
Eur. Phys. J. Plus        (2023) 138:1071 
https://doi.org/10.1140/epjp/s13360-023-04718-3

Regular Art icle

Exact solution of Bardeen black hole in Einstein–Gauss–Bonnet gravity

Amit Kumar1,a, Dharm Veer Singh1,b, Yerlan Myrzakulov2,3,c, Gulmira Yergaliyeva2,d, Sudhaker Upadhyay4,5,e

1 Department of Physics, Institute of Applied Sciences and Humanities, GLA University, Mathura, Uttar Pradesh 281406, India
2 Department of General and Theoretical Physics, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan
3 Ratbay Myrzakulov Eurasian International Center for Theoretical Physics, Astana 010009, Kazakhstan
4 Department of Physics, K.L.S. College, Magadh University, Nawada 805110, India
5 School of Physics, Damghan University, P.O. Box 3671641167, Damghan, Iran

Received: 3 September 2023 / Accepted: 20 November 2023
© The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2023

Abstract We have obtained a new exact regular black hole solution for the EGB gravity coupled with nonlinear electrodynamics in
AdS space. The numerical analysis of horizon structure suggests two horizons exist: Cauchy and event. We also study the thermal
properties of this black hole, which satisfy the modified first law of thermodynamics. Moreover, we analyze the local and global
stability of the black hole. The P −V criticality and phase transition are also discussed. The critical exponents for the present model
exactly match the mean field theory.

1 Introduction

General relativity (GR) is not a complete theory of gravity, as this fails to explain many universe concepts. For instance, this fails
to explain the concept of dark matter and dark energy from the first principle. In various contexts, the theory of gravitation needs
modification, and people have modified it accordingly. Still, there is no complete theory of GR. Lovelock gravity [1–3] is one of
the modified theories of gravity, which mainly emphasizes the higher derivative of gravity in higher dimensions. Recently, the latest
developments of modified gravity have been reviewed in cosmology [4].

The importance of Lovelock gravity lies in the fact that this is the most general GR theory, which provides conserved second-order
equations of motion in D-dimensions. Gauss-Bonnet (GB) or Einstein–Gauss–Bonnet (EGB) gravity is a special kind of Lovelock
gravity in higher dimensions, which appears naturally in the low energy effective action of string theory [5, 6].

Recently, a black hole solution in 4D AdS GB massive gravity is obtained [7]. However, a black hole solution in 4D AdS EGB
black hole with Yang-Mills field is found in Ref. [8]. Here, we are interested in obtaining a black hole solution for 5D GB massive
gravity with nonlinear source term. Sakharov and Gliner [9, 10] proposed that a de Sitter core with the equation of state P � −ρ or
Tab � �gab is required to get a non-singular solution, which could provide proper discrimination at the final stage of gravitational
collapse. Based on this idea, Bardeen [11] gave the first regular black hole and, 30 years later, Ayon-Beato and Gracia find an exact
solution coupled to nonlinear electrodynamics [12–15]. Subsequently, there are many regular black hole solutions obtained. Still,
most of this solution are based on Bardeen’s proposal [16–32]. The generalization of the regular black hole in EGB gravity [33–37],
4D EGB gravity [38–40], massive gravity [41] are given. The rotating counterpart by using the Newman Janis algorithm [42, 43] for
rotating black hole was proposed [44–46]. Recently, the EGB gravity is simplified in an inflationary theoretical framework, which
solves the problem of gravity waves having speed equal to that of light [47, 48]. The compact objects (stars) [49] and primordial
gravitational waves [50] are also studied for GB gravity.

Thermal properties of black holes have been the subject of interest for many years [51–55]. Black holes are not only characterized
by temperature or entropy, but they possess phase structures and admit critical phenomena [56]. In fact, phase transition is important
in investigating the black hole’s properties in extended space. Hawking and Page have studied the first phase transition between
AdS black hole and thermal AdS [57]. Witten analyzed the confinement/deconfinement phase [58], and Chamblin studied the van
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der Wall phase transition of charged AdS black hole [59, 60]. The extended thermodynamics of various black holes are studied for
different types of black holes [61–70] and the P − v criticality of the FLRW universe are [71, 72]. Thermodynamics of singular
solution for the rotating counterpart of Lee-Wick gravity having a point source in a higher-derivative theory is presented in Ref.
[73]. Here, we discuss the thermodynamics of 5D EGB black hole solution with a nonlinear source.

