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Abstract: The prevalence of numerous infectious diseases has emerged as a grave concern within the
realm of healthcare. Currently, the issue of antibiotic resistance is compelling scientists to explore
novel treatment approaches. To combat these infectious diseases, various treatment methods have
been developed, harnessing cutting-edge disinfecting nanomaterials. Among the range of metallic
nanoparticles employed in medicine, silver nanoparticles (AgNPs) stand out as both highly popular
and well-suited for the task. They find extensive utility in cancer diagnosis and therapies and as
effective antibacterial agents. The interaction between silver and bacterial cells induces significant
structural and morphological alterations, ultimately leading to cell demise. In this study, nanoparticles
based on silver and bambusuril[6] (BU[6]) were developed for the first time. These NPs can be used for
different biomedical purposes. A simple, single-step, and effective synthesis method was employed
to produce bambusuril[6]-protected silver chloride nanoparticles (BU[6]-Ag/AgCl NPs) through the
complexation of BU[6] with silver nitrate. The NPs were characterized using X-ray phase analysis
(XPS), infrared spectroscopy (IR), thermogravimetric analysis (TGA), scanning electron microscopy
(SEM) and energy-dispersive X-ray spectroscopy (EDS). When the SEM images were examined, it
was seen that the synthesized BU[6]-Ag/AgCl NPs were distributed with homogeneous sizes, and
the synthesized NPs were mostly spherical and cubic. The EDS spectra of BU[6]-Ag/AgCl NPs
demonstrated the presence of Ag, Cl, and all expected elements. BU[6]-Ag/AgCl NPs showed high
antibacterial activity against both E. coli and S. aureus bacteria.

Keywords: bambusuril[6]; silver chloride nanoparticles; MTT-test; thermal analysis; supramolecular
chemistry; antibacterial activity

1. Introduction

Currently, metallic nanoparticles based on silver (Ag), gold (Au), and copper (Cu)
are widely employed in various applications such as biosensors, catalysis, targeted drug
delivery, and antibacterial therapies. Among these nanoparticles, silver nanoparticles
AgNPs have attracted significant attention due to their exceptional antibacterial activity
against diverse microorganisms, including bacteria, viruses, and fungi [1-6].

Various reagents have been used to synthesize AgNPs. Green synthesis of silver-silver
chloride nanoparticles (Ag-AgCl NPs) has been proposed as a simple, easy, eco-friendly
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and cost-effective method. Ag/AgCl NPs synthesized from Azadirachta indica lalex are
currently known to be active against fluconazole-resistant Candida tropicalis [7]. There
is a known easy and green synthesis method for carrageenan-coated silver NPs. The
nanoparticles have antimicrobial activity for E. coli and S. aureus bacteria [8]. The leaf
extract of Sasa borealis is a source for the reduction of silver nitrate into Ag-AgCl NPs.
Phytochemicals of the leaves act as both reducing and stabilizing agents. Sasa borealis
Ag-AgCl NPs exhibit significant antibacterial activity against Gram-positive and Gram-
negative pathogens and anticancer activity against AGS (gastric adenocarcinoma) cells [9].
Novel Ag-AgCl NPs were developed from the bacteria Shewanella sp. Arc9-LZ, which were
isolated from the deep sea of the Arctic Ocean [10]. These nanoparticles have negative
effects on the breast cancer cell line MCF-7 [11,12].

The unique properties of AgNPs are directly influenced by their sizes and shapes, with
AgNPs typically consisting of 20 to 15,000 silver atoms and exhibiting sizes ranging from
1 to 100 nm [13,14]. Moreover, due to the large surface area to volume ratio, NPs exhibit
remarkable antimicrobial activity, even at low concentrations [15]. AgNPs possess the
ability to combat both aerobic and anaerobic microorganisms, making them effective agents
for microbial eradication [16]. The remarkable antibacterial properties of AgNPs stem
from their ability to interact with the disulfide (5-S) bonds found in metabolic enzymes,
disrupting the cellular integrity and impairing respiratory processes [17]. Upon contact
with bacteria, these nanoparticles adhere to the cell wall and membrane, where they exhibit
dual modes of action. Some AgNPs penetrate the interior, interacting with phosphate-
containing compounds such as DNA and RNA, whereas others bind to sulfur-containing
proteins on the membrane [18].

Interestingly, AgNPs, in addition to antibacterial activity, exhibit anticancer properties
against various cancer cell lines, including breast cancer cells (MCEF-7) [19], colon cancer
cells (HCT116) [20], prostate cancer cells [21], and lung carcinoma cells. The anticancer
activity of AgNPs is attributed to their ability to induce cell death in mammalian cells.
AgNPs accumulate within endosomes upon entering the body and subsequently fuse
with lysosomes. Within the acidic environment of lysosomes, AgNPs release Ag™* ions
at an increased rate. These reactive ions disrupt cellular homeostasis and, depending on
the specific characteristics of the target cells, can trigger apoptotic cell death [22]. This
mechanism of action, often referred to as the “Trojan horse” mechanism, showcases the
cytotoxic properties of AgNPs post cellular uptake [23,24]. Additionally, AgNPs have
shown potential for enhancing the effectiveness of combined radiation and chemotherapy
treatments [25].

