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Осы теңдеу үшін (4) шартты тексереміз. 

 

       
  





 2

1

12
2

2213

x

xx
xхfxfxfxf  

 

1

2

1

222222









x

x

x

xxxxxx
. 

 

            11 22

2332

2

3  xxxxxfxfxfxfxf . 

 

        хfxfxfxf
2213

2             xfxfxfxfxf
2332

2

3
   121

1

2 2 


xxx
x

x
. 

 

              122 233232  xxxfxfxfxfxfxf . 
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демек анықталған дербес шешім орынды. 

Қорыта айтқанда, кейбір жағдайларда коэффициенттерін зерттей отырып, үшінші 

ретті сызықты біртекті дифференциалдық теңдеулердің бір дербес шешімін табуға болады 

деп ойлаймыз. 
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Көптеген жәй дифференциалдық теңдеулер (теңдеулер жүйесі) үшін қойылған шеттік 
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есептерді бінші ретті дифференциалдық теңдеулер жүйесі үшін қойылған шеттік есеп 

түрінде  жазуға болатыны белгілі. Бірінші ретті сызықты дифференциалдық теңдеулер 

жүйесін yxAyLy )('  түріне келтіруге болады. Мұндағы y  - вектор функция, ал 
n

jiijaxA 1,}{)(   - nn  - ретті матрица. 

yxAyLy )('   - теңдеуінің негізгі бөлігін '

0 yyL   операторы ретінде белгілеп алып,  

жалпы тарылулар теориясын пайдалана отырып, осы оператор  үшін қисынды есептерді 

қарастырамыз.   - арқылы ),...,( 21 nxxxx   - векторының евклидтік нормасын белгілейміз, ал 

nC ]1,0[ - арқылы )(sup||)(||||)(||
]1,0[

]1,0[ xyyy
x

nC




 

нормасымен берілген ]1,0[  - дегі n өлшемді 

вектор функциялар кеңістігін белгілейміз, 
nС ]1,0[' - арқылы 

|)(|sup|)(|sup||)(||||)(||||)(||
]1,0[

'

]1,0[
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1 xyxyyyy
xx 

  нормасымен берілген үзіліссіз 

дифференциалданатын векторлық функциялар кеңістігін белгілейміз. 

0L  операторы '

0 yyL 
 
арқылы берілген анықталу облысы nCLD ]1,0[)( 0   

болатын 

минимал оператор болсын. nC ]1,0[  кеңістігінде келесі Коши есебін қарастырайық:  
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Бұл қисынды есеп екені белгілі, оған сәйкес келетін қисынды операторды kL - арқылы 

белгілесек, онда 


x

k dttffL
0

1 )(  болады. Сондықтан абстракт операторлардың тарылулары 

теориясынан [1, 2] 0L  - дің кез-келген FL қисынды тарылуы  келесі есеп арқылы анықталады: 
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Мұндағы F  - операторы nC ]1,0[  -нен nC ]1,0['  - ге әсер ететін кез келген оператор. Егер f  - 

шеттік шартын 'y  -қа алмастырсақ, онда  
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Лемма 1. F  операторы nC ]1,0[  -нен nC ]1,0[' - ге бейнелейтін сызықты үзілісіз 

оператор болсын, Онда (1) есебі  қисынды болады. Яғни [0,1] t),()('  tfty ,теңдеуінің кез-

келген  ],[f 10  үшін )0)(()0( 'Fyy  шартымен nC ]1,0['  - де жалғыз шешімі бар болады.  

Біз көпнүктелік есептерді қарастырамыз. Ол үшін [0,1]  - ден 

kkk zzzyyyxxx ,...,,,,...,,,,...,, 212121  нүктелерін аламыз. 

),,...,2,1( kjAj  ),...,2,1( esBs  nn - өлшемді тұрақты матрицалар, ал 

),...,2,1)((),,...,2,1( )( ejxCkixD ji  элементтері  nC ]1,0[  - де жататын үзіліссіз 

дифференциалданатын функциялар болтын nn  - өлшемді айнымалы матрицалар болсын. 

n],C[f 10  -ге әсер ететін F  - операторын келесідей анықтайық:               
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Бұл оператор nC ]1,0[  -ді nC ]1,0['  - ге бейнелейді. Жоғарыдағы Леммадан келесі салдар 

шығады: 

Салдар  1.  F   операпторы  (2) теңдеуімен анықталсын, онда   
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есебі қисынды болады. 

Теорема 1. ekk zzzyyyxxx ,...,,;,...,,;,...,, 212121   [0,1]  кесіндісінен алынған нүктелер, ал 

),...,2,1(   )( kixN j   және ),...,2,1(   )( ejxM j   - дер nn  - өлшемді кез-келген матрицалар 

болсын,  онда nC ]1,0[  - кеңістігінде  
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есебі қисынды болады. 

Осы теореманың дербес жағдайы ретінде келесі теорема шығады:  

Теорема 2. ),...,2,1(   )( ejxM j   - кез-келген матрица, ал ),...,2,1(   ejz j  [0,1]  

кесіндісіндегі нүктелер болсын, онда 
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есебі қисынды болады. 
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Пусть ))(( txC p  константа наилучшего приближения в пространстве  baLp ;  функции  

                        RccxtxCtxtx
ppp  :inf))(()(:)( . 

Теорема [1]. Для того, чтобы константа ))(( txC p  была константой наилучшего 

приближения функции )(tx  в пространстве  baLp ; , 1p  необходимо и достаточно, чтобы 


	электронн титул лист конференции