The paper is organized as follows. We obtain the EGB Bardeen AdS black hole solution and also give the relevant equations
of EGB gravity coupled to nonlinear electrodynamics with the structure and location of the horizons in Sect. 2. The study of the
thermodynamical properties of 5D EGB regular massive black holes is the subject of Sect. 3. We end the paper with results and
concluding remarks in Sect. 5. We use the metric signature (−, +, +, +, +) with natural units 8πG � c � 1.

2 Black holes solutions in EGB gravity

The action of EGB gravity coupled with dual nonlinear electrodynamics in AdS spacetime is written as

S � 1

2

∫
d5x

√−g
[
R − 2� + αLGB − L(F)

]
, (1)

where R is the Ricci scalar, � is the cosmological constant, which can be expressed in terms of the Planck length l as −6/ l2, α

is the GB coupling and LGB � Rμνγ δRμνγ δ − 4RμνRμν + R2 is the Lagrangian density of EGB gravity where Rμν and Rμνλσ

are the Ricci and Riemann tensor, respectively. Here, Lagrangian L depends on F � 1
4 FμνFμν , where Fμν � ∂μAν − ∂ν Aμ is

Maxwell field-strength tensor. Jμ is the current vector corresponding to the source. We study the black hole system in terms of the
Plebánski tensor Pμν defined formally as Pμν :� 2 ∂L

∂Fμν � FμνLF , where LF � ∂L/∂F . The nonlinear electrodynamics of the
considered system can be obtained alternatively by using the Legendre transformation [15]: H � 2FLF − L which depends on an
antisymmetric field (P � 1

4 Pμν Pμν) [15, 74]. Thus, the Lagrangian for nonlinear electrodynamics can be expressed as

L � 2PHP − H and HP � ∂H
∂P

, (2)

where electromagnetic field strength is Fμν � HP Pμν and H(P) is the structure function.
Extremizing the action (1) with respect to metric tensor (gμν) and potential (Aμ) lead to the field equations [12, 15]

Iμν ≡ Gμν + Hμν + �gμν �Tμν � 2
(HP PμλP

λ
ν − δμν(2PHP − H)

)
, (3)

∇μP
μν � 1√−g

∂μ(
√−gPμν) � 0. (4)

Here, only the time component of J ν is non-trivial and given by a delta function corresponding to the point source.
Here, the Einstein tensor Gab and the Lanczos tensor Hab are given by [34]

Gμν �Rμν − 1

2
gμνR, (5)

Hμν � − α

2

[
8Rρσ Rμρνσ − 4Rρσλ

μ Rνρσλ − 4RRμν + 8RμλR
λ
ν

+ gμν

(
Rμνγ δR

μνγ δ − 4RμνR
μν + R2)]. (6)

The explicit form of H will appear later. Here, we want to obtain a 5D regular EGB black hole solution in AdS space-time and
investigate its properties. For that, we write the static spherically symmetric metric [41]:

ds2 � − f (r )dt2 +
1

f (r )
dr2 + r2(dθ2 + sin2 θdφ2 + sin2 θ sin2 φdφ2), (7)

where f (r) is an unknown metric function which depends on variable r. Therefore, we restrict the electric field to be

Fμν � E(r )(δtμδrν − δtνδ
r
μ). (8)

For the spherically symmetric case, the equation (4) can be expressed as

1

r2

∂

∂r

(
r2FμνLF

) � ∂

∂r

(
r2Pμν

) � 0. (9)

Now, the term inside the derivative has to be constant [75] (we choose an electric charge e)

r2Pμν � −e(δtμδrν − δtνδ
r
μ) =⇒ Pμν � − e

r2 (δtμδrν − δtνδ
r
μ), (10)

and the invariant P is given by P � − e2

2r4 . The specific structure-function H(P) that depends on the invariant P is given by

H(P) � 3

2se4

( √−2e2P

1 +
√−2e2P

)7/3

, (11)

123
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where s is the free parameter related to the ADM mass M and charge e by s � |e|/2M . The structure-function (11) justifies the
reasonable conditions needed for nonlinear electrodynamics, as this goes over to the Maxwell linear electrodynamics, H(P) → P
for the weak fields (P << 1) and also satisfying the weak energy condition, which requires H < 0 and HP > 0 [13, 21, 22].