Supramolecular compounds have gained significant recognition beyond nanopar-
ticles. Supramolecular chemistry aims to utilize non-covalent interactions to construct
intricate chemical systems [26-30]. Most commonly, the interacting species are held to-
gether by hydrogen bonds. The definition excludes compounds formed by electrostatic
interactions, which are referred to as ion pairs. Among the various supramolecular ar-
chitectures, macrocycles have emerged as highly versatile entities due to their inherent
cavities that are capable of hosting guest molecules [31-33]. The expansion and change
in size of the ring cavity and the selective complexation of macrocyclic compounds with
inorganic and organic small molecules and metal ions have brought new attention to macro-
cyclic chemistry. Chemists have extensively researched macrocycles and their derivatives
to achieve structure-specific and highly selective recognition properties, which provide
opportunities for exploring advanced applications in sensing, transport, catalysis, and
drug/gene delivery. Nitrogen-containing heterocycles are structures that are widely found
in natural products and pharmaceutical molecules. Compounds containing such struc-
tures often have unique physiological and pharmacological properties. Macrocycles based
on Bambusuril[n] (BU[n]) were discovered relatively recently by the scientists Jan Svec
and Vladimir Sindelar in 2010. BU[n] represents a new class of macrocyclic compounds
consisting of n-2,4-substituted glycoluril units connected by a single row of methylene
bridges. These macrocycles combine the structural features of both cucurbituril[n] and
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hemicucurbituril[n] [34]. At a height of 12.7 A, BU[6] has a significantly deeper cavity than
cucurbit[n]urils, whose height is 9.1 A. BU[6] has a high affinity for negatively infected
molecules and ions [35-37]. Recent studies focused on the chemistry of bambusuril and
its use as an effective and selective adsorbent for anions [38,39]. Recent discoveries have
revealed that bambusuril can selectively bind to [Au(CN),]™ ions [40], suggesting their
potential application in the gold mining industry. Additionally, it has been found that
semithiobambusuril, featuring terminal thiocarbonyl groups, has a fascinating ability to
form highly stable and well-ordered monolayers on gold surfaces. The attachment of
bambusuril molecules to gold surfaces induces significant conformational changes.

The chemistry of bambusuril is actively developing; however, there are still many
questions regarding its supramolecular properties. It is known that bambusuril possesses
“host—guest” properties [40,41], but to date, the suitability of BU[6] for the synthesis and
stabilization of metallic nanoparticles, particularly AgNPs, has not been investigated.
Previously, AgNPs stabilized with cucurbituril[7] were obtained in an aqueous medium in
the presence of NaOH at room temperature [42].

In our previous studies, we developed a biomaterial based on porous titanium nicke-
lide and bambusuril[6] [43,44]. By employing a supramolecular methodology, a complex
that combines bambusuril[6] and benzalkonium chloride was successfully synthesized. The
ongoing advancement of supramolecular systems based on bambusuril[6] and therapeutic
agents shows great promise for the creation of novel materials with the ability to release
drugs over an extended period under the influence of various factors.

The main concept of this work is to create new BU[6]-protected AgNPs. In this work,
we obtained NPs by a simple method using the reaction of silver nitrate with bambusuril[6]
in DMSO/CHCI; at room temperature.

2. Results and Discussion

In the first stage of our work, BU[6] was synthesized according to the traditional
approach [35] of 2,4-dimethylglycoluryl and the acid-catalyzed Mannich-type condensation
of disubstituted glycoluril with paraformaldehyde in a solvent at reflux (Scheme 1).

h N )k H,
1‘{ | OH" )L + moom JPN A %
+ 77 . N NH H HCI >_< 6

H
H 0
N N N. N
< Va 7 N\
o/: iH HO OH HyC T het H,C Y CH;
)

Scheme 1. Synthesis of bambusuril[6].

The structure of the obtained bambusuril was confirmed through NMR and X-ray
crystallography. The X-ray structural analysis (Figure 1) of bambusuril[6] revealed that the
macrocycle contains six structural units. Bambusuril[6] adopts a monoclinic symmetry, and
its crystalline lattice belongs to the space group P-6. The cell parameters were determined
as follows: a—12.2731 A (10), b—12.2731 A (10), c—31.569 A (2); a = 90, B = 90, ¢ = 120.
Notably, the interior cavity of bambusuril[6] accommodates the C1™ ion. The presence of a
templating anion is essential for the preferential formation of BU[6] over BU[4].
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Figure 1. The X-ray crystal structure of BU[6] (A) cross-section of BU[6], (B) cell parameters. The
interior cavity of bambusuril[6] accommodates C1~.

