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INTEGRAL OPERATORS WITH TWO VARIABLE INTEGRATION

LIMITS ON THE CONE OF MONOTONE FUNCTIONS

AIGERIM KALYBAY, RYSKUL OINAROV AND AINUR TEMIRKHANOVA

(Communicated by G. Sinnamon)

Abstract. Weighted inequalities for the Hardy-Steklov operators with variable integration limits
on the cone of monotone functions have been investigated with success. The similar problem for
operators with kernels has remained unsolved up to now. In this paper we find characterizations
for integral operators with a wide class of kernels.

1. Introduction

Let I = (a,b) , −∞ � a < b � ∞ , 1 < p,q < ∞ , 1
p + 1

p′ = 1 and 1
q + 1

q′ = 1. Let
ω and v be non-negative and measurable functions almost everywhere finite on I such
that ω−q′ , ωq , vp′ and v−p′ are locally summable on I .

We denote by Lp,v ≡ Lp(v, I) the set of all functions f measurable on I such that

‖ f‖p,v ≡ ‖v f‖p =

⎛
⎝

b∫
a

|v f |p
⎞
⎠

1
p

< ∞.

Let M ↓ and M ↑ be sets of functions non-increasing and non-decreasing on I ,
respectively.

For the integral operators

K− f (x) =

β (x)∫

α(x)

K(s,x) f (s)ds, (1)

K+ f (x) =

β (x)∫

α(x)

K(x,s) f (s)ds, (2)

we consider the inequalities

‖ωK− f‖q � C‖v f‖p, f ∈ M ↓, (3)
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‖ωK+ f‖q � C‖v f‖p, f ∈ M ↑, (4)

where the boundary functions α and β satisfy the following conditions:
( i) α(x) and β (x) are functions differentiable and strictly increasing on I ;
( ii) α(x) < β (x) for any x∈ I ; moreover, lim

x→a+
α(x) = lim

x→a+
β (x) = a and lim

x→b−
α(x) =

lim
x→b−

β (x) = b .

In the case when K(x,s) ≡ 1 operator (1) is denoted by

H f (x) =

β (x)∫

α(x)

f (s)ds (5)

and called the Hardy-Steklov operator [18].
During the last decade the problem of boundedness and compactness of operators

(5), (1) and (2) was intensively investigated in weighted Lebesgue spaces [3, 6, 10, 13,
18, 19, 20, 22, 23] and Banach spaces [4]. The main method of these investigations is
the Batuev-Stepanov block-diagonal method [10] introduced in [2].

The operators of the forms (1) and (2) are important in different problems (see e.g.
[11] and [12]).

From the early nineties of the last century in connection with characterizations of
boundedness and estimates of norms of classical operators in weighted Lorentz spaces
the investigation of inequalities of the forms (3) and (4) has got a rapid development
on the cone of monotone functions [7, 14, 16, 17]. The main method to study weighted
inequalities for operators on the cone of monotone functions is a “reduction method”
that appeared almost at the moment of appearance of the problem. The idea of this
method is to reduce the given inequality for monotone functions to some inequality for
non-negative functions.

In work [14] E. Sawyer presents a reduction method that transfers the inequality
of the form (3) for linear positive operators on the set of non-increasing functions to
some inequality for non-negative functions. In the modern mathematical literature it is
known as “the Sawyer duality principle” (for short “the Sawyer principle”). In works
[16] and [7] the expansion of this principle for non-decreasing functions is given.

At the present time there are many works that establish the inequalities of the form
(3) and (4) for different classes of operators by help of “the Sawyer principle” (see e.g.
[1, 8, 9, 15]).

Recently as a development of “the Sawyer principle” A. Gogatishvili and V.D.
Stepanov [5] present a reduction method that allows to reduce weighted inequalities for
positive but not necessarily linear operators on the cone of monotone functions to some
weighted inequalities on the set of non-negative functions.

As it is mentioned above the boundedness of operators (1) and (2) from Lp,v to
Lq,ω has been studied well enough, however the inequalities of the forms (3) and (4)
have been characterized only for the Hardy-Steklov operators (see [20] and [21]); and
when the function K(·, ·) depends on both variables the problem is still open even in
the case when the function K(·, ·) satisfies the condition from works [3, 6, 18, 19, 20],
where only the boundedness of operators (1) and (2) from Lp,v in Lq,ω is found.
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The aim of this paper is to get necessary and sufficient conditions for the validity
of inequalities (3) and (4) when the function K(·, ·) satisfies a condition weaker from
those in works [3, 6, 18, 19, 20].

In the paper the relation A 	 B means A � cB , where a constant c > 0 depends
only on unessential parameters. Moreover, we write A ≈ B instead of A 	 B 	 A .