With the help of Eqs. (3) and (10), we derive the non-zero components of the energy-momentum tensor as

T t
t � T r

r � 3e3M

(r3 + e3)7/3 ,

T θ
θ � T φ

φ � Tψ
ψ � 2e3M(3e3 − 4r3)

(r3 + e3)10/3 . (12)

Using the metric ansatz (7), the non-vanishing components of the Einstein field equation become

I tt � I rr � (4α f ′(r ) − 2r )( f (r ) − 1) − r3 f ′(r ) � 6Me3

(r3 + e3)7/3 ,

I θ
θ � Iφ

φ � Iψ
ψ � 2r f ′ + f + r2

2 f ′′ + 2α( f ′′ + f ′2 + f ′′) − 1

r2 � 2e3M(3e3 − 4r3)

(r3 + e3)10/3 , (13)

where single and double prime are the first and second derivatives, with respect to r, respectively. The above equations lead to the
metric function

f (r ) � 1 +
r2

4α

(
1 ±

√
1 +

8αM

(r3 + e3)4/3 − 8α

l2

)
. (14)

Here, one can see that the solution is characterized by the parameter mass, charge and GB coupling constant. Here, we note that
there are two branches ( +ve and −ve branch) of solution (14). In the M � 0 limit, the black hole solution (14) becomes

f (r ) � 1 +
r2

4α

(
1 ±

√
1 − 8α

l2

)
. (15)

When α > 0 then 8α/ l2 ≤ 1, there is no black hole solution beyond this limit. Thus, the action 1 has two solutions with effective

cosmological constants l2eff � l2
4

(
1 ±

√
1 − 8α

l2

)
. However, for 8α/ l2 � 1, both the solutions coincide, and therefore, the theory

has a unique AdS vacuum.
The studies of the obtained black hole solutions will help to understand the difference between the other black hole solutions

[28, 38] of the similar class of EGB gravity.

1. The source of the obtained black hole solution is unique as this is different from the previous solutions [28, 38]. The departure
of Lagrangian density from the other sources of black hole solutions is more evident from the order expansion:

L(P) � 3

2se4 (−2e2P)7/3
(

1 − 7

3

√
−2e2P +

70

9
(
√

−2e2P)2 + O[P2]

)
. (16)

2. The black hole solution is the extension of the Bardeen black hole. In the weak field (large r) limit, the black hole does not
reduce to Reissner–Nordstrom black hole, whereas the non-Bardeen class black hole smoothly goes over to it. For small r, the
black hole solution reduces to

f (r ) � 1 +
r2

4α

⎡
⎣1 ±

√
1 +

8Mα

r4 +
32Mαe3

r7 − 8α

r2 + O[e6]

⎤
⎦. (17)

The black hole solution (14) reduces to the Boulware-Deser black hole [78], 5D Bardeen black hole [79] and Schwarzschild—
Tangherilin black hole in the limit of e � 0, α → 0 and e � 0, α → 0, respectively.

When α < 0, the solution (14) still becomes AdS if one takes the −ve signature and dS if one takes the +ve signature. From the
vacuum case, the solution (14) with both signs seems reasonable, from which we cannot determine which sign in (14) should be
adopted. Then, Boulware and Deser showed that the solution with +ve branch is unstable and the solution is asymptotically an AdS
Schwarzschild solution with negative gravitational mass, indicating the instability. The solution (14) with −ve branch is stable and
the solution is asymptotically a Schwarzschild solution. This indicates that the +ve branch is of less physical interest. Henceforth,
we adopt the negative branch of the solution for further analysis.

This solution behaves at large (r → ∞) and small (r → 0) distance as following:

f (r ) � 1 − M

r2 , r → ∞
f (r ) � 1 − �eff r

2, r → 0 (18)
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Table 1 Radius of inner and outer
horizons and δ � r+ − r− for
different values of charge e

α � 0.1 α � 0.2

e r− r+ δ e r− r+ δ

0.493 (ec) 0.624 0.624 0 0.373 (ec) 0.566 0.566 0

0.40 0.37 0.81 0.44 0.25 0.27 0.74 0.47

0.45 0.45 0.76 0.31 0.25 0.35 0.71 0.36

Fig. 1 f (r) vs r corresponding to GB parameter α � 0.1 (left) and α � 0.2 (right) for different values of charge e

where �eff �
(

1 − √
1 + 8 Mα/e4 − 8α/ l2

)
/4α. This implies that the EGB Bardeen AdS black hole solution has a central de Sitter

core.
The numerical analysis of horizon condition imparts that there exists non-zero α and e for which metric function f (r) is minimum.

