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1 Introduction and formulation of the main results
We consider the following equation:

ρ(x)
(
ρ(x)y(k))′

+
k–1∑

j=0

rj(x)y(k–j) + rk(x)y = f (x), (1)

where k = 1, 2, . . . , x ∈ R = (–∞, +∞), f (x) ∈ L2 := L2(R). In what follows, we assume that
ρ(x) > 0 is (k +1) times, and rj = rj(x) (j = 1, k – 1) is (k – j) times continuously differentiable,
and rk = rk(x) is a continuous functions. Equation (1) is given in an infinite domain, and
its coefficients can be unbounded functions. Hence, it is a singular differential equation.

Let L0 be a differential operator from C(k+1)
0 (R) to L2, which is defined by the following

formula:

L0y = ρ(x)
(
ρ(x)y(k))′

+
k–1∑

j=0

rj(x)y(k–j) + rk(x)y.

Since the coefficients ρ and rj (j = 0, k) are smooth functions, the operator L0 is a closable
operator (see [1, Sect. 6 of Chap. 2]). We denote by L the closure of L0.
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A function y(x) is called a solution of differential equation (1) if there exists a sequence
{ym(x)}∞m=1 ⊆ C(k+1)

0 (R) such that ym → y and Lym → f in the norm of L2 as m → ∞. It is
clear that y ∈ L2.

The following more general equation

ρ0(x)y(k+1) + r̃0(x)y(k) +
k–1∑

j=1

rjy(k–j) + rk(x)y = f (x), ρ0(x) > 0,

can be reduced to equation (1). Indeed, set ρ(x) =
√

ρ0(x) and r0 = r̃0 – ρρ ′, then

ρ0(x)y(k+1) + r̃0(x)y(k) +
k–1∑

j=1

rj(x)y(k–j) + rk(x)y

= ρ(x)
(
ρ(x)y(k))′

+
(
r̃0(x) – ρ(x)ρ ′(x)

)
y(k) +

k–1∑

j=1

rj(x)y(k–j) + rk(x)y

= ρ(x)
(
ρ(x)y(k))′

+
k–1∑

j=0

rj(x)y(k–j) + rk(x)y,

this is the left-hand side of equation (1).
We study equation (1) in the case that the intermediate coefficients rj(x) (j = 1, k – 1)

can be unbounded and their growth do not depend on the extreme coefficients ρ0(x) and
rk(x). When rj(x) (j = 1, k – 1) are bounded or they are unbounded and are controlled by
the extreme coefficients ρ0(x) and rk(x), this equation has been studied systematically. For
more details, see [2–4].

A number of problems of stochastic analysis and stochastic differential equations lead
to singular elliptic equations and ordinary differential equations and their systems with
unbounded intermediate coefficients. Specific representatives of such equations are the
stationary equations of Ornstein–Uhlenbeck (see [5]) and Fokker–Planck–Kolmogorov
(see [6]). In the case k = 1, equation (1) is the simplest model of Brownian motion of parti-
cles with a covariance matrix determined by the function ρ(x), and r0(x) is called the drift
coefficient.

For applications of equation (1) to various practical processes, it is important to investi-
gate the correctness of equation (1) with coefficients ρ(x) and rj(x) (j = 0, k – 1) from wider
classes. In the case that the intermediate coefficients do not depend on the potential and
the diffusion coefficient and can grow as a linear function, the correctness of the second-
order singular elliptic equations was studied in [7–10]. The correctness conditions for the
second-order and third-order one-dimensional differential equations with rapidly grow-
ing intermediate coefficients were obtained in [11–16]. However, in [11–16] the condition
of weak oscillation is imposed on the intermediate and senior coefficients. In this paper,
sufficient conditions for the existence and uniqueness of a solution y(x) of (1) are obtained.
Moreover, for the solution, we proved the following inequality:

