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Abstract

One of the approaches toward determining the degree of microclimate comfort is measuring
its individual components: temperature, air velocity, relative humidity, and air quality. A
significant disadvantage of this approach is the neglect of the mutual influence of microclimate
parameters on each other. To improve the accuracy of determining microclimate comfort, it
is necessary to use a complex predicted mean vote (PMV) indicator. The PMV equation is
complex and computationally consuming; simplified solutions can be obtained using Fanger’s
diagrams, Excel calculation programs, and specialized computer applications. With the
development of technology, intelligent microclimate systems are gaining popularity. In this
article, for selecting one of the most effective intelligent technologies, models have been
developed for assessing the PMV indicator using the frameworks of fuzzy logic and neural
networks. The data obtained using the calculation program of the researchers of the Federal
State Unitary Enterprise Research Institute (Russia) were used as input parameters for the
models’ development. The program’s performance was validated against the PMV parameter
values in the ISO 7730:2005 standard, and a good agreement was found. The PMV index
values produced by the considered models were compared to the values calculated using the
program, to determine the operability and efficiency of the developed models. Our analysis
suggests that neural networks perform better on the assessment of thermal comfort, compared
with fuzzy systems.
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1. Introduction

Humans in modern societies spend a considerable amount of time indoors. Unfavorable indoor
climate results in low labor productivity and frequent illnesses among workers. Specifically, [1]
presents data on the consequences of the lack of a comfortable microclimate indoors, as well
as the corresponding indicators of financial losses. Partially, this problem arises as a result of
poor-quality microclimate regulation in buildings, or as a result of an incorrect assessment of
the degree of thermal comfort in the created microclimate.

Intelligent technologies, such as fuzzy logic, neural networks, genetic algorithms, and
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multi-agent systems, have been used to improve the quality of
microclimate regulation [2–10] and assess the degree of thermal
comfort [11–13].

The authors [11] describes an algorithm for calculating the
predicted mean vote (PMV) index, developed using artificial
neural networks (ANNs). In that study, an ANN was trained
using only one input parameter, namely the air temperature.
The authors of the study have considered ANNs with different
numbers of neurons in the first layer, and used different learn-
ing functions of the neural network to determine the optimal
structure of the neural network. Based on this, the authors of
the study established that the trainlm function with 100 neurons
in the first layer yielded the fastest training and the smallest
absolute error.

The adequacy of the developed neural network was deter-
mined based on comparative analysis of the PMV values at its
output with the values of the calculation program developed in
accordance with the regulations of the ISO 7730:2005 standard.
The analysis has shown that neural networks can be used as
an alternative tool for determining the thermal comfort index
of a room. The authors of that study suggested to focus on
modifying their neural network in such a way that, when train-
ing the network using other parameters, the components of the
PMV calculation equation will be used as input data. Practical
applications of the developed model have not been given.

The study [12] proposed to use a neural network-based PMV
model based on practical measurements, for calculating the
human thermal comfort index. The model measured the wet-
bulb temperature and globe thermometer temperature instead
of the relative humidity and mean radiant temperature. A feed-
forward neural network was used for modeling the impact of
the air temperature, wet bulb temperature, globe thermometer
temperature, air velocity, clothing insulation, and human activ-
ity on the PMV index. An experiment was conducted, based
on the given air-conditioned office space, to demonstrate the
effectiveness of the proposed technique. The results obtained
by the authors showed a good agreement between the thermal
comfort index calculated using the neural network model in real
time and the thermal comfort index calculated using Fanger’s
model.

In [13], using a fuzzy logic apparatus, a model has been
developed to assess the thermal comfort of the microclimate of
residential buildings located in tropical climate regions. A sur-
vey was conducted among residents, for collecting initial data.
Overall, there were 538 samples from Singapore and 525 from
Indonesia. The data were collected in extensive field research,

covering the rainy and dry seasons of 2000–2002. Initial data
analysis was performed as probit analysis, using the SPSS ver-
sion 10 software (SPSS Inc., Chicago, IL, USA). Probit curves
were obtained using the analysis software, and were used in
the fuzzification stage of input variables. After analyzing the
initial data in [13], the authors conducted modeling studies. The
stages of fuzzification and defuzzification have been described
in detail as well as the stage of developing a rule base.