However, the horizon condition of metric admits two possible roots for horizon radius r− and r+ that correspond to the Cauchy and
event horizon, respectively.

We tabulated the numerical values of the inner and outer horizons corresponding to various parameter in Table 1.
The metric function with respect to horizon radius is depicted in Fig. 1.
From Fig. 1 and Table 1, one can see that for a critical value of charge (say ec) the minimum of metric function is zero (black line

curve) and there exists a degenerate horizon. However, for e < ec the black hole has two horizons r± correspond to the non-extremal
black hole and for e > ec there is no horizon, i.e., no black holes. It is noticed that the size of the black hole decreases with the
increase in charge and decrease in the GB coupling. This means that the effect of charge and GB coupling are opposite to each other.
We can also see that the radius of the event horizon increases with the e and decreases with the α.

The obtained black hole solution is singular if curvature invariants (Ricci scalar R, Ricci square RμνRμν and Kretshmann scalar
Rμνλσ Rμνλσ ) diverge and is regular if curvature invariants converge. Here, for this system, the curvature invariants are calculated
by

lim
r→0

R � − 5

α
+

5

α

√
1 +

8Mα

e4 − 8α

l2
,

lim
r→0

RμνR
μν � 10

α2 +
40

e4α
− 10

α2

√
1 +

8Mα

e4 − 8α

l2
,

lim
r→0

Rμνλσ R
μνλσ � 5

α2 +
20

e4α
− 5

α2

√
1 +

8Mα

e4 − 8α

l2
. (19)

Here, we find that for M �� 0, the invariants are well-behaved everywhere including the origin. Thus, the EGB Bardeen AdS black
hole is a regular (non-singular) black hole.

The obtained black hole solution is regular black holes with a de Sitter core at the Cauchy horizon, r0 � r−, which is a null surface.
The interior region, r < r0 � r−, is uncharged, satisfying a de Sitter equation of state, where r0 denotes the surface boundary.

Let us now discuss the features of the three different regions of this regular black hole:

(I) In the region, r < r0 � r− � R, the region is uncharged.
(II) In the region, r � r0 � r− � R, one has an electrically charged but massless layer.
(iii) The region, r > r0 � r− � R, is the Reissner–Nordström like vacuum.

123
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Fig. 2 The plot of temperature Vs. r+ with different value of electric charge for α � 0.1 and α � 0.2 with fixed value of e

Table 2 The maximum Hawking temperature (TMax
+ ) at critical radius (rc) for different values of charge (e)

α � 0.1 α � 0.2

e 0 0.40 0.45 0.493 0.55 0 0.25 0.30 0.373 0.45

rc 0.63 0.104 0.108 1.11 1.19 0.897 0.996 1.088 1.36 1.39

TMax
+ 0.092 0.097 0.090 0.087 0.082 0.088 0.095 0.0812 0.0786 0.0743

3 Brief comparison with other similar solutions

Recently, in Ref. [76], a black hole solution for 4D EGB gravity with different nonlinear source is discussed and it is shown there that
in the large asymptotic limit, the negative branch of the solution which corresponds to Schwarzschild AdS black hole, whereas the
positive branch is not physical as it corresponds to the negative mass. However, in vanishing GB parameter, the solution corresponds
to Hayward Ads black holes.

In another work [77], a regularized 4D EGB gravity coupled to the different nonlinear electrodynamics is studied and this black
hole undergoes a phase transition twice. However, the Hayward and Born–Infeld EGB black holes undergo phase transition only
once.

4 Thermodynamics

In this section, we derive thermodynamical quantities of EGB Bardeen AdS black holes solution satisfying the first law of thermo-
dynamics. The mass of the black hole on the horizon is calculated by

M+ � (e3 + r3
+)

4
3

(
r2

+ + 2α

r4
+

+
1

l2

)
. (20)

Using the standard definition, the Hawking temperature corresponding to the given black hole solution is given by

T+ � f ′(r )

4π

∣∣∣∣
r�r+

� 1

4πr+(e3 + r3
+)(r2

+ + 4α)

[
2r7

+

l2
+ 2r5

+ − 2e3(r2
+ + 4α)

]
. (21)

From this expression, it is evident that the temperature of the EGB Bardeen AdS black hole is more general than that of EGB black
hole [78], Bardeen black hole [79] and Schwarzschild–Tangherilini black hole as the corresponding values of temperature can be
achieved by just taking the limiting value of e � 0, α � 0 and α � e � 0, respectively.