∥
∥√

r0y(k)∥∥
2 +

k∑

j=1

∥
∥rjy(k–j)∥∥

2 ≤ C‖f ‖2.
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Using this estimate, we obtained compactness conditions for operators θ (x)L–1 and
θ (x) dα

dxα L–1 (α = 1, k – 1).
The difference between this result and the results in [7–16] is that equation (1) is high

order, and the coefficients rj(x) (j = 0, k – 1) can grow rapidly, and all coefficients can be
fluctuating (see Example 4.1). In addition, the leading coefficient can tend to zero at in-
finity. In other words, the cases of some degenerate equations are covered. Note that the
criteria for the existence of positive periodic solutions for differential equations with indef-
inite singularity and pseudo almost periodic solutions of an iterative functional differential
equations, respectively, were found in [17] and [18].

We introduce the following notation:

Tu,v,s(x) =
[∫ x

0
u2(t) dt

]1/2[∫ +∞

x
t2(s–1)v–2(t) dt

]1/2

, x > 0,

Mu,v,s(τ ) =
[∫ 0

τ

u2(t) dt
]1/2[∫ τ

–∞
t2(s–1)v–2(t) dt

]1/2

, τ < 0,

γu,v,s = max
(

sup
x>0

Tu,v,s(x), sup
τ<0

Mu,v,s(τ )
)

,

where u = u(x) and v = v(x) 
= 0 are real continuous functions, s is a positive integer number.
The following statements are the main results of this paper.

Theorem 1.1 Let ρ(x) > 0 be (k + 1) times, rj(x) (j = 1, k – 1) be (k – j) times continuously
differentiable, rk(x) be a continuous function, and the following conditions be satisfied:

(a) r0 ≥ 1, γ1,√r0,k < ∞;
(b) there exists a point x0 ∈ R such that supx<x0 [ρ(x) exp

∫ x
x0

r0(t)
ρ2(t) dt] < ∞;

(c) maxj=1,k γrj ,
√r0,j < ∞.

Then, for any f ∈ L2, equation (1) has a unique solution y and

∥∥√
r0y(k)∥∥

2 +
k–1∑

j=1

∥∥rjy(k–j)∥∥
2 + ‖rky‖2 ≤ C‖f ‖2 (2)

holds, where ‖ · ‖2 is the norm of L2.

Changing variable in Theorem 1.1, we obtain the following result.

Theorem 1.2 Let ρ(x) > 0 be (k + 1) times, rj(x) (j = 1, k – 1) be (k – j) times continuously
differentiable, and rk(x) be a continuous function, and the following conditions be satisfied:

(a) respectively, r0(x) ≤ –1, γ1,
√|r0|,k < ∞;

(b) there exists a point x1 ∈ R such that supx>x1 [ρ(x) exp
∫ x

x1
r0(t)
ρ2(t) dt] < ∞;

(c) maxj=1,k γrj ,
√|r0|,j < ∞.

Then, for any f ∈ L2, equation (1) has a unique solution y and

∥∥
√|r0|y(k)∥∥

2 +
k–1∑

j=1

∥∥rjy(k–j)∥∥
2 + ‖rky‖2 ≤ C‖f ‖2 (3)

holds.
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Theorem 1.3 Suppose that the coefficients ρ and rj (j = 0, k) satisfy the conditions of The-
orem 1.1 or Theorem 1.2 and the function θ (x) is continuous, and let for some j ∈ [1, k] the
equality

max
(

lim
x→+∞ Tθ ,

√|r0|,j(x), lim
τ→–∞ Mθ ,

√|r0|,j(τ )
)

= 0 (4)

hold. Then θ (x) dk–j

dxk–j L–1 (θ (x)L–1 for j = k) is the compact operator in L2.

2 Some auxiliary statements
Let C(s)

+ (0, +∞) = {m(x) ∈ C(s)(0, +∞) : ∃τ > 0m(x) = 0 ∀x > τ } (s ∈ N ). The next lemma is a
particular case of Theorem 2.1 in [19].