The reliability of the developed model was checked using a
test sample (200 values). The model’s outputs were compared
with the actual values in the polling stage. The correlation
coefficient was 0.8553. Thus, it was concluded that the model
can be used for predicting the thermal comfort in naturally
ventilated buildings located in the tropical climate zone. As a
next step, the authors planned to develop models for assessing
thermal comfort in administrative buildings, such as schools
and offices.

Our main objective is the development of an energy-saving
intelligent microclimate system. One of the components of this
system is a model for estimating the PMV indicator. In the
present study, we develop two models, using fuzzy logic and
neural networks, to determine a more effective technology for
use in the development of the above model.

Model development was done in the MATLAB environment.
While analyzing the works of foreign and domestic authors, the
MATLAB modeling environment was identified as the most
suitable tool owing to its ease of use, good performance, and
the availability of a large number of methodological materials
regarding its use [14].

Despite the huge number of works in the field of microclimate
research, devoted to predicting and determining the thermal
comfort index, no studies reported comparative analyses of
various approaches (different models).

In this regard, this article provides a comparative analysis
of the developed models, the ISO 7730:2005 standard, and
existing software products, for determining the possibility of
using models as an adequate tool for evaluating thermal comfort
in a room.

2. Theory and Methods

2.1 Aim and Objectives of the Study

The aim of this work is to develop fuzzy logic and neural
network-based models for assessing the thermal comfort in
a room, conduct a comparative analysis, and determine the
performance and efficiency of the developed models by com-
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paring the PMV values yielded by these models with the values
calculated using the program.

The following research tasks were defined and successfully
addressed in the present work:

• Study Fanger’s thermal comfort model;

• Investigate ways of determining the PMV thermal com-
fort index;

• Prepare initial data required for modeling;

• Validate the calculation program;

• Develop fuzzy logic and neural network-based models;

• Determine the effectiveness of the developed models by
comparative analysis of the values produced by the mod-
els with the values produced by the calculation program.

2.2 Fanger’s Thermal Comfort Model

To assess the thermal comfort of the microclimate in buildings
in foreign countries, the PMV index is used, which is regulated
by the standard ISO 7730:2005 “Ergonomics of the thermal
environment - Analytical determination and interpretation of
thermal comfort using calculation of the PMV and PPD indices
and local thermal comfort criteria” [15].

The ISO 7730:2005 standard is based on Fanger’s thermal
comfort model [16, 17], which combines four parameters of
the indoor microclimate (indoor air temperature, relative air
velocity, mean radiant temperature, relative humidity) and two
human factors (clothing and physical activity) into a complex
PMV index, which allows predicting thermal comfort for a
group of people in a room on a 7-point scale based on the
balance of the human body temperature [15](Table 1).

Table 1. Seven-point scale of temperature sensitivity

Score in points Thermal sensation

+3 Hot

+2 Warm

+1 Slightly warm

0 Neutral

-1 Slightly cool

-2 Cool

-3 Cold

PMV index and its components are determined by the fol-
lowing Equations 1–4 [15]:

PMV

= [0.303 · exp(−0.036 ·M) + 0.028]

· {(M −W )− 3.05 · 10−3 · [5733− 6.99 · (M −W )

− pa]− 0.42 · [(M −W )− 58.15]− 1.7 · 10−5

·M · (5867− pa)− 0.0014 ·M · (34− ta)

− 3.96 · 10−8 · fcl · [(tcl + 273)4 − (tr + 273)4]

− fcl · hc · (tcl − ta)}, (1)

tcl = 35.7− 0.028 · (M −W )− Icl · {3.96 · 10−8 · fcl
· [(tcl + 273)4 − (tr + 273)4] + fcl · hc · (tcl − ta)},

(2)

hc =


2.38 · |tcl − ta|0.25 for 2.38 · |tcl − ta|0.25

> 12.1 · √var,

12.1 · √var for 2.38 · |tcl − ta|0.25

< 12.1 · √var,

(3)

fcl =

1.00 + 1.290Icl for Icl ≤ 0.078m2 ·K/W,

1.05 + 0.645Icl for Icl > 0.078m2 ·K/W,
(4)

where

M is the metabolic rate, W/m2;

W is the effective mechanical power, W/m2;

Icl is the clothing insulation, m2K/W;

fcl is the clothing surface area factor,

ta is the air temperature in the room, °C;

tr is the mean radiant temperature, °C,

var is the relative air velocity, m/s;

pa is water vapor partial pressure, Pa;

hc is the convective heat transfer coefficient, W/(m2K);

tcl is the clothing surface temperature, °C.