To study the nature of temperature corresponding to different parameters, we plot temperature concerning r+ for different e and
α in Fig. 2. From the diagram, we see that the temperature takes a maximum value (TMax

+ ) corresponding to the minimum metric
function.

The numerical values of maximum temperature (TMax
+ ) corresponding to e and α are tabulated in Table 2. It is obvious from this

table that a Hawking temperature takes maximum values at the critical horizon radius. In the extremum limit, (where the Cauchy
and event horizons coincide) the temperature vanishes.

123
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Fig. 3 The plot of heat capacity C+ Vs. r+ with different value of electric charge for α � 0.1 and α � 0.2 with fixed value of e

The first law of black hole thermodynamics follows

dM+ � T+dS+ + �de, (22)

where � is the electric potential corresponding to the electric charge e. Now, we calculate the entropy for the obtained black hole
solution (14)

S+ �
∫

T−1
+ dM+ �

∫
1

T+

∂M+

∂r+
dr+ � 4πr3

+

3

[
1 +

12α

r2
+

− e4

r6
+

(3r2
+ + 4α)

]
. (23)

Here, we note that the two additional terms in Eq. (23) extend the entropy and the usual area-law S � A
4 is no longer valid. In the

absence of charge e, the above entropy (23) matches exactly to entropy of EGB black hole [78].
It is well-known that entropy of the regular black hole does not obey the area-law [16, 17, 24, 26, 82] because the energy-

momentum tensor already includes the mass of the black hole. To remove the discrepancy, Ma and Zhao proposed the corrected
form of the first-law of black hole thermodynamics for regular black holes [80] by introducing an extra factor. The modified first-law
thermodynamics [30, 80, 81] reads

ξ (M+, r+)dM � T+ dS + � de, (24)

where ξ (M+, r+) is given by

ξ (M+, r+) � 1 + 4π

∫ ∞

r+

r2
+
∂T t

t

∂M
dr+ � r4

+

(r3
+ + e3)4/3

. (25)

One can easily check that with this value of ξ (M+, r+) the entropy of the modified first-law of thermodynamics follows the area-law.

5 Local and global stability

The local and global stability of the thermodynamical system can be emphasized by studying the heat capacity (C+) and Gibbs free
energy (G+) of the system. For instance, the thermodynamic system remains stable when C+ > 0 or G+ < 0 and unstable when
C+ < 0 or G+ > 0. The heat capacity of the thermal system is defined by

C+ � ∂M+

∂T+
�

(
∂M+

∂r+

)(
∂r+

∂T+

)
. (26)

Substituting the values of mass (20) and temperature (21) into (26), the heat capacity for the Bardeen black hole in EGB gravity has
the following expression:

C+ � 4πβ2
[
r5

+(l2 + 2r2
+) − e2l2β

]
r3

+
[
e6l2β2 + r8

+(−l2β2
1 + 2r2

+β2) + e3(8r7
+β3 + l2(6r5

+β4 + 64r3
+α2))

] , (27)

where β � r2
+ + 4α, β1 � r2

+ − 4α, β2 � r2
+ + 6α and β2 � r2

+ + 8α.
The heat capacity with respect to r+ are plotted in Fig. 3 for different values of e and α which suggests that the heat capacity is

divergent at the r+ � 1 and r+ � 3.2 for α � 0.1, however, at r+ � 1.5 and r+ � 3.0 for α � 0.2 where corresponding temperature
has local maxima and local minima. From Fig. 3, we can see clearly that the black hole experiences phase transition twice, firstly,

123
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Fig. 4 The plot of Gibbs free energy G+ Vs. r+ with different value of electric charge for α � 0.1 and α � 0.2 with fixed value of e

for smaller stable black holes to larger unstable black holes and, secondly, for smaller unstable black holes to larger stable black
holes. The radii r+ increases with both α and e.

Now, to study the Gibbs free energy, we first estimate using the following expression:

G+ � M+ − T+S+. (28)

Substitute the values of M+, T+ and S+, we obtain

G+ � (e3 + r3
+)4/3

(
r2

+ + 2α

r4
+

+
1

l2

)
− 2r2

+

3(e3 + r3
+)(r2

+ + 4α)

(
r7

+

l2
− (r5

+ − e3(r2
+ + 4α))

)
. (29)

At the critical temperature, the Gibbs free energy vanishes. Thus, the critical temperature can be calculated by using G+ � 0 as

Tmin � 3

4π

(e3 + r3
+)4/3

r3
+

(
(r2

+ + 2α)

r4
+

+
1

l2

)
. (30)