2. Auxiliary notations, concepts and statements

“The Sawyer principle” consists in the following (see [5] and [14]):

Let 1 < p,q < ∞ and T f (x) =
b∫
a

G(x,s) f (s)ds , G(x,s) � 0. Then the inequality

‖ωT f‖q � C−‖v f‖p, f ∈ M ↓ (6)

is equivalent to the inequality

⎛
⎜⎝

b∫
a

⎛
⎝

x∫
a

T ∗g(s)ds

⎞
⎠

p′

V−p′
− (x)vp′(x)dx

⎞
⎟⎠

1
p′

+

(
b∫
a

T ∗g(s)ds

)

(V−(b))
1
p

� C̃−

⎛
⎝

b∫
a

(g(x)ω−1(x))q′dx

⎞
⎠

1
q′

(7)

for g � 0, and the inequality

‖ωT f‖q � C+‖v f‖p, f ∈ M ↑ (8)

is equivalent to the inequality

⎛
⎜⎝

b∫
a

⎛
⎝

b∫
x

T ∗g(s)ds

⎞
⎠

p′

V−p′
+ (x)vp′(x)dx

⎞
⎟⎠

1
p′

+

(
b∫
a

T ∗g(s)ds

)

(V+(a))
1
p

� C̃+

⎛
⎝

b∫
a

(g(x)ω−1(x))q′dx

⎞
⎠

1
q′

(9)

for g � 0, where

V−(x) =
x∫

a

v−p′(t)dt, V+(x) =
b∫

x

v−p′(t)dt,

V−(b) = lim
x→b−

V−(x), V+(a) = lim
x→a+

V+(x).

In addition, the least constants in (6) and (7) as in (8) and (9) are equivalent, i.e., C∓ ≈
C̃∓ .

By Lemmas 2.1 and 2.2 from work [18] it follows
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LEMMA A . Let 1 < p � q < ∞ . Then the Lp,v → Lq,ω norms of the operators

H+ f (x) =

α(x)∫
a

f (s)ds, H−g(s) =
b∫

β (s)

g(x)dx

have the following relations

‖H+‖ ≈ sup
t∈I

⎛
⎝

b∫
t

ωq(x)dx

⎞
⎠

1
q
⎛
⎝

α(t)∫
a

v−p′(s)ds

⎞
⎠

1
p′

,

‖H−‖ ≈ sup
t∈I

⎛
⎝

t∫
a

ωq(x)dx

⎞
⎠

1
q
⎛
⎜⎝

b∫

β (t)

v−p′(s)ds

⎞
⎟⎠

1
p′

.

Let us present the required results and definitions of kernel classes for operators
(1) and (2) given in [10].

Let the function K+(·, ·) � 0 be defined and measurable on the set Ω+ ≡ Ω+
α ,β =

{(x,s) : a < x < b, α(x) � s � β (x)} and non-decrease in the first argument. For
an integer n � 0 we define the classes O+

n (α,β (·),Ω+) . The class O+
0 (α,β (·),Ω+)

consists of all functions of the type K+(x,s) ≡ K+
0 (x,s) = v(s) for all (x,s) ∈ Ω+ .

Let the classes O+
i (α,β (·),Ω+) , i = 0,1, . . . ,n− 1, n � 1, be defined. The function

K+(·, ·) belongs to O+
n (α,β (·),Ω+) if and only if there exist functions K+

n,i(x,z) �
0, i = 0,1, . . . ,n− 1, defined and measurable on Ωa,b = {(x,z) : a < z � x < b} and
functions K+

i (·, ·) ∈ O+
i (α,β (·),Ω+) , i = 0,1, . . . ,n−1, such that

K+(x,s) ≡ K+
n (x,s) ≈

n

∑
i=0

K+
n,i(x,z)K

+
i (z,s), K+

n,n(x,z) ≡ 1, (10)

for
a < z � x < b, α(x) � s � β (z), (11)

where the equivalence constants in (10) do not depend on x , z and s .
Similarly, let the function K−(·, ·) � 0 be define and measurable on the set Ω− ≡

Ω−
α ,β = {(x,s) : a < s < b, α(s) � x � β (s)} and non-increase in the second argu-

ment. We define the classes Ω−
n (α(·),β ,Ω−) , n � 0. The class Ω−

0 (α(·),β ,Ω−)
consists of all functions of the type K−(x,s) ≡ K−

0 (x,s) = u(x) for all (x,s) ∈ Ω− .
Let the classes O−

i (α(·),β ,Ω−) , i = 0,1, . . . ,n−1, n � 1, be defined. Then the func-
tion K−(·, ·) belongs to the class O−

n (α(·),β ,Ω−) if and only if there exist functions
K−

i,n(z,s) , i = 0,1, . . . ,n−1, defined and measurable on Ωa,b and functions K−
i (x,z) ∈

O−
i (α(·),β ,Ω−) , i = 0,1, . . . ,n−1, such that

K−(x,s) ≡ K−
n (x,s) ≈

n

∑
i=0

K−
i (x,z)K−

i,n(z,s), Kn,n(·, ·) ≡ 1 (12)
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for
a < s � z < b, α(z) � x � β (s), (13)

where the equivalence constants in (8) do not depend on x , t and s .
Let us notice that Ω+

α ,β = Ω−
β−1,α−1 .