Lemma 2.1 Suppose that the functions g(x), v(x) 
= 0 (x > 0) are continuous, and for a
natural number s,

T̃g,v,s = sup
x>0

Tg,v,s(x) < ∞

holds. Then, for any y ∈ C(s)
+ (0, +∞),

(∫ +∞

0

∣
∣g(x)y(x)

∣
∣2 dx

)1/2

≤ C
(∫ +∞

0

∣
∣v(x)y(s)(x)

∣
∣2 dx

)1/2

(5)

holds. Moreover, if C is the smallest constant for which inequality (5) is valid, then

T0,g,v,s ≤ C ≤ 2T̃g,v,s, (6)

where

T0,g,v,s = sup
x>0

[∫ x

0
g2(t) dt

]1/2[∫ +∞

x
(t – x)2(s–1)v–2(t) dt

]1/2

.

Remark 2.1 If s = 1 and C is the smallest constant for which inequality (5) is valid, then,
instead of (6), the inequalities T̃g,v,s ≤ C ≤ 2T̃g,v,s hold (see [20]).

Lemma 2.2 Suppose that the functions u(x), h(x) 
= 0 (x < 0) are continuous and M̃u,h,s =
supx<0 Mu,h,s(x) < ∞ for a natural number s. Then, for any y ∈ C(s)

– (–∞, 0) =
{η ∈ C(s)(–∞, 0) : ∃τ < 0η(x) = 0 ∀x < τ },

(∫ 0

–∞

∣
∣u(x)y(x)

∣
∣2 dx

)1/2

≤ C1

(∫ 0

–∞

∣
∣h(x)y(s)(x)

∣
∣2 dx

)1/2

(7)

holds. Moreover, if C1 is the smallest constant for which (7) is valid, then

M0,u,h,s ≤ C1 ≤ 2M̃u,h,s,

where

M0,u,h,s = sup
τ<0

[∫ 0

τ

u2(t) dt
]1/2[∫ τ

–∞
(τ – t)2(s–1)h–2(t) dt

]1/2

.
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Proof Changing variable in Lemma 2.1, we obtain the desired result. �

Remark 2.2 If s = 1 and C1 is the smallest constant for which inequality (7) is valid, then
the inequalities M̃u,h,s ≤ C1 ≤ 2M̃u,h,s hold.

The following statement is proved by application of Lemmas 2.1 and 2.2.

Lemma 2.3 Let continuous functions u(x), v(x) 
= 0 (x ∈ R) satisfy the conditions T̃u,v,s < ∞,
M̃u,v,s < ∞ for some natural number s. Then, for any y ∈ C(s)

0 (R),

(∫ +∞

–∞

∣∣u(x)y(x)
∣∣2 dx

)1/2

≤ C2

(∫ +∞

–∞

∣∣v(x)y(s)(x)
∣∣2 dx

)1/2

. (8)

Moreover, if C2 is the smallest constant for which inequality (8) is valid, then

min(T0,u,v,s, M0,u,v,s) ≤ C2 ≤ 2γu,v,s.

Remark 2.3 If s = 1 and C2 is the smallest constant for which inequality (8) is valid, then

min(T̃u,v,s, M̃u,v,s) ≤ C2 ≤ 2γu,v,s.

3 On a two-term differential operator
Let l0 be a differential operator from the set C(k+1)

0 (R) to L2, which is defined by

l0y = ρ(x)
(
ρ(x)y(k))′

+ r0(x)y(k).

We denote its closure by l.

Lemma 3.1 Let ρ(x) > 0 and the function r0(x) satisfy condition (a) of Theorem 1.1. Then
the operator l is invertible, and for y ∈ D(l), the inequality

∥
∥√

r0y(k)∥∥
2 + ‖y‖2 ≤ C‖ly‖2 (9)

holds.

Proof Let y ∈ C(k+1)
0 (R). Integrating by parts, we get that

(
l0y, y(k)) =

∥
∥√

r0y(k)∥∥2
2.

By Hölder’s inequality,

∣∣(l0y, y(k))∣∣ ≤ ∥∥√
r0y(k)∥∥

2

∥
∥∥
∥

1√r0
l0y

∥
∥∥
∥

2
.

