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монокоммутаторов относительно фиксированного элемента Ga , т.е.   

|)]},[],{[||]},[],{[)(|,,( ayaxyaxaGyxa  . 

ДОКАЗАТЕЛЬСТВО. Приведем логическое обоснование формулы  )1(  

)(],[],)[,,( уxyaxaGyxa а  . 

Пусть ],[],[ уaxa  . Тогда yxyx aaaaaa   11 и yx
a . 

Обратно. Пусть yx
a  . Тогда yx aa  . Отсюда yx aaaa 11    и ],[],[ уaxa  . 

Далее дадим логическое обоснование формулы )2(. 

))(],[],)([,,( yxayaxGyxa
a .                                          (2) 

Действительно, из равенства ],[],[ ауаx   следует, что 
yxaa aayaayxaaxyyxx )()( 11111111   . Таким образом, yx aa  и yx

a . 

Обратно. Пусть yx
a . Тогда yx aa   или yx aa )()( 11    . Отсюда yayxax 1111   и 

],[],[1111 ayaxyaayxaax   . 

Формулы )1( , )2(  обоснованы. Далее поскольку из сравнения  yx
a следует, что 

yaСx )( , то |)(||]},[],{[| yaCyaxa  . Очевидно, |)(||)(| aCyaC   и |)(||]},[],{[| aCyaxa  . 

Теперь докажем истинность формулы  

))(],[],)([,,( yxayaxGyxa
a ,                                             (3) 

где yx
a  – централизаторно эквивалентные элементы x  и y относительно элемента ][yGa  

Пусть ],[],[ ayax  . Тогда yxyx aaaayaayxaax   )()( 111111 . 

Таким образом, yx
a . 

Обратно. Пусть yx
a . Тогда yayxaxaaaa yxyx 111111 )()(   . 

Отсюда yaayxaax 1111    и ],[],[ ayax  .Таким образом, из формул )1( , )2( , )3( , равенства

|)(||]},[],{[| aCyaxa   и соотношения )(]),[],([ yxayax
a следует, что 

|)(||]},[],{[| aCyaxa  . 

Таким образом, окончательно имеем истинность формулы  

|)(||]},[],{[|]},[],)({[,,( aCayaxyaxaGyxa  . 

Теорема доказана. 
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Данная статья посвящена задаче восстановления функций из анизотропных классов 

Коробова  srr
E

,...,1  по неточной информации, полученной от произвольного конечного 

множества тригонометрических коэффициентов Фурье в рамках Компьютерного 

(вычислительного) поперечника. 

Компьютерный (вычислительный) поперечник (коротко К(В)П) был предложен 

Н.Темиргалиевым в 1996-2003 гг. (см., напр., [1-10]), смысл которого состоит в нахождении 

наилучшего среди данного класса вычислительных средств в условиях искаженных данных.  

Приведем необходимые определения и обозначения.  

Анизотропный класс Коробова )..
2

1
( 21

,...,1

s
rr

rrrE s   состоит из всех 1-

периодических по каждой переменной функций ),...,()( 1 sxxfxf  , тригонометрические 

коэффициенты Фурье-Лебега которых удовлетворяют условию 

      ),...,(
...

1
)( 1

1

,2

]1,0[
1

s
sr

s
r

xmi Zmmm
mm

dxexfmf
s

s

 


 , 

где здесь и всюду ниже полагается  .;1max mm 

 Положим для  R  1 

  RmmZmmm s

s
s

sR 
 ...:,...,)( 1

11 , 

где ),...,1(
1

sj
r

r j

j  .  