The black hole is said to be globally stable when T+ > TC . However, T+ < TC describes the global instability of the black hole.
Generally, the Gibbs free energy demonstrates that black holes with negative values of Gibbs free energy are more thermodynam-

ically stable and unstable for its positive counter parts. To study the nature of Gibbs free energy, we plot (29) in Fig. 4 for different
values of e and α. From the figure, we see that the free energy has local minima and local maxima at horizon radii r+ � 0.1 and
r+ � 3.8, respectively, where the heat capacity diverges (see Fig. 3) and the temperature attains the extreme values (see Fig. 2).
The Hawking–Page first-order phase transition occurs at r+ � rH P , where the free energy turns negative viz., rH P > rb+. Thus,
the larger black holes, with horizon radii r+ � rH P , are thermodynamically globally stable. However, at very small horizon radii,
the Hawking temperature is negative and hence not physical for global stability point of view. This is exactly in accordance with
the Hawking–Page phase transition in general relativity. We find that the black hole solution is favored globally with respect to the
thermal AdS background solution as G+ < 0 for large r.

6 Phase transition

In this section, the P − v criticality and phase transition for the Bardeen AdS black hole EGB gravity. The cosmological constant is
related to the thermodynamic pressure as � � −8π P . Thus, the equation of state (EoS) for pressure can be obtained by using Eq.
(21) as

P+ � 3

8πr7
+

(
e3(r2

+ + 4α) − r5
+

)
+

3T+

4r6
+

(
(r3

+ + e3)(r2
+ + 4α)

)
. (31)

The mass of the black hole has the interpretation of the enthalpy of the thermodynamic system (Fig. 5). Thus, the thermodynamic
volume is calculated by

V �
(

∂M+

∂P+

)
S+

� 4π

3

(
r3

+ + e3) 4
3 . (32)

It is a matter of calculation to obtain the critical radius, critical temperature and critical pressure at the inflection points by using
the following relations:

∂P+

∂r+
� 0,

∂2P+

∂r2
+

� 0. (33)

123
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Fig. 5 The plot of pressure Vs. r+ with different value of temperature T+ for α � 0.1 and α � 0.2 with fixed value of e

Table 3 The numerical values of
critical radius rC , critical
temperature TC , critical pressure
PC and PC rC/TC corresponding
to various e and fixed α � 0.1

e rC TC PC PC rC/TC

0.1 1.112 0.144 0.0327 0.252

0.2 1.204 0.140 0.0302 0.259

0.3 1.362 0.132 0.0260 0.268

0.4 1.552 0.122 0.217 0.276

0.5 1.760 0.112 0.0179 0.281

Table 4 The numerical values of
critical radius rC , critical
temperature TC , critical pressure
PC and PC rC/TC corresponding
to various α and fixed e

α rC TC PC PC rC/TC

0.1 1.112 0.144 0.0327 0.252

0.2 1.557 0.102 0.0164 0.250

0.3 1.903 0.0838 0.0110 0.249

0.4 2.195 0.0725 0.0082 0.248

0.5 2.453 0.0649 0.0066 0.247

This relation (33) together with the EoS simplifies to the following expression:

r8
+(r2

+ − 12α) − 2e6(5r4
+ + 54r2

+α + 16α2) − 6e3(3r7
+ + 40r5

+α + 112r3
+α2) � 0. (34)

One cannot solve Eq. (34) analytically. Rather, it is possible to solve it numerically. Here, we calculate the numerical values of critical
radius rC , critical pressure PC and temperature TC . The curved portion of the isotherm that is cut off by this straight-line correctly
indicates what the allowed states would be if the fluid were homogeneous. However, these homogeneous states are unstable, because
there is always another mixed state at the same pressure that possesses a lower Gibbs free energy.

The respective numerical values are presented in Tables 3 and 4 corresponding to the different values of α and e.
It can be seen that the critical radius rC increases both with e and α. However, the critical temperature TC and critical pressure

PC decrease with both e and α. Interestingly, in contrast to α case, the universal ratio PCrC/TC increases with e.
To study the phase transition and effects of e and α on the phase transition of this particular black hole, we plot the Gibbs free

energy versus temperature as shown in Figs. 6, 7 and 8.
From G+ − T+ plot 6 with fixed e and α and a certain range of temperature, we observe that there are three kinds of black holes,

namely, small (P < Pc), intermediate (P � Pc) and large black hole (P > Pc). Here, the small and large black holes are more
stable than the intermediate ones, since the heat capacity is negative (see Fig. 3). We can see that there exists a transition temperature
T� at which a black hole transits from one phase to another phase due to the same free energy. The value of transit temperatures are
T� � 0.0564 and T� � 0.0358 for α � 0.1 and 0.2, respectively. In Fig. 6, isotherms represent the first-order phase transition at
T+ < T� and second-order phase transition at T+ � T�, which is obtained from the free energy diagram (see Fig. 6. At T+ < T� the
small black hole occurs and at T+ > T� large black hole occurs due to small free energy.