Assume that

A+
1 ≡ sup

z∈I
sup

y∈Δ−(z)

⎛
⎜⎜⎝

z∫
y

ωq(x)

⎛
⎜⎝

β (y)∫

α(z)

Kp′(x,s)v−p′(s)ds

⎞
⎟⎠

q
p′

dx

⎞
⎟⎟⎠

1
q

,

A+
2 ≡ sup

z∈I
sup

y∈Δ−(z)

⎛
⎜⎜⎝

β (y)∫

α(z)

v−p′(s)

⎛
⎝

z∫
y

Kq(x,s)ωq(x)dx

⎞
⎠

p′
q

ds

⎞
⎟⎟⎠

1
p′

,

A−
1 ≡ sup

z∈I
sup

y∈Δ+(z)

⎛
⎜⎜⎝

y∫
z

ωq(x)

⎛
⎜⎝

β (z)∫

α(y)

Kp′(s,x)v−p′(s)ds

⎞
⎟⎠

q
p′

dx

⎞
⎟⎟⎠

1
q

,

A−
2 ≡ sup

z∈I
sup

y∈Δ+(z)

⎛
⎜⎜⎝

β (z)∫

α(y)

v−p′(s)

⎛
⎝

y∫
z

Kq(s,x)ωq(x)dx

⎞
⎠

p′
q

ds

⎞
⎟⎟⎠

1
p′

,

where Δ+(z) = [z,α−1(β (z))], Δ−(z) = [β−1(α(z)),z] .

THEOREM A− . [10] Let 1 < p � q < ∞ . If the kernel of operator (1) belongs
to O+

n (α,β (·),Ω+)
⋃

O−
n (β−1(·),α−1,Ω+) , n � 0 , then operator (1) is bounded from

Lp,v to Lq,ω if and only if A−
1 < ∞ or A−

2 < ∞ . Moreover, ‖K−‖ ≈ A−
1 ≈ A−

2 , where
‖K−‖ is Lp,v → Lq,ω norm of operator (1).

THEOREM A+ . [10] Let 1 < p � q < ∞ . If the kernel of operator (2) belongs
to O+

n (α(·),β ,Ω+)
⋃

O−
n (β−1,α−1(·),Ω+) , n � 0 , then operator (2) is bounded from

Lp,v to Lq,ω if and only if A+
1 < ∞ or A+

2 < ∞ . Moreover, ‖K+‖ ≈ A+
1 ≈ A+

2 , where
‖K+‖ is Lp,v → Lq,ω norm of operator (2).

3. Main results

Assume that

A
−
0 ≡ sup

z∈I

⎛
⎜⎝

b∫

β (z)

V−p′
− (t)vp′(t)dt

⎞
⎟⎠

1
p′

⎛
⎜⎝

z∫
a

ωq(x)

⎛
⎜⎝

β (x)∫

α(x)

K(s,x)ds

⎞
⎟⎠

q

dx

⎞
⎟⎠

1
q

,
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A
−
1 ≡ sup

z∈I
sup

y∈Δ+(z)

⎛
⎜⎜⎜⎝

y∫
z

ωq(x)

⎛
⎜⎜⎝

β (z)∫

α(y)

⎛
⎜⎝

t∫

α(x)

K(s,x)ds

⎞
⎟⎠

p′

V−p′
− (t)vp′(t)dt

⎞
⎟⎟⎠

q
p′

dx

⎞
⎟⎟⎟⎠

1
q

,

A
−
2 ≡ sup

z∈I
sup

y∈Δ+(z)

⎛
⎜⎜⎜⎝

β (z)∫

α(y)

V−p′
− (t)vp′(t)

⎛
⎜⎝

y∫
z

ωq(x)

⎛
⎜⎝

t∫

α(x)

K(s,x)ds

⎞
⎟⎠

q

dx

⎞
⎟⎠

p′
q

dt

⎞
⎟⎟⎟⎠

1
p′

,

A
+
0 ≡ sup

z∈I

⎛
⎝

α(z)∫
a

V−p′
+ (t)vp′dt

⎞
⎠

1
p′

⎛
⎜⎝

b∫
z

ωq(x)

⎛
⎜⎝

β (x)∫

α(x)

K(x,s)ds

⎞
⎟⎠

q

dx

⎞
⎟⎠

1
q

,

A
+
1 ≡ sup

z∈I
sup

y∈Δ−(z)

⎛
⎜⎜⎝

z∫
y

ωq(x)