In the experiment, we dissolved bambusuril[6] in DMSO/CHCI; and added AgNO3
and water, and the addition of water led to the formation of a brownish-gray solution,
indicating the formation of AgNPs (Figure 2).

DMSO/CHCl,

& o
Figure 2. The scheme shows the synthesis of BU[6]-Ag/AgCl NPs.

Under certain conditions, it is anticipated that BU[6] would preferentially assist with
the adsorption, reduction, and growth of metal, which would result in the formation of
nanoscale structures. The diverse polar carbonyl portals in BU[6] contribute significantly
to the reduction of Ag* ions via cumulative negative surface charges, resulting in the
formation of AgNPs. Bambusuril[6] contains Cl1~ inside its cavity (Figure 1); therefore,
AgP binds to C1~ inside its cavity, forming BU[6]-Ag/AgCl NPs. As the metallic particles
condense to the nanoscale, effective stabilization is achieved through either electrostatic or
steric mechanisms. BU[6] molecules serve as excellent stabilizers by forming a protective
coating on the silver nanoparticle surfaces, counteracting Van der Waals forces that promote
particle agglomeration. We propose a possible interaction model in which the carbonylated
portals of BU[6] interact with the surfaces of the NPs, similar to the behavior observed with
CB[7] [42]. Experimental evidence, supported by an FTIR analysis, demonstrates a notable
decrease in the intensity of the characteristic carbonyl peak of BU[6] in the spectrum of the
BU[6]-stabilized Ag/AgCl NPs. Additionally, a significant high-frequency shift from 1683
to 1694 cm~! indicates supramolecular interactions between the carbonyl groups and the
NPs surfaces.

Further, the formation of AgNPs was confirmed using UV-visible spectrophotometry
(Figure 3). BU[6]-Ag/AgCl NPs absorbed light in the visible region due to surface plasmon
resonance and produced a singular peak point at 430 nm [45].
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Figure 3. UV-visible spectrophotometry of BU[6]-AgCl NPs.

The solution of AgNOj in the presence of DMSO/CHClI3 did not show the charac-
teristic surface plasmon band, indicating that bambusuril[6] may play a decisive role in
the reduction of silver salts to Ag’. Our results are in agreement with the literature, as the
UV-visible spectra show that silver NPs have similar wavelength characteristics [46,47].

The morphologies of the synthesized particles were examined by SEM, and the SEM
BU[6]-Ag/AgCl NPs samples are shown in Figure 4. When the SEM images were examined,
it was seen that the synthesized BU[6]-Ag/AgCl NPs were distributed with homogeneous
sizes, and the synthesized AgNPs were mostly spherical and cubic. Certain elements found
in the BU[6]-Ag/AgCl NPs were determined by the EDS analysis, and the results are given
in Figure 5. The EDS spectra of the BU[6]-Ag/AgCl NPs showed the presence of Ag, Cl,
and all expected elements. A strong signal at 3 keV revealed the presence of metallic silver
in BU[6]-Ag/AgCl NPs [48]. It was also shown that BU[6]-Ag/AgCl NPs did not contain
any impurities. The C, O, and N peaks are evidence that bambusuril[6] was used during
BU[6]-Ag/AgCl NP synthesis.

Figure 4. SEM image of synthesized BU[6]-Ag/AgCl NPs.
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Figure 5. EDS analysis of synthesized BU[6]-Ag/AgCl NPs.

The crystalline nature of the synthesized silver nanoparticles, bambusuril[6], and
AgNOj3 was investigated using X-ray diffraction (XRD). The XRD pattern of BU[6]-Ag/AgCl
NPs showed peaks at 27°, 32°, 46°, 54°, 57°, 67°, 74°, and 77° (Figure 6), corresponding to
the different orientation planes at 111, 200, 220, 311, 222, 400, 331, and 311 for the AgCl
NPs, indicating a face-centered cubic structure of silver crystals (JCPDS card No. 31-1238).
Additionally, some lower peaks were seen at 38° and 65° at an angle of 26, which indicated
the cubic phase of Ag NPs (JCPDS no. 65-2871). Thus, the XRD pattern clearly demonstrates
that the formed NPs have a crystalline nature. The present findings are in good agreement
with previous studies of silver chloride NPs synthesis using arctic Marine Bacterium [10],

leaf extract of pineapple peel [12], and Sasa borealis [9].
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Figure 6. XRD patterns of BU[6], AgNOj3, BU[6]-Ag/AgCl NPs.

