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Теорема 1. Пусть задан n - линейный функционал  , обладающий свойством (5), для 

которого последовательность  
1kkf   монотонно убывает, и числа n1 m,...,m . Пусть также 
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ее использования будут оптимальными.  

Работа выполнена совместно с В.Ф. Бабенко, А.А. Руденко. 
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Известно классические неравенство Никольского для тригонометрических полиномов 

в пространствах Лебега [1]: пусть  qp1  тогда имеет место неравенство 

pq Ln

qp

Ln TcnT

11


 , 

где c зависит только от p и q   

В данной работе мы доказываем неравенство типа Ремеза в терминах средних 

значений для двумерного случая и строим аналог неравенства разных метрик Никольского 

для сетевых пространств.  

Пусть   - множество всех компактов из R. М  - фиксированное семейство множеств 

из  . Для функции )(xf , определенной и интегрируемой на каждом е из М, определим 

функцию 
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где точная верхняя грань берется по всем Me , мера которых tee   , ),0( t . В 

случаи  Mee :sup  и t  положим 0),( Mtf . Функция ),( Mtf  называется 

средней функцией для f  по сети М. 

 Через )(, MN qp  [2],  qp,0 , обозначим множество функций f , для которых при 
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 В работе [2] доказано точное неравенство Ремеза в терминах средних значений 

 Теорема 1. Пусть M   сеть, содержащая int.hM . Пусть nn MT   и 
m

2
  минимальный 

период полинома nT . Тогда 
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 Пусть Nd   [2]. Следующее многомерное неравенство Ремеза для 

тригонометрических полиномов 
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, хорошо известно: для любого измеримого множества Лебега 

dTB    такого, что 
dB )2/(  имеем 
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 Определим следующие множества: 
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Рассмотрим двумерный тригонометрический полином и получим неравенство типа 

Ремеза для двумерного случая. Пусть 2
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Теорема 2. Пусть М множество ромбов. Пусть 2

21 ),( Nnnn   и )2(),( 21 nn MxxT  . 
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 Лемма. [2] Для nn MT  такого, что 1)( xTn  и 1)0( nT , имеем 

nxxTn cos)(  ,     
n

x
n


 . 

 Воспользовавшись теоремой 2, получим двумерное неравенство разных метрик 

Никольского в паре пространств ),( ,qpNL . 

Теорема 3. Пусть  p0 ,  q0 , 2
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Основы теории сравнений в группах изложены в монографии Инессы Павлюк [1, c.53] 

и работе [2]. Сравнение формализовано в математике с помощью математического понятия 

«отношения». В теории групп, как и в теории чисел, рассматриваются в основном бинарные 

отношения: сравнения на равенство (символ “=”); сравнения на неравенство (символ “≠”); 

сравнения чисел на равенство остатков при делении чисел на одно и тоже число; сравнение 

по модулю некоторого числа. Это последнее теоретико-числовое сравнение, введённое в 


	электронн титул лист конференции