⎛
⎜⎝

β (y)∫

α(z)

⎛
⎝

β (x)∫
t

K(x,s)ds

⎞
⎠

p′

V−p′
+ (t)vp′(t)dt

⎞
⎟⎠

q
p′

dx

⎞
⎟⎟⎠

1
q

,

A
+
2 ≡ sup

z∈I
sup

y∈Δ−(z)

⎛
⎜⎜⎝

β (y)∫

α(z)

V−p′
+ (t)vp′(t)

⎛
⎝

z∫
y

⎛
⎝

β (x)∫
t

K(x,s)ds

⎞
⎠

q

ωq(x)dx

⎞
⎠

p′
q

dt

⎞
⎟⎟⎠

1
p′

,

A
−
3 ≡ (V−(b))−

1
p

⎛
⎜⎝

b∫
a

ωq(x)

⎛
⎜⎝

β (x)∫

α(x)

K(s,x)ds

⎞
⎟⎠

q

dx

⎞
⎟⎠

1
q

,

A
+
3 ≡ (V+(a))−

1
p

⎛
⎜⎝

b∫
a

ωq(x)

⎛
⎜⎝

β (x)∫

α(x)

K(x,s)ds

⎞
⎟⎠

q

dx

⎞
⎟⎠

1
q

.

Let us notice that V 1−p′
− (b) = V 1−p′

+ (a) = 0 for
b∫
a

vp′(t)dt = ∞ .

THEOREM 1. Let 1 < p � q < ∞ . If the kernel of operator (1) belongs to O−
n (α(·) ,

β ,Ω−)
⋃

O+
n (β−1,α−1(·),Ω−) , n � 0 , then inequality (3) for operator (1) holds if and

only if A
−
0 +A

−
1 +A

−
3 < ∞ or A

−
0 +A

−
2 +A

−
3 < ∞ . Moreover, C ≈ A

−
0 +A

−
1 +A

−
3 ≈

A
−
0 +A

−
2 +A

−
3 , where C is the least constant in (3).

THEOREM 2. Let 1 < p � q < ∞ . If the kernel of operator (2) belongs to O+
n (α ,

β (·),Ω+)
⋃

O−
n (β−1(·),α−1,Ω+) , n � 0 , then inequality (4) for operator (2) holds if

and only if A
+
0 +A

+
1 +A

+
3 < ∞ or A

+
0 +A

+
2 +A

+
3 . Moreover, C ≈ A

+
0 +A

+
1 +A

+
3 ≈

A
+
0 +A

+
1 +A

+
3 , where C is the least constant in (4).
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Proof of Theorem 1. By “the Sawyer principle” (7) inequality (3) is equivalent to
the inequalities

⎛
⎜⎝

b∫
a

⎛
⎝

t∫
a

K∗
−g(s)ds

⎞
⎠

p′

V−p′
− (t)vp′(t)dt

⎞
⎟⎠

1
p′

� C1

⎛
⎝

b∫
a

(ω−1(x)g(x))q′dx

⎞
⎠

1
q′

, g � 0,

(14)

⎛
⎝

b∫
a

K∗
−g(s)ds

⎞
⎠(V−(b))−

1
p � C2

⎛
⎝

b∫
a

(
ω−1(x)g(x)

)q′
dx

⎞
⎠

1
q′

, g � 0. (15)

Moreover, C ≈ C1 +C2 , where C , C1 and C2 are the least constants in (1), (14) and
(15), respectively.

Since

b∫
a

K∗
−g(s)ds =

b∫
a

α−1(s)∫

β−1(s)

K(s,x)g(x)dxds =
b∫

a

g(x)

β (x)∫

α(x)

K(s,x)dsdx,

then by the duality principle in Lq′,ω−1 , inequality (15) holds if and only if

A
−
3 = C2 = (V−(b))−

1
p

⎛
⎜⎝

b∫
a

ωq(x)

⎛
⎜⎝

β (x)∫

α(x)

K(s,x)ds

⎞
⎟⎠

q

dx

⎞
⎟⎠

1
q

< ∞.

Since the operator
t∫
a

K∗−g(s)ds is the dual to the operator K−
(

b∫
x

f (t)dt

)
with respect

to the form
b∫
a

g(t) f (t)dt , then by transaction from inequality (14) to its dual inequality,

we get

⎛
⎜⎝

b∫
a

⎛
⎜⎝

β (x)∫

α(x)

K(s,x)

⎛
⎝

b∫
s

f (t)dt

⎞
⎠ds

⎞
⎟⎠

q

ωq(x)dx

⎞
⎟⎠

1
q

� C1

⎛
⎝

b∫
a

(
V−(t)v−1(t) f (t)

)p
dt

⎞
⎠

1
p

, f � 0. (16)
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We have that

β (x)∫

α(x)

K(s,x)

⎛
⎝

b∫
s

f (t)dt

⎞
⎠ds =

β (x)∫

α(x)

K(s,x)

β (x)∫
s

f (t)dtds+

β (x)∫

α(x)

K(s,x)ds

b∫

β (x)

f (t)dt

=

β (x)∫

α(x)

f (t)
t∫

α(x)

K(s,x)dsdt +
b∫

β (x)

f (t)dt

β (x)∫

α(x)

K(s,x)ds.