In G+ − T+ plots, the appearance of characteristic swallow tail shape shows the phase transition point. In the left panel of Fig. 6,
we see that swallow tail shape occurs at P < Pc for the first-order phase transition and P � Pc � 0.0327 for α � 0.1 and
P � Pc � 0.0164 for α � 0.2 for the second-order phase transition.
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Fig. 6 The plot of Gibbs free energy G+ versus T+ with different value of GB coupling with fixed value of e

Fig. 7 The plot of Gibbs free energy G+ Vs. T+ with different value of ewith fixed value of GB coupling

Figures 7 and 8 show the effects of e and α on isobars. The isobars increase with both e and α and the gap between the two
sub-critical isobars increases as well. The sub-critical isobar is the regime where the phase transition occurs. It is worth mentioning
that the Gibbs free energy in two phases is approximately constant and is less affected by e and α. Interestingly, the universal relation
Pc rc/Tc increases with e and decreases with the GB coupling parameter. This reflects that the effects of electric charge e and GB
coupling are opposite to each other.

The black hole are thermodynamically stable state when it has lowest Gibbs free energy. The behavior of Gibbs free energy (G+)
is the function of temperature (T+) for (P < Pc, P � Pc) and (P > Pc). The plot of Gibbs free energy develops swallow tail
structure when (P > Pc) which infers the first-order phase transition and the swallow tail structure disappears (first-order phase
transition terminates) corresponding to the critical pressure Pc, which infers the second-order phase transition. There is no phase
transition, when thermodynamic pressure is larger than the critical pressure Pc. The black hole transits from one phase to another
phase due to the same free energy and the corresponding temperature is transition temperature.
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Fig. 8 The plot of Gibbs free energy G+ Vs. T+ with different values of GB coupling for fixed value e

Fig. 9 The plot of T+ Vs. S+. Here we set the parameter e � 0.1, l � 1 and the critical value of GB parameter (αc) � 0.0495

7 Phase structure in the framework of AdS/CFT correspondence

In order to study the phase structure from the holography point of view, we first write the Hawking temperature of a given black
hole in terms of entropy as follows,

T+ � 8π

(3S+)
1
3 (4πe3 + 3S+)[(3S+)

2
3 + 4(4π)

2
3 α]

[
1

l2

(
3S+

4π

) 7
3

+

(
3S+

4π

) 5
3 − e3

((
3S+

4π

) 2
3

+ 4α

)]
. (35)

Furthermore, to obtain the critical radius, critical temperature and critical the temperature at the inflection points, one can utilize the
following relations:

∂T+

∂S+
� 0,

∂2T+

∂S2
+

� 0. (36)

In Fig. 9, we plot the scalar isocharges in the T+ − S+ plane for αc � 0.0495.
According to AdS/CFT correspondence, Ryu and Takayanagi [83, 84] presented an elegant way to calculate the holographic

entanglement entropy which is given by the following relation:

S+ � Area of horizon

4G
. (37)

The holographic entanglement entropy has the following form [85]:

S+ � π

∫ φ0

0
r2 sin2 φ

√
r2 +

1

f (r )

(
dr

dφ

)2

dφ. (38)

Here, we considered φ � φ0 as entangling surface and choose the values of φ0 : 0.35, 0.42 and 0.50.
We get the numeric result of r (φ) with a boundary conditions r ′(0) � 0 and r (0) � r0. In order to regularize entanglement

entropy, we again integrate S in Eq. (38) up to cut-off (which is close to φ0), and subtract the pure AdS entanglement entropy
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Fig. 10 The plot of T+ Vs. S+. Here we set the parameter e � 0.1, l � 1, φ0 � 0.35 and φc � 0.0495

(denoted by S′
+) with a same entangling surface φ0 at the boundary. Here, the corresponding regularized entanglement entropy is

denoted by S+ � S+ − S′
+. In Fig. 10, we plot the T+ − δS+ plane for φ0 � 0.35 as depicted by the dotted curve.