Reflections from the (111), (200), (220), (311), and (222) lattice planes of AgCl NPs can
be seen as a series of intense Bragg reflections. All of the reflections are consistent with
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the crystalline structure of silver chloride with a face-centered cubic symmetry. The high
degree of crystallinity of the silver NPs is evident in the intensities of the peak position
reflections. The crystallite size of silver NPs was determined using the Debye—Scherrer
equation:

D— 0.89A
Bcos 6

where the Cu Ka X-ray wavelength A = 0.154056 nm, 6 is Bragg’s diffraction angle
(° or radian), and B (radian) is the full width at half-maximum (FWHM) of the maxi-
mum intensity peak °. The results show that the average crystallite size of BU[6]-AgCl NPs
is 25.35 nm (Table 1).

Table 1. Data showing the crystallite diameter size of the BU[6]-Ag/AgCI NPs.

Miller Indices (hkl) 20 of the Intense 0 of the Int.ense FWHM, FWHM, %ri};lsr:i::i;e
Peak (°) Peak (Radian) B©) B (Radian) D (am) ’
111 (AgCl) 27.71 0.241077 0.25 0.004363 31.40
200 (AgCl) 32.11 0.283692 0.41 0.007156 19.14
220 (AgCl) 46.33 0.409326 0.35 0.006109 2243
311 (AgCl) 54.93 0.485307 0.25 0.004363 31.40
222 (AgCl) 57.6 0.508896 0.35 0.006109 2243
111 (Ag) 38.13 0.336879 0.45 0.007854 17.44

The size of the polycrystalline particles is depicted by the SEM image (Figure 4). The
particle sizes were estimated to be 240 nm. Most metals, including Ag, have FCC structures
and grow from nucleation into twinned and multiply twinned particles with surfaces
bordered by the lowest-energy facets [49]. AgCl NPs tend to agglomerate due to the high
surface energy and high surface tension of the ultrafine NPs, which may account for the
observation of some larger NPs. SEM can be used to estimate the particle size and XRD can
be used to calculate the crystallite size. The crystallite size is different from the particle size.
A particle may be made up of several different crystallites [50]. This is the main reason for
the difference in particle sizes measured by SEM and XRD.

Figure 7 shows the FTIR spectra of BU[6], AgNO3, and BU[6]-Ag/AgCl. The IR
spectrum of BU[6]-Ag/AgCl NPs exhibits a new absorption peak at 1251 cm ™!, indicating
the formation of van der Waals interactions between silver and the carbonyl groups of
bambusuril[6]. Additionally, the peak at 609 cm~! indicates the binding of Ag to oxygen
C=0Obambusuril[6]. As observed from the spectra, the position of the characteristic carbonyl
peak of bambusuril[6] shifted to the high-frequency region in the BU[6]-Ag/AgCl NPs
spectrum, from 1679 to 1687 cm !, which indicates a supramolecular interaction between
carbonyl groups and the surface of NPs.

The thermograms of bambusuril[6] and BU[6]-AgCl show a loss of mass during
thermal decomposition (Figure 8). The thermogram of bambusuril[6] indicates multistage
degradation, with the first mass loss resulting from the evaporation of water and the next
mass loss occurring due to the melting of bambusuril[6].

At the end of the experiment, the residue of pure bambusuril[6] at 500 °C was found
to represent 10.76% of the total mass. For BU[6]-Ag/AgCl, the first stage of degrada-
tion involves the evaporation of water from the structure, followed by the melting of
silver nanoparticles in the second stage. Based on these results, the thermal stability of
bambusuril[6] changed upon the addition of silver (Figure 9). At 500 °C, the residue of
BU[6]-Ag/AgCl NPs was found to be 22.9% of the total mass. Thus, it can be concluded
that the silver content in BU[6]-Ag/AgCl NPs is 12.14%.



Int. J. Mol. Sci. 2023, 24, 16126 8of 16
——BU[6]-Ag/AgCl ——BU[6] ——AgNO3
X
]
[
8
€
e
o
l—
1679
360 660 960 1260 1560 1860 2160 2460 2760 3060 3360 3660 3960
Wavenumber, cm 1
Figure 7. FTIR spectra of BU[6], AgNOj3, and BU[6]-Ag/AgCl.
100 - - 40
_—-_*'_'"'“"‘“-\ —Te —DTG
8o L 1 f 0
4—-40
C
E 60 - =
_;E ~4—80 0"
- 40 =
O 1-120 O
|—
20 | 1- 160
349 °C
0 T T T T T T T T T —_— 200

25 75 125 175 225 275 325 375 425 475
T,°C
Figure 8. Thermal analysis of BU[6]-Ag/AgCl.