Therefore, inequality (16) is equivalent to the validity of the inequalities

⎛
⎜⎝

b∫
a

⎛
⎜⎝

b∫

β (x)

f (t)dt

⎞
⎟⎠

q ⎛
⎜⎝

β (x)∫

α(x)

K(s,x)ds

⎞
⎟⎠

q

ωq(x)dx

⎞
⎟⎠

1
q

� C1,0

⎛
⎝

b∫
a

(
V−(t)v−1(t) f (t)

)p
dt

⎞
⎠

1
p

, f � 0, (17)

⎛
⎜⎝

b∫
a

⎛
⎜⎝

β (x)∫

α(x)

f (t)
t∫

α(x)

K(s,x)dsdt

⎞
⎟⎠

q

ωq(x)dx

⎞
⎟⎠

1
q

� C1,1

⎛
⎝

b∫
a

(
V−(t)v−1(t) f (t)

)p
dt

⎞
⎠

1
p

, f � 0. (18)

Moreover, C1 ≈ C1,0 +C1,1 , where C1 , C1,0 and C1,1 are the least constants in (16),
(17) and (18), respectively.

By Lemma A inequality (17) holds if and only if A
−
0 < ∞ . Moreover, C1,0 ≈ A

−
0 ,

where C1,0 is the least constant in (17).
Now, to get necessary and sufficient conditions for the validity of inequality (18)

we need the following properties of the function K̂(t,x) =
t∫

α(x)
K(s,x)ds that are of

independent interest.

LEMMA 1. If K(·, ·)∈O−
n (α(·),β ,Ω−) , n � 0 , then K̂(·, ·)∈O−

n+1(α(·),β ,Ω−).

LEMMA 2. If K(·, ·) ∈ O+
n (β−1,α−1(·),Ω−) , n � 0 , then K̂(·, ·) ∈ O+

n+1(β
−1 ,

α−1(·),Ω−).

Let us prove Lemmas 1 and 2 later and continue the proof of Theorem 1.
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By the condition of Theorem 1 we have that

K(·, ·) ∈ O−
n (α(·),β ,Ω−)

⋃
O+

n (β−1,α−1(·),Ω−).

By the Lemmas 1 and 2 it follows that

K̂(·, ·) ∈ O−
n+1(α(·),β ,Ω−)

⋃
O+

n+1(β
−1,α−1(·),Ω−).

Then by Theorem A− inequality (18) holds if and only if A
−
1 < ∞ or A

−
2 < ∞ . More-

over, C1,1 ≈ A
−
1 ≈ A

−
2 .

From C ≈C1 +C2 , C1 ≈C1,0 +C1,1 , C1,0 ≈A
−
0 , C1,1 ≈A

−
1 ≈A

−
2 and C2 = A

−
3 it

follows that inequality (3) holds if and only if A
−
0 +A

−
1 +A

−
3 < ∞ or A

−
0 +A

−
2 +A

−
3 <

∞ . Moreover, C ≈ A
−
0 +A

−
1 +A

−
3 ≈ A

−
0 ++A

−
2 +A

−
3 , where C is the least constant

in (3).
Now, to complete the proof of Theorem 1 we prove Lemmas 1 and 2.

Proof of Lemma 1. Let

a < x < z < b, α(z) � t � β (x). (19)

Then α(x) � α(z) � t and

K̂(t,x) =
t∫

α(z)

K(s,x)ds+

α(z)∫

α(x)

K(s,x)ds (20)

For (s,z,x) : a < x � z < b, α(z) � s � t � β (x) from the condition of Lemma K(·, ·)∈
O−

n (α(·),β ,Ω−) we have

K(s,x) ≡ K−
n (s,x) ≈

n

∑
i=0

K−
i (s,z)K−

i,n(z,x).

This, together with (20), gives

K̂(t,x) ≈
n

∑
i=0

t∫

α(z)

K−
i (s,z)dsK−

i,n(z,x)+

α(z)∫

α(x)

K(s,x)ds.