Hence,

∥
∥√

r0y(k)∥∥
2 ≤

∥∥
∥∥

1√r0
l0y(k)

∥∥
∥∥

2
. (10)
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According to Lemma 2.3, we have that

‖y‖2 ≤ 2γ1,√r0,k
∥∥√

r0y(k)∥∥
2.

Therefore,

∥
∥√

r0y(k)∥∥
2 + ‖y‖2 ≤ C‖l0y‖2, (11)

where C = 2γ1,√r0,k + 1.
Now let y ∈ D(l). Then there is a sequence {ym} ⊆ C(k+1)

0 (R) such that ‖ym – y‖2 → 0,
‖l0ym – ly‖2 → 0 as m → ∞. So, it follows that

∣∣‖ym‖2 – ‖y‖2
∣∣ → 0,

∣∣‖l0ym‖2 – ‖ly‖2
∣∣ → 0 (m → ∞). (12)

According to (11), we have

∥∥√
r0y(k)

m –
√

r0y(k)
s

∥∥
2 + ‖ym – ys‖2 ≤ C‖l0ym – l0ys‖2, s, m ∈ N . (13)

We denote by W k
2,r0 (R) the completion of (C(k)

0 (R),‖·‖W k
2,r0

), where ‖y‖W k
2,r0

= ‖√r0y(k)‖2 +

‖y‖2. From (12) and (13) it follows that {ym} is a Cauchy sequence in the space W k
2,r0 (R).

Consequently, there is y ∈ W k
2,r0 (R) such that {ym} converges to y in the norm of W k

2,r0 (R).
Using (11) and (12), we obtain that for y inequality (9) holds. According to (9), l is invert-
ible. Similarly, by (10),

∥∥√
r0y(k)∥∥

2 ≤
∥
∥∥
∥

1√r0
ly

∥
∥∥
∥

2
, y ∈ D(l). (14)

�

Inequality (9) gives D(l) ⊆ W k
2,r0 (R). For y ∈ D(l), set z = y(k) and L̃z = ρ(x)(ρ(x)z)′ +r0(x)z.

Lemma 3.2 Suppose that ρ(x) and r0(x) satisfy the conditions of Lemma 3.1. Then L̃ is a
closed operator in L2.

Proof Let {zn}∞n=1 ⊆ D(L̃) such that ‖zn – z‖2 → 0, ‖L̃zn – w‖2 → 0 as n → ∞. According
to our choice, there is a sequence {yn}∞n=1 ⊆ D(l) such that y(k)

n = zn and

∥∥y(k)
n – z

∥∥
2 → 0, ‖lyn – w‖2 → 0 (n → ∞).

By Lemma 3.1, yn (n ∈ N ) satisfies (9). Hence, {yn}∞n=1 ⊆ W k
2,r0 (R) is a Cauchy sequence.

Therefore, there exists y ∈ L2 such that

∥
∥y(k)

n – z
∥
∥

2 + ‖yn – y‖2 → 0 (n → ∞). (15)

So

‖yn – y‖2 → 0,
∥∥y(k)

n – z
∥∥

2 → 0, ‖lyn – w‖2 → 0 (n → ∞).
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Since the operator l and the generalized differentiation operator are closed, we have y ∈
D(l), z = y(k) ∈ D(L̃) and

w = L̃z. (16)

Thus, L̃ is a closed operator. �

Lemma 3.3 If functions ρ(x) and r0(x) satisfy the conditions of Lemma 3.1, then

R(l) = R(L̃).

The proof follows from the following equalities:

R(L̃) =
{

w ∈ L2 : ∃z ∈ D(L̃), w = L̃z
}

=
{

w ∈ L2 : ∃y ∈ D(l), y(k) = z ∈ D(L̃), w = ly
}

=
{

w ∈ L2 : ∃y ∈ D(l), w = ly
}

= R(l).

