the data was transferred to the input of each of 

the neural networks. The program output was a visualization 

of the gas mixture. Fig. 23 shows the output window of the 

program. The program results show that there are gases 

unknown to the database. 

  

Fig. 23. Program results 
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V. CONCLUSIONS 

The aim of this study was to develop a method and 

algorithm for determining the spectral composition of gas. 

Advanced spectroscopic methods and sensors were used, 

including sensors that allow obtaining data in the UV and IR 

range. Gas pressure and temperature data were also used to 

increase the accuracy of the analysis and the measurement 

range of the input data. Neural networks were used to analyze 

the spectral composition of gas mixtures with high accuracy, 

even in the presence of unknown gases.  

An experimental bench was built to test this concept. It is 

a small, closed gas dynamic system for collecting and 

quantifying gas concentrations using sensors. The system 

consists of the following main components: Arduino 

microprocessor board, AS7265x and BMP180 sensors, 

container for circulating the analyzed gas mixture, container 

for generating gas, power supply unit, circulation pump. 

A sample of laboratory air, carbon dioxide (CO2), and a 

mixture consisting of pure oxygen (O2) and nitrogen (N2) in 

a 9:1 ratio were fed into the circulation container for the 

analyzed gas mixture in turn. 

Three neural networks were constructed using the 

NNStart package of the MATLAB mathematical system. 

Each neural network has one input layer, one hidden layer, 

and one output layer. The neural networks differed in the way 

they sampled spectral data, namely the number of hidden 

neurons. 

Training and construction of each of the obtained neural 

networks showed good results. However, the graph of the 

network error variation in the process of training for a neural 

network with five hidden layers is the most successful and 

demonstrative. The MSE of training, verification, and test 

results for a neural network with five hidden layers are also 

the most optimal. 

The results of this study prove that the proposed gas 

analyzer scheme is functional, and the software created 

provides an effective analysis of the composition of gas 

mixtures. Experimental studies have shown a high accuracy 

of gas detection for this type of device with a given error of 

3% of gas detection A neural network with five hidden layers 

and 16 iterations is sufficient for this purpose. 

The proposed gas analyzer scheme is based on the model 

described in the patent «Gas analyzer» No. 5141 dated 

10.07.2020 [79], which was further developed in the patent 

«Intelligent gas analyzer» No. 8288 dated 21.03.2023 [80], 

using neural networks for decision analysis. 

In the future, it is planned to implement an autonomous 

gas analyzer based on Raspberry Pi or Arduino Mega 

microcontrollers. This will make the device more compact 

and portable, and the use of a trained database will allow the 

proposed method to be effectively implemented on FPGAs. 

All this will make it more convenient and autonomous for use 

in the field. It is also planned to test this concept using 

convolutional neural networks, which will simplify 

calculations while maintaining accuracy. This will allow to 

increase the speed of data processing, conduct data analysis 

in real time and obtain more accurate results. These 

improvements will make the device more reliable and 

durable. This will allow it to be used in industrial conditions. 
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