Assume that K̂−
i+1(t,z) =

t∫
α(z)

K−
i (s,z)ds , K̂−

i+1,n+1(z,x) = K−
i,n(z,x) , i = 0,1, . . . ,n ,

K̂−
0 (t,z) ≡ 1 and K̂−

0,n+1(z,x) =
α(z)∫

α(x)
K(s,x)ds . Then the last relation have the form

K̂(t,x) ≡ K̂−
n+1(t,x) ≈

n+1

∑
i=0

K̂−
i (t,z)K̂−

i,n+1(z,x). (21)
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If we show that K̂−
i (·, ·) ∈O−

i (α(·),β ,Ω−) , i = 0,1, . . . ,n , then from (21) we have that
K̂(·, ·) ∈ O−

n+1(α(·),β ,Ω−) . The belonging K̂0(·, ·) ≡ 1∈ O−
0 (α(·),β ,Ω−) is obvious.

Let i = 1, K0(s,x) = u0(s) and

K̂−
1 (t,x) =

t∫

α(x)

u0(s)ds =
t∫

α(z)

u0(s)ds+

α(z)∫

α(x)

u0(s)ds

= K̂−
0 (t,z)K̂−

0,1(z,x)+ K̂−
1 (t,z)K̂−

1,1(z,x)

with condition (19). Therefore, K̂−
1 (·, ·) ∈ O−

1 (α(·),β ,Ω−) .
Let K̂−

j (·, ·)∈O−
j (α(·),β ,Ω−) , j = 1,2, . . . , i−1, i � 2. Then from the condition

K−
j−1(·, ·)∈O−

j−1(α(·),β ,Ω−) , j = 1,2, . . . , i−1, as above for K̂−
i (t,x) we get relation

(21) for n = i−1, that means K̂−
i (·, ·) ∈ O−

i (α(·),β ,Ω−) , i = 0,1, . . . ,n+1.
The proof of Lemma 1 is complete. �

Proof of Lemma 2. Let

a < z � t < b, β−1(t) � x � α−1(z). (22)

Then α(x) � z � t and

K̂(t,x) =
t∫

α(x)

K(s,x)ds =
t∫

z

K(s,x)ds+
z∫

α(x)

K(s,x)ds. (23)

For (s,z,x) : a < z � s � t < b, β−1(s) � β−1(t) � x � α−1(z) from the condition
K(·, ·) ∈ O+

n (β−1,α−1(·),Ω−) it follow that

K(s,x) ≈
n

∑
i=0

K+
n,i(s,z)K

+
i (z,x).

Then from (23) we have

K̂(t,x) ≈
n

∑
i=0

t∫
z

K+
n,i(s,z)dsK+

i (z,x)+ K̂(z,x).

That, assuming K̂+
n+1,i(t,z)=

t∫
z
K+

n,i(s,z)ds , K̂+
i (z,x)= K+

i (z,x)∈O+
i (β−1,α−1(·),Ω−) ,

i = 0,1, . . . ,n , K̂+
n+1,n+1(t,z) ≡ 1 and K̂(z,x) = K̂n+1(z,x) , yields

K̂(t,x) ≡ K̂+
n+1(t,x) ≈

n+1

∑
i=0

K̂+
n+1,i(t,z)K̂

+
i (z,x)

with condition (22). Hence, K̂(·, ·) ∈ O+
n+1(β

−1,α−1(·),Ω−) .
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The proof of Lemma 2 is complete. �

Thus, the proof of Theorem 1 is also complete. �

The proof of Theorem 2 is similar. Let us present only the scheme of the proof.
First, we need to prove analogues of Lemmas 1 and 2 that have independent values.

Let K̃(x, t) =
β (x)∫
t

K(x,s)ds .

LEMMA 3. If K(·, ·)∈O+
n (α,β (·),Ω+) , n � 0 , then K̃(·, ·)∈O+

n+1(α,β (·),Ω+) .

Proof of Lemma 3. Let

a < z � x < b, α(x) � t � β (z). (24)

Then

K̃(x,t) =

β (z)∫
t

K(x,s)ds+

β (x)∫

β (z)

K(x,s)ds.

From a < z � x < b , α(x) � t � s � β (z) and K(·, ·) ∈ O+
n (α,β (·),Ω+) , n � 0, we

have

K̃(x, t) ≡ K̃+
n+1(x,t) ≈

n

∑
i=0

K+
n,i(x,z)

β (z)∫
t

K+
i (z,s)ds+

β (x)∫
β (z)

K(x,s)ds.

That, assuming K̃+
n+1,i+1(x,z) ≡ K+

n,i(x,z) , K̃+
i+1(z,t) ≡

β (z)∫
t

K+
i (z,s)ds , i = 0,1, . . . ,n ,

K̃0(x,t) ≡ 1, K̃+
n+1,0(x,z) ≡

β (x)∫
β (z)

K(x,s)ds , gives

K̃(x,t) ≡ K̃+
n+1(x,t) ≈

n+1

∑
i=0

K̃+
n+1,i(x,z)K̃

+
i (z,t). (25)

The belonging K̃+
i (·, ·) ∈ O+

i (α,β (·),Ω+) , i = 0,1, . . . ,n , is proved by the induction
as in Lemma 1. Therefore, from (25) and (24) it follows K̃(·, ·) ∈ O+

n+1(α,β (·),Ω+) .
The proof of Lemma 3 is complete. �

LEMMA 4. If K(·, ·)∈O−
n (β−1(·),α−1,Ω+) , n � 0 , then K̃(x,t)∈O−

n+1(β
−1(·) ,

α−1,Ω+) .