With the help of comparative analysis as given in Fig. 10, we find that the entanglement entropy also presents a Van der Waals-like
phase transition.

8 Critical exponents

In this section, we discuss the critical exponents of the fluid behavior of black holes. Since, the Van der Waals-like phase transition is
described by the critical exponents α, β, γ and δ near the critical point which shed light on the nature of the heat capacity C+, order
parameter η, the isothermal compressibility κT and the critical isotherm |P+ − PC |TC , respectively. These quantities are defined by

C+ � T+
∂S+

∂T+
∝ |t |−α , η � Vl − Vs ∝ |t |β , (39)

κT � − 1

V

∂V

∂P+
∝ |t |−γ , |P+ − PC |TC∝ |V − VC |δ , (40)

where t � T+−TC
TC

, Vl and Vs are the volumes of a large-sized and the small sized black holes, respectively. Now, we use the following
definitions:

p � P+

Pc
, τ � T+

Tc
and ν � V

Vc
, (41)

Substituting these values in Eq. (31), we get the EoS in terms of dimensionless parameters as

p � 1

ρC

τ

ν
+ 8α

1

ρCV 2
C

τ

ν
− 1

PCV 2
C

1

2πν2 +
1

V 4
C PC

α + ν2

πν4 . (42)

Let us assume that the law of the critical exponents defined as p � 1
ρC

τ
ν

+h(ν), where ρc is the critical ratio and h(ν) is the correction
term. Now, expanding this equation near the following critical points:

τ � t + 1, ν � (1 + ω)1/z , (43)

and substituting these values of ν and ω in Eq. (43), we have

1

ρC
+ h(1) � 1, ρch

′(1) � 1, and ρch
′′(1) � −2. (44)

In order to obtain the critical exponents, we expand the EoS near the critical points in the following manner:

p � 1 + A10t + A11tω + A03ω
3 + O(tω2, ω4), (45)

comparing Eqs. (40) and (37), the coefficients of critical exponents are

A10 � 1

ρC
, A11 � 1

zρC
and A03 � 1

z3

(
− h3(1)

6

)
. (46)

Now, we note that for a phase transition from small to large black holes the pressure and temperature remain constant while volume
changes. In this case, the EoS holds and this gives

p � 1 + A10t + a11tωs + A03ω
3
s � 1 + A10t + A11tωl + A03ω

3
l . (47)

Upon simplification, we have

A11t(ω
2
l − ω2

s ) + A03(ω3
l − ω3

s ) � 0. (48)
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Moreover, it also follows Maxwell’s area law during the phase transition, i.e.,∫ ωl

ωs

ωdp � A11t(ω
2
l − ω2

s ) +
3

2
A03(ω3

l − ω3
s ) � 0. (49)

Solving for the above equations, we obtain a non-trivial solution

ωl � −ωs �
√

−A11t

A03
. (50)

With the obtained solution, the order parameter, isothermal compressibility and the shape of critical isotherms read, respectively,

η � VC (ωl − ωs) � 2VCωl ∝ √−t , (51)

κT � − 1

V

∂V

∂P+

∣∣∣∣
T

∝ 1

PC

1

t
, (52)

p − 1 ∝ −ω3, at t � 0. (53)

Consequently, the four critical exponents are α � 0, β � 1
2 , γ � 1, δ � 3, which exactly match with the mean field theory.

9 Final remarks and perspectives

We have found a new exact Bardeen AdS black hole in EGB gravity coupled with nonlinear electrodynamics. Our solution interpolates
to the Boulware–Deser black hole [78] when e � 0, 5D Bardeen black hole when α → 0 [79] and the Schwarzschild–Tangherilin
black hole in the limit of e � 0, α → 0. We have found that the obtained black hole has a central de Sitter core. The horizon
structure is discussed numerically as it is not possible to solve it analytically. The black hole has two horizons. The curvature scalars
are not singular at the centre which justifies that the obtained solution is regular.

Furthermore, we have studied the thermodynamics of the obtained black holes by computing temperature, entropy, heat capacity
and free energy. We have found that this black hole satisfies the modified first law of thermodynamics. The local and global stability
are also emphasized by studying the diagram of heat capacity and Gibbs free energy. The phase transition and critical points are
also found for this black hole solution. Finally, we found that the critical exponents calculated here are in full agreement with the
mean field theory.
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