Note: 1 met = 58.2 W/m2; 1 clo = 0.155 m2K/W.

In the above formulas, there are variables that have reference
values, and variables that are determined by calculation accord-
ing to certain formulas as well as using measuring instruments.

Data on the metabolic rate dependence on physical activity
and clothing insulation coefficient for typical combinations of
clothing items are given in Appendices B and C [15], respec-
tively.

The values of the effective mechanical power W and the
water vapor partial pressure pa can be determined by the for-
mulas in [18], and that of the mean radiant temperature can be
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determined by the formula in [19].
Indicators tcl,hc can be determined using successive itera-

tions according to the above formulas (2), (3). The clothing
surface area factor fcl can be determined by Eq. (4). Air ve-
locity var, air temperature ta, and room humidity (necessary
for calculating the partial pressure) can be determined using
suitable measuring devices. A more detailed description of
the parameters that make up the PMV equation and the human
thermoregulation system is given in [18, 19].

Since the PMV equation is comprehensive and complex, and
therefore not suitable for manual calculation, there are several
simplified ways to determine it:

• Using 28 Fanger’s comfort diagrams [20]. These dia-
grams are intended for practical use. Each diagram de-
picts comfort lines, that is, curves through various com-
binations of two variables that will create comfort if the
values of the other variables are kept constant. For the
practical application of comfort diagrams, the activity
level and clothing insulation coefficient must first be
evaluated, then combinations of four indoor microcli-
mate parameters can be found that will provide thermal
comfort.

• Using the specialized application CBE Thermal Comfort
Tool [21].

• Using computer programs developed based on the code

in Appendix D [15] and calculation methods in Excel
[18, 22].

• Using the data in Appendix E [15], which provides tables
of PMV values for different combinations of activity,
clothing, temperature, and relative air velocity.

• Using adequate models based on intelligent technologies.

2.3 Data Preparation

To calculate the PMV index in accordance with the regulations
of ISO 7730:2005, one can use the calculation program pro-
posed by the Federal State Unitary Enterprise Research Institute
of Industrial and Marine Medicine of the Federal Biomedical
Agency [18].

A comparative analysis of the calculation program’s results
with the PMV values, presented in ISO 7730:2005 Table D1.
(Table 2), was performed to check its adequacy.

Input data for the calculation program were the values of
indoor air temperature (ta), mean radiant temperature (tr), rela-
tive air velocity (va), humidity (phi), metabolic rate (M), and
clothing insulation coefficient (Icl), from ISO 7730:2005 Table
D1.

According to the comparative analysis of the calculation re-
sults given in Table 2, the adequacy of the calculation program
can be estimated. After checking the adequacy of the calcu-

Table 2. Comparison of the results of the calculation program with the PMV values of the ISO 7730:2005 standard

PMV
No. ta (°C) tr (°C) va (m/s) Phi (%) M(W/m2) Icl (clo)

ISO 7730:2005 Calculation program

1 22.0 22.0 0.1 60 69.84 0.5 -0.75 -0.75

2 27.0 27.0 0.1 60 69.84 0.5 0.77 0.77

3 27.0 27.0 0.3 60 69.84 0.5 0.44 0.43

4 23.5 25.5 0.1 60 69.84 0.5 -0.01 -0.01

5 23.5 25.5 0.3 60 69.84 0.5 -0.55 -0.55

6 19.0 19.0 0.1 40 69.84 1.0 -0.60 -0.60

7 23.5 23.5 0.1 40 69.84 1.0 0.50 0.36

8 23.5 23.5 0.3 40 69.84 1.0 0.12 0.12

9 23.0 21.0 0.1 40 69.84 1.0 0.05 0.05

10 23.0 21.0 0.3 40 69.84 1.0 -0.16 -0.17

11 22.0 22.0 0.1 60 93.12 0.5 0.05 0.05

12 27.0 27.0 0.1 60 93.12 0.5 1.17 1.17

13 27.0 27.0 0.3 60 93.12 0.5 0.95 0.95

Since the metabolic rate in the calculation program is presented in W/m2, the values from ISO 7730:2005 Table D1 were also converted to W/m2.
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lation program, the formulas for calculating the relative air
velocity and effective mechanical power were modified:

• in accordance with [15, 23], if the metabolic rate was
above 1 met, the relative air velocity was calculated using
the following equation:v′ar=var + 0.3 (M -1).