Proof of Lemma 4. Let

a < t � z < b, β−1(z) � x � α−1(x). (26)
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Then t � z � β (x) and

K̃(x,t) =
z∫

t

K(x,s)ds+

β (x)∫
z

K(x,s)ds.

That from t � s � z , β−1(z) � x � α−1(t) and K(·, ·) ∈ O−
n (β−1(·),α−1,Ω+) gives

K̃(x, t) ≡ K̃−
n+1(x,t) ≈

n

∑
i=0

K−
i (x,z)

z∫
t

K−
i,n(z,s)ds+ K̃−

n+1(x,z)

=
n+1

∑
i=0

K̃−
i (x,z)K̃−

i,n+1(z,t),

with condition (26), where K̃−
i (x,z) = K−

i (x,z) ∈ O−
i (β−1(·),α−1,Ω+) , K̃−

i,n+1(z,t) =
z∫
t
K−

i,n(z,s)ds , i = 0,1, . . . ,n, K̃n+1,n+1(z,t) ≡ 1. Consequently, K̃(·, ·) ∈ O−
n+1(β

−1(·),
α−1, Ω+) .

The proof of Lemma 4 is complete. �

Using “the Sawyer principle” (9) to inequality (4), we get that inequality (4) is
equivalent to the validity of inequalities

⎛
⎜⎝

b∫
a

⎛
⎝

α(x)∫
a

g(t)dt

⎞
⎠

q ⎛
⎜⎝

β (x)∫

α(x)

K(x,s)ds

⎞
⎟⎠

q

ωq(x)dx

⎞
⎟⎠

1
q

� C0

⎛
⎝

b∫
a

(g(t)V+(t)v−1(t))pdt

⎞
⎠

1
p

, g � 0, (27)

⎛
⎜⎝

b∫
a

⎛
⎜⎝

β (x)∫

α(x)

g(t)

β (x)∫
t

K(x,s)dsdt

⎞
⎟⎠

q

ωq(x)dx

⎞
⎟⎠

1
q

� C1

⎛
⎝

b∫
a

(g(t)V+(t)v−1(t))pdt

⎞
⎠

1
p

, g � 0, (28)

V
− 1

p
+ (a)

b∫
a

g(x)

β (x)∫
α(x)

K(x,s)dsdx � C2

⎛
⎝

b∫
a

(ω−1(t)g(t))q′dt

⎞
⎠

1
q′

, g � 0. (29)
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Moreover, C ≈C0 +C1 +C2 , where C , C0 , C1 and C2 are the least constants in (4),
(27), (28) and (29), respectively. These inequalities hold if and only if A

+
0 < ∞ , A

+
1 < ∞

or A
+
2 < ∞ , A

+
3 < ∞ , respectively. Moreover, C0 ≈A

+
0 , C1 ≈A

+
1 ≈A

+
2 and C2 = A

+
3 .

Therefore, inequality (4) holds if and only if A
+
0 +A

+
1 +A

+
3 < ∞ or A

+
0 +A

+
2 +A

+
3 <

∞ . Moreover, C ≈ A
+
0 +A

+
1 +A

+
3 ≈ A

+
0 +A

+
2 +A

+
3 , where C is the least constant in

(4). The proof of Theorem 2 is complete. �

4. Some examples

In work [18] the boundedness of operator (1) from Lp,v in Lq,ω is considered for
the case when its kernel K(·, ·) satisfies the condition

K(s,x) ≈ K(s,z)+K(α(z),x), a < x � z < b, α(z) � s � β (x). (30)

Assuming that K−
1 (s,z) ≡ K(s,z) , K−

0,1(z,x) ≡ K(α(z),x) , K−
1,1(z,x) ≡ K−

0 (s,z) ≡ 1,

we have that K(s,x) ≡ K−
1 (s,x) ≈ K−

0 (s,z)K−
0,1(z,x)+K−

1 (s,z)K−
1,1(z,x) , i.e., K(·, ·) ∈

O−
1 (α(·),β ,Ω−) .