Strains of Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) were used
as test objects to study the effect of BU[6]-Ag/AgCl NPs on Gram-positive and Gram-
negative microflora. An 0.9% NaCl solution was added to the medium as a negative
control, and bambusuril[6] and BU[6]-Ag/AgCl NPs solutions were added as samples.
The concentration of the bacteria used in this measurement was about 1 x 108 cells/mL,
and the concentration gradient of BU[6]-Ag/AgCl NPs was from 8 to 1 mg/mL. When the
inhibition diameter of pure bambusuril[6] was examined, it was seen that there was no
inhibition zone in either type of bacteria. These results showed that pure bambusuril[6] did
not have an antimicrobial effect on both bacteria species. It can be seen that BU[6]-Ag/AgCl
NPs displayed antimicrobial activity against both S. aureus and E. coli (Table 2). The zone of
inhibition was found to increase in accordance with an increasing concentration of BU[6]-
Ag/AgCINPs. E. coli was a bit more sensitive to BU[6]-Ag/AgCl NPs than S. aureus, which
was shown by the larger zones of inhibition. It was observed that 1 mg/mL BU[6]-Ag/AgCl
NPs did not have an antimicrobial effect on either E. coli or S. aureus. In this study, the MICs
of BU[6]-Ag/AgCl NPs against S. aureus and E. coli were determined by the macrodilution
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method, and both were found to be effective at 2 mg/mL. One study demonstrated that
the MIC of 10 nm silver NPs is a concentration of 1.35 mg/mL against S. aureus [51].

100 e ———
—BUIE]
80 - —BU[E]-Ag/AGC]
£ 60 -
=
-5
S 40 ¢
(O]
-
20 r
0 T T T T T T T T T T
25 75 125 175 225 275 325 375 425 475 525
T, °C
Figure 9. Thermal analysis for BU[6] and BU[6]-Ag/AgCl.
Table 2. Antimicrobial results of the samples.
S 1 Inhibition Zone of Inhibition Zone of
amp’es E. coli (mm) S. aureus (mm)
Negative control (NaCl) 0 0
10 mg/mL Bambusuril[6] 0 0
1 mg/mL BU[6]-Ag/AgCl NPs 0 0
2 mg/mL BU[6]-Ag/AgCl NPs 124 12.1
4 mg/mL BU[6]-Ag/AgCl NPs 13.9 134
8 mg/mL BU[6]-Ag/AgCl NPs 17.5 17.4

MIC 2mg/mL

It was found that bambusuril[6] reduced the cytotoxicity of porous materials in our
previous studies. The surface of titanium nickelide was modified with bambusuril[6] [43].
In vitro tests proved the high biocompatibility and low toxicity of porous TiNi treated with
BU[6] under vacuum. The control sample and the sample with the surface modified under
vacuum exhibited enhanced surface cytocompatibility. The percentage of live cells MCF-7
in these samples exceeded 90%.

There is no information about the biocompatibility of bambusuril[6]. The biocompati-
bility of bambusuril[6] was assessed by studying hemolysis (Table 3). The level of hemolysis
for bambusuril[6] is 0.3%. It was found that bambusuril[6] does not cause erythrocyte
death, since the level of hemolysis of biomaterials in contact with the internal environment
of the body does not exceed 5% [52], which indicates the cytocompatibility and non-toxicity
of BUI[6].

Table 3. Hemolysis of BU[6].

Samples Hemolysis, %
BU[6] 0.3
CTRL (plasma) 0
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A preliminary investigation was conducted to determine the cytotoxicity of BU[6]
and BU[6]-Ag/AgCl NPs on human immune system cells (Table 4). Leukocyte fractions
enriched with monocytes were used as a test system. The cytotoxicity of the samples was
studied using the MTT test based on the standard for determining the viability of cell
cultures (Figure 10) [53]. Cells cultured on a plate without samples were used as a control
condition. The differentiation of living and dead cells was carried out visually according to
the method proposed by J. Kzhyshkowska [54]. Living cells are lighter than dead cells and
have well-defined shapes. The accuracy of this method was confirmed via fluorescence
microscopy by staining with DAPIL.

Table 4. Investigated materials and abbreviations.

Samples Name Concentration, mg/mL
BUJ6] D1 10
BU[6] D2 5
BU[6] D3 25
BU[6]-Ag/AgCl D4 10
BU[6]-Ag/AgCl D5 5
BU[6]-Ag/AgCl D6 25

vl ' ‘ Rty *. ‘:_..-' b
- ‘ in W B
J L | w,‘. i ‘.'.s A_.J ,\f‘s:ﬁ 8 &‘4
100.pm o A‘ ) 100 pm ) i "ﬁ“: : 10‘6"‘ .'ﬁ
= D LA --mi

B G e C e £
Figure 10. Micrograph of the culture of human mononuclear cells incubated with (A,C) BU[6] and
(B,D) BU[6]-Ag/AgCl NPs. The incubation durations were 24 h (A,B) and 144 h (C,D). A total of 1 mL
of cell medium containing cells at a concentration of 1 x 10 cells and 10 puL of the sample suspension
(BU[6]-Ag/AgCl NPs; BU[6]) was added to each well of a 24-well plate. Black arrows—Ilive cells,
dotted arrows—live cells.