• effective mechanical power in accordance with the formula
given in [18].

To prepare the data for the development of fuzzy logic and
neural network-based models, the following parameters were
taken as input parameters for this program: air temperature in
the room and mean radiant temperature range from 15°C–30°C
range (with a step of 2.5°C), air velocity range from 0.1–0.3 m/s
(with a step of 0.05 m/s), humidity range from 30%–60% (with
a step of 10%). Parameter values for the metabolic rate and
clothing insulation coefficient were taken for office workers,
and were equal to 70 W/m2 (for sedentary office work) and 1
clo (corresponding to a typical office set, underwear with short
sleeves and legs, shirts, trousers, jackets, socks, and shoes),
respectively. The PMV index for 980 combinations of input
parameters was computed using the calculation program.

3. Results

3.1 Development of the Fuzzy Logic-Based Model

Fuzzy logic and its methods have found numerous applications
in modeling and control problems. When talking about fuzzy
logic, most often fuzzy inference systems are meant.

There are four classical algorithms for fuzzy inference: the
Mamdani, Sugeno, Tsukamoto, and Larsen algorithms. Within
the framework of this article, the authors have considered the
implementation of the Mamdani fuzzy inference algorithm ow-
ing to its simplicity and extensive applications. A schematic
diagram of the stages of the developing model for assessing
thermal comfort based on the Mamdani fuzzy inference algo-
rithm is shown in in Figure 1.

The Mamdani algorithm consists of the following stages:

• Formation of the rule base for fuzzy inference systems.

• Fuzzification of input variables.

• Aggregation of subconditions in fuzzy production rules.

• Activation of subconclusions in fuzzy production rules.

• Accumulation of conclusions in fuzzy production rules.

Figure 1. Schematic of the development process of the fuzzy model.

Figure 2. The structure of the developed model in the Fuzzy Logic
Toolbox package.

• Defuzzification of output variables.

Rule bases of fuzzy inference systems are designed to for-
mally represent empirical knowledge or knowledge of experts
in a particular problem area. Within the framework of this
study, the rules were formed based on the analysis of the de-
pendence of the PMV index on the variation of input data
(980 input combinations). To form the rule base, the ranges of
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Figure 3. Fuzzification of input and output variables (the graph of the membership function of the “mean radiant temperature” is similar to the
graph of the membership function of the “indoor air temperature”).

the input and output parameters were divided into the following
terms (Tables 3, 4).

Since the input variables, namely “indoor air temperature”,
“mean radiant temperature”, “relative air velocity”, and “air
humidity” were represented by three terms, and the indicators
“metabolic rate” and “clothing insulation coefficient” were taken
as constant values in this study, the total number of rules was
81. A fragment of the generated rule base is shown in Table 5.

There is a special extension package Fuzzy Logic Toolbox,
for implementing the fuzzy modeling process in the MATLAB
environment. The structure of the developed model in the Fuzzy

Logic Toolbox package is shown in Figure 2.

The second stage of modeling is fuzzification. Fuzzification
or the introduction of fuzziness is the process of finding the
membership function of fuzzy sets based on ordinary initial
data. At this stage, a correspondence is established between
the numerical value of the input variable of the fuzzy inference
system and the value of the membership function of the corre-
sponding linguistic variable.

There are a number of typical curve shapes for specifying
membership functions. The most widespread are triangular,
trapezoidal, and Gaussian membership functions. In this study,

329 | L. Zh. Sansyzbay, B. B. Orazbayev, and W. Wójcik
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Table 3. Terms of input parameters

No. Input variable Term name

Low Average High

1 Indoor air
temperature (°C)

[15–20] (20–25] (25–30]

2 Mean radiant
temperature (°C)

[15-20] (20-25] (25-30]

3 Relative air
velocity (m/s)

[0.1-0.15] (0.15-0.25] (0.25-0.3]

4 Humidity (%) [30-40] (40-50] (50-60]

Table 4. Terms of the PMV output parameter

No. Term name Term range

1 Hot (2÷ 3]

2 Warm (1÷2]

3 Slightly warm (0.5÷ 1.0]

4 Neutral [-0.5÷ 0.5]

5 Slightly cool (-0.5÷ -1]

6 Cool (-1÷-2]

7 Cold (-2÷ -3]

Table 5. Fragment of the formed rule base

Rule
No.