Lemma 3.4 Suppose that the functions ρ(x) and r0(x) satisfy conditions (a) and (b) of The-
orem 1.1. Then l is invertible and its inverse l–1 is bounded.

Proof By Lemma 3.1, l has an inverse l–1. Since l is a closed operator, using (9), we deduce
that R(l) is a closed set. By Lemma 3.3, it suffices to prove R(L̃) = L2. If R(L̃) 
= L2, then,
according to [1, p. 284], there is a nonzero element v(x) ∈ L2 such that

(L̃z, v) =
(
z, L̃∗v

)
= 0

(where L̃∗ is the adjoint of L̃) for any z ∈ D(L̃). Since C(1)
0 (R) ⊆ D(L̃), the set D(L̃) is dense

in L2. Therefore,

L̃∗v = –ρ(x)
(
ρ(x)v

)′
+ r0(x)v = 0.

This implies that v(x) is continuously differentiable and

v(x) =
C

ρ(x)
exp

∫ x

x0

r0

ρ2 dt.

Since v 
= 0, we have C 
= 0. Taking into account condition b) of Theorem 1.1, we have that
|v(x)| ≥ |C|

K > 0 for all x < x0, where

K = sup
x<x0

ρ(x) exp
∫ x

x0

r0(t)
ρ2(t)

dt.

Hence v /∈ L2. This is a contradiction. �

Remark 3.1 If in Lemma 3.4 the condition r0 ≥ 1 is replaced with the condition r0 ≥ δ > 0,
then the lemma remains valid.
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4 Proofs of the main results

Proof of Theorem 1.1 Set x = mt, ŷ(t) = y(mt), ρ̂(t) = ρ(mt), r̂j(t) = rj(mt) (j = 0, k), f̂ (t) =
f (mt)m–(k+1) (m > 0). Then equation (1) changes to

Pmŷ = ρ̂(t)
(
ρ̂(t)ŷ(k)(t)

)′

+
k–1∑

j=0

m–(j+1)r̂j(t)ŷ(k–j)(t) + m–(k+1)r̂k(t)ŷ(t) = f̂ . (17)

Let l̂ be a closure of l̂0, where l̂0 : D(l̂0) → L2 is defined by

l̂0ŷ = ρ̂(t)
(
ρ̂(t)ŷ(k)(t)

)′
+ m–1r̂0(t)ŷ(k), D(l̂0) = C(k+1)

0 (R).

By the conditions of the theorem, we can choose a number m so that

m ≥ max
(

2, 8 max
j=1,k

γr̂j ,
√

r̂0,j

)
. (18)

Then, according to condition c) of the theorem, Lemma 2.3, and estimate (14), we obtain
that, for any ŷ ∈ D(l̂),

k–1∑

j=1

∥∥
∥∥

1
mj+1 r̂jŷ(k–j)

∥∥
∥∥

2
+

∥∥
∥∥

1
mk+1 r̂k ŷ

∥∥
∥∥

2
≤ 2

m

( k–1∑

θ=0

1
mθ

)

max
j=1,k

γr̂j ,
√

r̂0,j

∥∥
∥∥

1
m

√
r̂0ŷ(k)

∥∥
∥∥

2

≤ 1
2

∥
∥∥
∥

1
m

√
r̂0ŷ(k)

∥
∥∥
∥

2
≤ 1

2
‖l̂ŷ‖2. (19)

By (19) and Lemma 3.1, we get that

‖Sŷ‖2 =

∥∥
∥∥
∥

k–1∑

j=1

m–(k–j)rj(t)ŷ(k–j)(t) + m–(k+1)r̂k(t)ŷ(t)

∥∥
∥∥
∥

2

≤ 1
2
‖l̂ŷ‖2, ŷ ∈ D(l̂). (20)

According to Lemma 3.4 and Remark 3.1, the operator l̂ is invertible, and its inverse l̂–1 is
defined on the whole L2. Then, by inequality (20) and the well-known statement on small
perturbations [21, Chap. 4, Theorem 1.16], the following operator

Pmŷ = l̂ŷ +
k–1∑

j=1

m–(k–j)rj(t)ŷ(k–j)(t) + m–(k+1)r̂k(t)ŷ(t)

is also closed and invertible, and the inverse operator P–1
m is defined on the whole space

L2. So, it follows that, for each f̂ ∈ L2, ŷ = P–1
m f̂ ∈ D(Pm) and ŷ is a solution of equation (17).