A visual evaluation of the mononuclear viability in the presence of the test objects
showed that BU[6]-Ag/AgCl NPs had a significant negative effect on the cell viability after
24 h of incubation. A considerable number of dead cells were observed after 144 h, and a
large number of cells were identified as necrotic (Figure 10D). In contrast, bambusuril[6]
did not have a significant negative effect on the cell viability (Figure 10A). Similar effects
were observed after 144 h of incubation (Figure 10B), but they were more pronounced.
Differences in the absolute values of cytotoxicity between donors were due to the differences
in the mononuclear content in the blood of donors.

The results of the MTT test for evaluating the cell viability are consistent with the
results of the visual evaluation. D1, D4, D5, and D6 had negative impacts on the cells
(p <0.05), while the level of mononuclear viability in the presence of sample D3 did not differ
from the control sample (p > 0.05) (Figure 11). Bambusuril[6], at a concentration 2.5 mg/mL,
did not induce mononuclear cell death. The toxicity of bambusuril[6] at a concentration
of 10 mg/mL could be attributed to its ability to bind to mononuclear cells. It is known
that cucurbituril[7] can form complexes with amino acids, peptides, and proteins [55-57].
According to data in the literature, CB[7] can bind to albumin [58,59]. Concentrations of
bambusuril[6] higher than 5 mg/mL are not required for medicinal purposes.
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Figure 11. MTT test used for evaluating the cell viability levels of different donors after the incubation
of BU[6] and BU[6]-Ag/AgCl NPs for 144 h.

There is research in the article of Mitzi ]. Ramirez-Hernandez regarding the cytotoxic
selectivity on cancer cells with biogenically synthesized Ag/AgCl NPs [12]. Systems with
Ag/AgCl were tested in mononuclear cells, particularly in monocytes. It was found that
NPs were also cytotoxic to monocytes at a concentration of 25 pg/mL. In fact, their half
maximal inhibitory concentration (IC50) was lower than that of MCE-7 cells, being 13 and
12 pg/mL, respectively. Interestingly, an unexpected result was that, for concentrations
above 35 pug/mL, especially at 50 ng/mL, the cytotoxic effect of NPs was more pronounced
on cancer cells than on monocytes [12]. Therefore, the increased cytotoxicity observed
with the stabilization of silver NPs by bambusuril[6] against mononuclear cells in vitro
suggests that these NPs may possess inherent properties for the effective interaction and
eradication of cancer cells. However, these data have never been reported before, so the
specific mechanism underlying this process remains unexplored and further investigation
is warranted.

3. Materials and Methods

Glyoxal was purchased from Novochem (Tomsk, Russia), and silver nitrate was
purchased from Reachim (Sverdlovsk, Russia). All other chemicals were purchased from
Merck/Sigma-Aldrich (Darmstadt, Germany).

3.1. Bambusuril[6] Synthesis

BU[6] was synthesized by the condensation of 2,4-dimethylglycoluryl with formalde-
hyde in 5.4M HCI, with a yield of 30% [35]. 'H NMR (400 MHz, DMSO-d6/CHCl;
(1:1), 30°C, TMS), ppm: 5.29 (s, 12H), 5.06 (s, 12H), 2.51 (s, 36H). '3C NMR (100.63 MHz,
[D6]DMSO/CDCl; (1:1), 30 °C, TMS), ppm: 159.32, 158.45, 67.82, 48.78, 31.06.

3.2. Synthesis of 4,5-Dihydroxy Imidazolidin-2-One

The 4,5-dihydroxy imidazolidin-2-one was synthesized by mixing 50 g of urea with
107 mL of 40% glyoxal, followed by the gradual addition of NaOH until reaching pH 6-7.
Once the pH was stabilized, the mixture was heated to 45 °C for 6-7 h. Subsequently, the
mixture was cooled, the pH was adjusted to 8, and the mixture was left in a refrigerator at
5 °C for 2 days for crystal formation. The obtained DHI exhibited a melting point range
of 157-160 °C. The 'H NMR (DMSO-d6 (1:1), TMS) spectrum showed peaks at 7.12 ppm
(doublet, 2H), 5.98 ppm (doublet, 2H), and 4.61 ppm (doublet, 2H), while the 3C NMR
(DMSO-d6 (1:1), TMS) spectrum displayed peaks at 161.01 ppm (C=0) and 84.24 ppm
(C-H).