Therefore, Theorem 1 is correct for operator (1) with condition (30) and n = 1.
Using condition (30) we can find simpler values, the finiteness of which is equivalent
to the finiteness of the values A

−
1 or A

−
2 . In the expression A

−
1 the variables z , y , x , s

and t change within the following bounds: a < z � x � y � b , α(x) � α(y) � t � β (z)
and α(x) � s � t . Hence,

t∫

α(x)

K(s,x)ds =
t∫

α(y)

K(s,x)ds+

α(y)∫

α(x)

K(s,x)ds. (31)

Since in the function
t∫

α(y)
K(s,x)ds the variables x , s and y satisfy the conditions a <

x � y < b and α(y) � s � β (z) � β (x) , from (30) it follows that

t∫

α(y)

K(s,x)ds ≈
t∫

α(y)

K(s,y)ds+(t−α(y))K(α(y),x).

If we replace the obtained expression in (31), we have

t∫

α(x)

K(s,x)ds ≈
t∫

α(y)

K(s,y)ds+(t−α(y))K(α(y),x)+

α(y)∫

α(x)

K(s,x)ds.

Therefore, for (30) the finiteness of the values A
−
1 or A

−
2 is equivalent to the

finiteness of the values

A
−
1,1 = sup

z∈I
sup

y∈Δ+(z)

⎛
⎝

y∫
z

ωq(x)dx

⎞
⎠

1
q

⎛
⎜⎜⎝

β (z)∫

α(y)

⎛
⎜⎝

t∫

α(y)

K(s,y)ds

⎞
⎟⎠

p′

V−p′
− (t)vp′(t)dt

⎞
⎟⎟⎠

1
p′

,
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A
−
1,2 = sup

z∈I
sup

y∈Δ+(z)

⎛
⎝

y∫
z

ωq(x)Kq(α(y),x)dx

⎞
⎠

1
q
⎛
⎜⎝

β (z)∫

α(y)

(t−α(y))p′V−p′
− (t)vp′(t)dt

⎞
⎟⎠

1
p′

,

A
−
1,3 = sup

z∈I
sup

y∈Δ+(z)

⎛
⎜⎝

y∫
z

ωq(x)

⎛
⎜⎝

α(y)∫

α(x)

K(s,x)ds

⎞
⎟⎠

q

dx

⎞
⎟⎠

1
q
⎛
⎜⎝

β (z)∫

α(y)

V−p′
− (t)vp′(t)dt

⎞
⎟⎠

1
p

.

From Theorem 1 we have

COROLLARY 1. Let 1 < p � q < ∞ . If the kernel of operator (1) satisfies condi-
tion (30), then inequality (3) holds if and only if A

− = {A
−
0 ,A−

1,1,A
−
1,2,A

−
1,3,A

−
3 } < ∞ .

Moreover, C ≈ A
− , where C is the least constant in (3).

In works [3, 6, 18] the boundedness of operator (2) from Lp,v to Lq,ω is studied in
the case when its kernel satisfies the condition

K(x,s) ≈ K(x,β (z))+K(z,s), a < z � x < b, α(x) � s � β (z). (32)

As above it is easy to see that K(·, ·)∈O+
1 (α,β (·),Ω+) . Therefore, from the expression

A
+
1 and condition (32) we get

∫ β (x)

t
K(x,s)ds ≈ K(x,β (y))(β (y)− t)+

β (y)∫
t

K(y,s)ds+

β (x)∫
β (y)

K(x,s)ds.

Then the finiteness of the value A
+
1 or A

+
2 is equivalent to the finiteness of the follow-

ing values

A
+
1,1 = sup

z∈I
sup

y∈Δ−(z)

⎛
⎝

z∫
y

ωq(x)Kq(x,β (y))dx

⎞
⎠

1
q
⎛
⎜⎝

β (y)∫
α(z)

(β (y)− t)p′V−p′
+ (t)vp′(t)dt

⎞
⎟⎠

1
p′

,

A
+
1,2 = sup

z∈I
sup

y∈Δ−(z)

⎛
⎝

z∫
y

ωq(x)dx

⎞
⎠

1
q
⎛
⎜⎝

β (y)∫

α(z)

⎛
⎝

β (y)∫
t

K(y,s)ds

⎞
⎠

p′

V−p′
+ (t)vp′(t)dt

⎞
⎟⎠

1
p′

,

A
+
1,3 = sup

z∈I
sup

y∈Δ−(z)

⎛
⎜⎝

z∫
y

ωq(x)

⎛
⎜⎝

β (x)∫

β (y)

K(x,s)ds

⎞
⎟⎠

q

dx

⎞
⎟⎠

1
q
⎛
⎜⎝

β (y)∫

α(z)

V−p′
+ (t)vp′(t)dt

⎞
⎟⎠

1
p′

.

From Theorem 2 we have
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COROLLARY 2. Let 1 < p � q < ∞ . If the kernel of operator (2) satisfies condi-
tion (32), then inequality (4) holds if and only if A

+ = {A
+
0 ,A+

1,1,A
+
1,2,A

+
1,3,A

+
3 } < ∞ .

Moreover, C ≈ A
+ , where C is the least constant in (4).
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