By (19), we deduce that

∥∥
∥∥

1
m

√
r̂0ŷ(k)

∥∥
∥∥

2
+

k–1∑

j=1

∥∥
∥∥

1
mj+1 r̂jŷ(k–j)

∥∥
∥∥

2
+

∥∥
∥∥

1
mk+1 r̂k ŷ

∥∥
∥∥

2
≤ C‖f̂ ‖2. (21)
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Using the substitution t = m–1x, we obtain that the function y(x) = ŷ( 1
m x) is a solution to

equation (1). Inequality (21) implies (3). �

Proof of Theorem 1.3 Let the conditions of Theorem 1.1 be satisfied. Without loss of gen-
erality, we assume that θ (x) is a real function. Let

Qj =
{
θ (x)

dk–jy
dxk–j : y ∈ D(L),‖Ly‖2 ≤ 1

}
(j = 1, k).

By Theorem 1.1 and (3), for any y ∈ C(k+1)
0 (R): ‖Ly‖2 ≤ 1, we obtain

‖z‖2 =
∥∥θy(k–j)∥∥

2 ≤ C1 · ∥∥√
r0y(k)∥∥

2 ≤ CC1‖Ly‖2 ≤ C2.

These inequalities are valid for any y ∈ D(L) such that ‖Ly‖2 ≤ 1, since L is a closed opera-
tor. Therefore, Qj is bounded in L2. Let us show that Qj is compact in L2. By the Frechet–
Kolmogorov theorem, it suffices to show that, for each ε > 0, there is a number Nε such
that, for any y ∈ C(k+1)

0 (R), ‖Ly‖2 ≤ 1, and N ≥ Nε , the following inequality

‖z‖L2(R\[–N ,N]) =
∥
∥θy(k–j)∥∥

L2(R\[–N ,N]) < ε (22)

holds. We have that

∥∥θy(k–j)∥∥
L2(R\[–N ,N]) =

∥∥θy(k–j)∥∥
L2(–∞,–N) +

∥∥θy(k–j)∥∥
L2(N ,+∞). (23)

According to Lemma 2.1,

∫ +∞

N

∣∣θ (t)y(k–j)(t)
∣∣2 dt

=
∫ +∞

0

∣∣θ (t + N)y(k–j)(t + N)
∣∣2 dt

≤ sup
x>0

[∫ x

0
θ2(t + N) dt ·

∫ +∞

x
(t + N)2(j–1)r–1

0 (t + N) dt
]
×

×
∫ +∞

0

∣
∣
√

r0(t + N)y(k)(t + N)
∣
∣2 dt

= sup
x≥N

(∫ x

0
θ2(t) dt ·

∫ +∞

x
t2(j–1)r–1

0 (t) dt
)

·
∫ +∞

N

∣
∣
√

r0(t)y(k)(t)
∣
∣2 dt

≤ sup
x≥N

(∫ x

0
θ2(t) dt ·

∫ +∞

x
t2(j–1)r–1

0 (t) dt
)

·
∫ +∞

0

∣∣
√

r0(t)y(k)(t)
∣∣2 dt. (24)

Similarly, using Lemma 2.2, we obtain

∫ –N

–∞

∣∣θ (t)y(k–j)(t)
∣∣2 dt

≤ sup
τ≤–N

(∫ 0

τ

θ2(t) dt ·
∫ τ

–∞
t2(j–1)r–1

0 (t) dt
)

·
∫ 0

–∞

∣
∣
√

r0(t)y(k)(t)
∣
∣2 dt. (25)
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Set

As,r0,j(N) = max
(

sup
t≥N

Tθ ,√r0,j(x), sup
τ≤–N

Mθ ,√r0,j(τ )
)

.