3.3. Synthesis of 2,4-Dimethylglycoluril

A total of 20 g of DHI was dissolved in 45 mL of distilled water, followed by the
addition of 23 g of dimethylurea. Concentrated sulfuric acid was added gradually to
adjust the pH to 2-3. The solution was heated to 85 °C for 2 h, and water was evaporated
to yield a precipitate. The obtained precipitate was washed with ethanol. The resulting
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2,4-dimethylglycoluril exhibited a melting point of 260 °C. The 'H NMR (DMSO-d6 (1:1),
TMS) spectrum showed peaks at 7.53 ppm (complex, 2H), 5.12 ppm (complex, 2H), and
2.83 ppm (complex, 6H), while the 13C NMR (DMSO-d6 (1:1), TMS) spectrum displayed
peaks at 161.56 ppm (C=0), 158.22 ppm (-C=0), 67.67 ppm (C-H), and 28.22 ppm (-CHj).

3.4. Synthesis of BU[6]-Ag/AgCl NPs

A total of 1.13 g of bambusuril[6] was dissolved in a mixture of solvents consisting
of 400 mL of DMSO/CHCI;3 (1:1). Then, 0.53 g of silver nitrate was added to the solution.
The mixture was stirred for 2 h at room temperature with a stirring rate of 150 rpm. The
addition of water resulted in the formation of a dark gray precipitate between the water
and the organic solvent layers.

3.5. Infrared Spectroscopy

Infrared (IR) spectra were recorded using an Agilent Cary 630 Fourier transform in-
frared spectrometer (Agilent Technologies, Santa Clara, CA, USA) with the attenuated total
reflection (ATR) technique (diamond crystal) in the wave number range of 4000-400 cm !

3.6. NMR Spectroscopy

The NMR analysis was conducted using a Bruker AVANCE 400 III HD NMR spec-
trometer (Bruker, Billerica, MA, USA). One-dimensional spectra were recorded for the 1H
(at a frequency of 400.17 MHz) and 3C (at a frequency of 100.63 MHz) nuclei to confirm
the structure. The solvents used were dimethyl sulfoxide (DMSO D-6) with 99.9% atom D
and heavy water (D,0).

3.7. Thermogravimetric Analysis (TGA)

TGA was conducted using TG-DTA Instruments NETZSCH STA 449F1 (NETZSCH,
Selb, Germany). A sample weighing approximately 5 mg was measured and heated from
room temperature to 600 °C with a heating rate of 10 °C/min under a nitrogen flow rate of
20 mL/min.

3.8. Antibacterial Analysis

The S. aureus (ATCC 6538D-5) and E. coli (ATCC 25922) strains were used as test objects.
The antibacterial activity was determined using the agar diffusion test. Serial two-fold
dilutions of BU[6]-Ag/AgCl NPs at concentrations ranging from 8 mg/mL to 1 mg/mL
were used to determine the MIC. A test strain was inoculated by the lawn method for each
Petri dish with 15 mL of agar medium (0.1 mL of cell suspension at a concentration of
1 x 108 cells/mL, 0.5 McFarland’s standard) from a pure mother culture. Then, a well with
a diameter of 7 mm was made in the center of the dish using a sterile cork borer over the
entire thickness of the agar layer. A total of 0.1 mL of the sample solution was introduced
into the well. After incubation, the zone of bacterial growth inhibition was measured with
an accuracy level of 0.1 mm. The MIC endpoint was the lowest concentration of silver NPs
for which no visible growth was seen in the tubes.

3.9. MTT Test

The MMT test involved the extraction of cells from the leukocyte—platelet layer of
a human using the methodology presented by Kzhyshkovskaya Y.G. with modifications
by the author [54]. The difference between the used technique and the presented one is
that, in the modified version of the technique, the magnetic cell sorting step is omitted,
which allows for the exctraction of all mononuclear cells. This makes it possible to assess
the overall cytotoxicity of the samples towards immune system cells. Since the samples
used in the study were poorly soluble in water, a suspension of the study objects was
prepared in a PBS solution at the concentrations indicated in Table 1 for the ex-tempore
experiment. After the cells had been extracted, 1 mL of the cell medium containing cells at
a concentration of 1 x 10° cells and 10 pL of the sample suspension were added to each
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well of a 24-well plate. Before each addition of the sample suspension, it was carefully
resuspended. The incubation process was carried out at a temperature of 37 °C and 7.5%
CO; for 144 h. Cells cultivated on plastic without samples were used as positive controls.
The level of cytotoxicity was assessed on mononuclear cells extracted from the blood of
three donors—one male (A) and two females (B and C). After incubation, the condition of
the cells was visually assessed, and cytotoxicity was assessed using the MTT test method.
The optical density was measured using an automatic plate microreader (Tecan Infinite F50,
Tecan, Austria) at wavelengths of 560 and 620 nm.