Indoor
air

tempera-
ture

Mean
radiant

tempera-
ture

Relative
air

velocity
Humidity PMV

indicator

1 low low low low cool

2 average low low low neutral

... ....... ....... ....... ....... .......

81 high high high high warm

the Gaussian membership function was chosen as the member-
ship function. Fuzzification of input and output variables is
shown in Figure 3.

During the stages “Aggregation, Activation and Accumula-
tion” the following operations were performed: first, the cut-off
levels for the prerequisites of each of the rules were found;
then, the truncated membership functions of the subconclusion
were determined; using the max operation, the found truncated
functions were combined, yielding a final fuzzy subset for the
output variable.

In the last stage of fuzzy inference, the output fuzzy set
is already defined, but it cannot be directly used for provid-

Figure 4. An example of the model’s operation based on fuzzy logic.

ing the operator with accurate information or for controlling
the actuator. It is necessary to make a transition from the
“world of fuzzy logic” to the “real world”: this stage is called
defuzzification [24].

A variety of defuzzification methods can be used, but the
most commonly used method calculates the “center of gravity”
of a fuzzy set. Physics-wise, this method finds the center of
gravity of a flat figure, limited by the coordinate axes and the
graph of the membership function of a fuzzy set.

The last stages, from the aggregation stage to the defuzzifica-
tion stage, are automatically implemented in the Fuzzy Logic
Toolbox in a graphical manner.

An example of the model operation is shown in Figure 4.
The following data were used for input: indoor air temperature
15°C, mean radiant temperature 15°C, relative air velocity 0.1
m/s, humidity 50%. The output PMV value for this set was
-1.80, corresponding to the “cool” degree of comfort of the
microclimate in the room.

The developed model was tested on all 980 input combina-
tions (Figure 5), and the model’s output was compared with the
output of the calculation program (Table 6).

The results of this analysis show that for only 436 input
combinations, the model’s relative error is under 20%. For other
combinations, the relative error was above 20%. Furthermore,
in the fuzzification stage, we revised the membership functions
of the input parameters, which did not improve the model’s
performance.
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Table 6. Comparison of the results obtained using the developed model with the PMV values obtained using the calculation program

PMV
No. ta (°C) tr (°C) va (m/s) phi (%) M (W/m2) Icl (clo)

Calculation program Fuzzy model

1 15.0 15.0 0.1 30 70 1 -1.80 -1.84

2 17.5 15.0 0.1 30 70 1 -1.49 -1.42

... ... ... ... ... ... ... ... ...

980 30.0 30.0 0.3 60 70 1 1.73 1.66

Figure 5. Schematic for calculating the PMV indicator using the
developed model for 980 input combinations in the Simulink package.

3.2 Development of the Neural Network-Based Model

Neural networks are extremely powerful for reproducing ex-
tremely complex dependencies. Neural networks are trained
using samples. The trainer of a neural network selects repre-
sentative data and then runs a learning algorithm that infers the
data structure [25].

The creation of the optimal structure of the mathematical
model for a neural network in the MATLAB environment refers
to selecting the number of network layers, the number of neu-
rons in each layer, the network learning function, and the neu-
ron activation function, for which the smallest error would
be achieved. To solve this problem, a two-layer network is
required, in which [11]:

• for the neurons of the first layer, a hyperbolic activation
function is set - tansig;

• for the neurons of the second layer, a linear activation
function is set - pureline.

For modeling, it was decided to select a neural network with the

Figure 6. The structure of the neural network.

following parameters: number of neurons - 30 in the first layer
and the training function trainlm (which modifies the values
of weights and biases according to the Levenberg–Marquardt
optimization method). This method is often used to achieve
high accuracy in training a neural network. The structure of the
neural network is shown in Figure 6.

To train the neural network, we used the first 500 combina-
tions of input parameters out of 980 aggregate ones, prepared
before the start of the modeling process.