By virtue of (23), (24), (25), and (3), we have that

∥
∥θy(k–j)∥∥

L2(R\[–N ,N]) ≤ Aθ ,r0,j(N).

Taking into account this inequality and condition (4), we see that the number Nε for given
ε > 0 can be chosen so that, for all y ∈ C(k+1)

0 (R), ‖Ly‖2 ≤ 1, and N : N ≥ Nε , inequality (22)
holds. �

Example 4.1 We consider the equation

L̃0y = ρ0(x)
(
ρ0(x)y(3))′

+ r(x)y(3) – g(x)y′ – h(x)y = f (x), (26)

where

ρ0(x) =

⎧
⎨

⎩
(1 + x4)(2 – sin8 10x6), x < 0,

(1 + x11)–1(1 + x3 cos2 7x10), x ≥ 0,

r(x) =
[
9 + x2(4 – sin10 x8)]4, g(x) =

√
x cos4(3 exp x2), h(x) = 6 sin

(
exp |x|).

We denote by L̃ the closure of the operator L̃0 (D(L̃0) = C(4)
0 (R)) corresponding to (26). It

is easy to check that γ1,
√

r,3 < ∞, γg,
√

r,2 < ∞ and

sup
x<0

[
ρ0(x) exp

∫ x

0

r(t)
ρ2

0 (t)
dt

]
< ∞

hold. Hence, by Theorem 1.1, equation (26) has a unique solution for any f (x) ∈ L2. By
direct calculation we obtain that

max
(

lim
x→+∞ T(|x|+1)α ,

√
r,3(x), lim

τ→–∞ M(|τ |+1)α ,
√

r,3(τ )
)

= 0 if α < 1, and

max
(

lim
x→+∞ T(|x|+1)β ,

√
r,2(x), lim

τ→–∞ M(|τ |+1)β ,
√

r,2(τ )
)

= 0 if β < 2.

Therefore, by Theorem 1.3, the operators (|x| + 1)αL̃–1 and (|x| + 1)β d
dx L̃–1 are compact in

L2 for α < 1 and β < 2, where L̃–1 is the inverse of L̃. Note that the coefficients of (26) are
fluctuating and ρ(x) tends to zero as x → +∞ and is unbounded as x → –∞.

Example 4.2 We consider the following higher-order equation:

l̃0y =
(
1 + x2)s((1 + x2)sy(k))′

+
[
2 –

(
11k + 3x2)2k]y(k)

+
k–1‘∑

j=1

[
(–1)j + 2jx2]k– j

2 y(k–j) –
5

3 + 4x2 y = f (x), (27)
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where x ∈ R, k and s are natural numbers, and f ∈ L2. Let l̃ be the closure of the operator
l̃0 with D(l̃0) = C(k+1)

0 (R). Direct calculations show that all conditions of Theorem 1.2 are
satisfied. Hence, equation (27) is uniquely solvable and its solution y satisfies the following
estimate:

∥∥
√(

11k + 3x2
)2k – 2y(k)∥∥

2 +
k–1∑

j=1

∥∥[
(–1)j + 2jx2]k– j

2 y(k–j)∥∥
2 + ‖y‖2 ≤ C‖f ‖2.

Moreover, for continuous functions θj(x) (j = 1, k) such that |θj(x)| ≤ (1 + x2)ωj with ωj <
k – j

2 , the equality

max
(

lim
x→+∞ Tθj ,[2–(11k+3x2)k ],j(x), lim

τ→–∞ Mθj ,[2–(11k+3x2)k ],j(τ )
)

= 0

holds. Then, according to Theorem 1.3, the operators (1 + x2)α l̃–1 (α < k
2 ) and θj(x) dk–j

dxk–j l̃–1

(j = 1, k – 1) are compact in L2, where l̃–1 is the inverse of l̃.
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