3.10. Hemolysis

Healthy donor blood containing sodium citrate (3.8 wt.%) was diluted in a ratio of
9:1 with normal saline (4:5 ratio by volume). The erythrocyte hemolysis test shows the
interaction of the entire surface of the biomaterial with blood cells, which are necessary for
oxygen transfer by the blood to tissue cells and promote oxidative processes. Samples were
dipped into a standard tube containing 10 mL of normal saline that had been previously
incubated at 37 °C for 30 min. Next, 0.2 mL of diluted blood was added to the standard
tube, and the mixtures were incubated for 60 min at 37 °C. Similarly, normal saline solution
was used as a negative control, and deionized water was used as a positive control. After
that, all of the tubes were centrifuged for 5 min at 3000 rpm, and the supernatant was
carefully removed and transferred to a cuvette for spectroscopic analysis at 545 nm. In
addition, hemolysis was calculated using a Uniplan ultraviolet spectrophotometer (Pikon,
Moscow, Russia). The hemolysis percent is the average of three replicates, which was
calculated as follows:

(OD(testsample) — OD(negativecontrol)

OD(positivecontrol) — OD(negativecontrol) x 100%

H,% =

H, % = percentage of hemolysis

OD(test sample) = absorbance of sample

OD(negative control) = absorbance of negative control with erythrocytes OD(positive
control) = absorbance of positive control

3.11. XRD

The crystal structure of the solid samples was determined using the X-ray diffraction
(CRD) analysis performed on a Shimadzu XRD 6000 diffractometer (Shimadzu, Kyoto,
Japan) with Cu Ka radiation. The data were collected in the angular range of 5° <26 > 50°
at a scanning rate of 20 deg/min.

3.12. X-ray Crystallography

The structural characterization of bambusuril[6] was carried out using a SmartLab SE
X-ray diffractometer (Rigaku, Japan). The X-ray source employed copper (Cu) radiation
with a power of 2.2 kW. The diffractometer had a vertical goniometer in the Theta—Theta
geometry configuration with a measurement diameter of 600 mm. The angular range
covered in the analysis was from 10 to 160°.

3.13. SEM

The samples structures were studied by scanning electron microscopy (SEM, VEGA
3 SBH, Tescan, Brno, Czech Republic). Energy dispersive X-ray spectroscopy (Oxford
Instruments, Abingdon, UK) was used for the elemental analysis.

4. Conclusions

This paper presents a simple and effective method for synthesizing silver NPs based
on the macrocycle-silver system. Previously, there were no known instances of using
bambusuril[6] to obtain silver NPs without the use of conventional reducing agents or
external energy sources. The introduction of silver into bambusuril[6] leads to the formation
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of BU[6]-Ag/AgCl NPs, which exhibit a characteristic surface plasmon resonance peak
centered at 430 nm in the UV-visible range. When the SEM images were examined, it
was seen that the synthesized BU[6]-Ag/AgCl NPs were distributed with homogeneous
sizes, and the synthesized AgNPs were mostly spherical and cubic. The EDS spectra
of BU[6]-Ag/AgCl NPs showed the presence of Ag, Cl, and all expected elements. The
introduction of Ag* into bambusuril[6] led to the formation of silver NPs with a yield of
30% by mass compared to the theoretical value. Silver NPs stabilized by bambusuril[6]
demonstrated high antibacterial activity against S. aureus and E. coli. The zone of inhibition
was found to increase in accordance with increasing concentrations of BU[6]-Ag/AgCl
NPs. E. coli was a bit more sensitive to BU[6]-Ag/AgCl NPs than S. aureus, as shown
by the larger zones of inhibition. In this study, the MICs of BU[6]-Ag/AgCl NPs against
S. aureus and E. coli were determined by the macrodilution method, and both were found
to be effective at 2 mg/mL. The results of the MTT test for evaluating the cell viability
level of mononuclear cells from different donors after incubation for 144 h with BU[6] and
BU[6]-Ag/AgCl NPs are consistent with the results of the visual evaluation. It was found
that BU[6] had a negative effect on mononuclear cells at concentrations above 10 mg/mL,
while the level of mononuclear viability in the presence of BU[6] at a concentration of
2.5 mg/mL did not differ from that of the control sample. BU[6]-Ag/AgCl NPS was shown
to induce high toxicity levels for mononuclear cells at all concentrations. The toxicity of
bambusuril[6] at concentrations above 10 mg/mL may be associated with its ability to bind
to mononuclear immune cells, similar to cucurbituril[7]. Additionally, it should be noted
that BU[6]-Ag/AgCl NPs could possess the ability to bind to cancer cells and provoke
their demise, further contributing to their anticancer potential. However, these data have
never been reported before, so the specific mechanism underlying this process remains
unexplored and further investigation is warranted.
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