The magnitude of the network training error and the training
duration were 10−10 and 1000 epochs, respectively (Figure 7).

To check the operation of the model based on neural net-
works, overall 980 combinations were presented as input: the
500 first input combinations used in training the network as well
as the 480 subsequent input combinations that were “previously
unseen” by the model (Figure 8). Further, the model’s output
was compared with the values obtained using the calculation
program (Table 7).

As a result of the analysis of the obtained data, it was deter-
mined that the neural network model yielded the most accurate
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http://doi.org/10.5391/IJFIS.2020.20.4.324

Table 7. Comparison of the results obtained using the developed model with the PMV values obtained using the calculation program

PMV
No. ta (°C) tr (°C) va (m/s) phi (%) M (W/m2) Icl (clo)

Calculation program Neural model

1 15.0 15.0 0.1 30 70 1 -1.80 -1.80

2 17.5 15.0 0.1 30 70 1 -1.49 -1.49

... ... ... ... ... ... ... ... ...

980 30.0 30.0 0.3 60 70 1 1.73 2.39

Figure 7. Graph of the neural network training error.

Figure 8. Schematic for calculating the PMV indicator using the
developed model, for 980 input combinations, using the Simulink
package.

result (error-free) for those combinations of input parameters
that were used for its training. For the 598 input combinations
out of the 980 submitted, the relative error was under 20%.

To improve the performance of the developed model, it is
necessary to extend the training set, and retrain the network on
it.

4. Discussion

The calculation program, along with the developed models that
use fuzzy logic and neural networks, enable the assessment of
thermal comfort in a room, without conducting experimental
studies using questionnaires or expensive control and measur-
ing devices, which is efficient and economical. To compare the
models’ results with the PMV values obtained using the cal-
culation program, the same combinations of input parameters
indicated in Table D1 (columns 2–7) of ISO 7730:2005 were
presented as input. The results demonstrated that the PMV in-
dex values obtained using the calculation program agreed well
with the values of this parameter listed in Table D1 (column 8)
for ISO 7730:2005.

Initial data were prepared for the modeling stage. Overall,
980 input combinations were formulated, using the Microsoft
Excel program. Further, the PMV index was calculated us-
ing the program proposed by the researchers of the Federal
State Unitary Enterprise Research Institute of Industrial and
Marine Medicine of the Federal Biomedical Agency (for 980
combinations).

The prepared dataset was used during the fuzzification stage
and during the stage of formulating the rule base when devel-
oping the model based on the fuzzy logic framework. Five
hundred combinations from this dataset were used for training
the neural network.

After the models’ development, their effectiveness was as-
sessed. During the assessment, 980 input combinations were
presented as input. A comparative analysis of the model output
with the output of the calculation program was performed.

Regarding the model based on fuzzy logic, only for 436 in-
put combinations out of 980 total combinations, the relative
error was under 20%; among the presented combinations, some
yielded perfect performance. For other combinations, the rela-
tive error was above 20%.

The developed model based on neural networks yielded ac-

www.ijfis.org Development and Analysis of Models for Assessing Predicted Mean Vote Using Intelligent Technologies | 332



International Journal of Fuzzy Logic and Intelligent Systems, vol. 20, no. 4, December 2020

curate results only for 500 combinations in the training set. For
598 out of the 980 overall input combinations, the relative error
was under 20%.

The analysis of these results showed that neural networks
perform much better at assessing thermal comfort, compared
with fuzzy systems. By supplementing the sample of initial
data used in training the neural network, the efficiency of its
operation can be increased.

5. Conclusion

In this study, the issues of preparing data for research and
modeling were addressed. A schematic diagram of the stages
of developing the model for assessing thermal comfort based
on the Mamdani fuzzy inference algorithm was presented. The
following research objectives, formulated in Section 2, were
addressed:

• The study and description of Fanger’s thermal comfort
model were presented;

• Methods and software for assessing the PMV thermal
comfort index were determined;

• The correctness of the calculation program was checked;

• Fuzzy logic and neural network-based models were de-
veloped;

• A comparative analysis was conducted, comparing the
results obtained using the developed models with the
values obtained using the calculation program.

The analysis showed that neural networks perform better in
assessing thermal comfort, compared with fuzzy systems. In
the future, we plan to modify the developed models to reduce
the relative error and improve the models’ performance.
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