Всюду ниже полагаем  

      .,...,:)(,...),(=
1,0

)((1))((1)
2 s

LN
sNsN

N ZmZmmfmfD 
 

Введем обозначение 

 s
s

s LN
rr

NNLNN EfTfD
)1,0(

,...,

)1,0( 2
1

2 )~;;;()~(   

 

 

.);~)(,...,~)(()(supinf
)1,0(

)()()1()1(

,....1,=1

;,...,
2

)(

,...,1
)()1( s

N

srr
N

sN L
N

N
N

N
NNN

N

EfZmm
mfmfxf 











 

Здесь  N  – неотрицательная последовательность,  в случае 0N  речь будет идти о 

задаче восстановления по точной информации. 

Алгоритм переработки информации есть, по определению, функция )1( N -й 

переменной N ,   CCzz
sN

NN 1,0:);,...,( 1  , которая при всяком фиксированном 

N
N Czz ),...,( 1 , как функция от )( , есть элемент пространства 

s
L )1,0(

2

, причем 

  0;0,...,0 N  (что означает «по нулевой информации - нулевой алгоритм»).  

В рамках приведенных обозначений и определений,  задача оптимального 

восстановления по неточной информации, оформленная под названием «Компьютерный 

(вычислительный) поперечник», заключается, в собирательном смысле, в последовательном 

решении трех задач (записи BA   и BA  соответственно означают cBA   и 

одновременное выполнение BA  и AB  ): 
01 . Находится   sLN )1,0(20 ;  
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02 . Находится  N
~  такое, что     ss

LNNLN )1,0()1,0( 22
~0   ,                                               

с одновременным выполнением     .30 : N .=
)~(

)~(
lim

)1,0(

)1,0(

2

2


 s

s

LNN

LNNN

N 


                      

По существу речь идет о нахождении sLN )1,0(2)0( и  
YNNN D ~~   как предельно 

короткий ответ на задачу К(В)П. 

 Справедлива следующая 

Теорема. Пусть даны числа )1,2,...=(ss  и srrrrr   ......
2

1
121  . Тогда для 

N
D  из (1) и для числовой последовательности 

 
 2,3,...=

ln
=~

1

1 1)(

N
N

N
r

r

N



  верны 

соотношения 

 

К(В)П-1:   s
s

s L

rr
NNLN EfTfD

)1,0(

,...,

)1,0( 2
1

2 )0;;;()0(   

,
)(ln

));(),...,(()(supinf

2

1

)1(

)1,0(

)()1(

;,...,
1

1

2
,...,1

)()1(







r

r

L

N
N

EfZmm

N

N
mfmfxf

s
srr

N
sN




   

К(В)П-2:

 

N
sN

s
s

ss

Zmm
LN

rr
NNLNNLN EfTfD




;,...,
)1,0(

,...,

)1,0()1,0( )()1(
2

1
22 inf)~;;;()~()0(


          

,
)(ln

);~)(,...,~)(()(sup

2

1

)1(

)1,0(

)()()1()1(

),...,1(1
1

1

2

)(

,...,1 








r

r

L
N

N
N

N
NNN

N

Ef

N

N
mfmfxf

s

N

srr









  

причем для всякой возрастающей к   положительной последовательности  
1=NN  имеет 

место равенство  

К(В)П-3: 

 

 

 

 

.=
ln

=~;;=;

ln
=~;;=;

lim

1,02

1)(
,...,

1,02

1)(
,...,

1

1

1

1

1

1



















































s

s

s

s

L

r

r

N
rr

NN

L

r

r

NNN
rr

NN

N

N

N
EfTfD

N

N
EfTfD









 

 

В  теореме оценка сверху в К(В)П-1 достигается на операторе  

 
 

 
      

.)();)(,...),((

1
1

ln

,,...,

,2)((1) 













RRNm

Zmmm

xmiN
N

RR

s
s

emfxmfmf



 

Ранее задача восстановления функций из анизотропных классов Коробова  srr
E

,...,1  по 

точной информации исследовалась в работах [11-12]. 
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В данной работе рассматривается условие 
pL - интегрируемости   p1  с весом 

суммы ряда Уолша, коэффициенты которого из класса 0BVS   и оценка наилучшего 

приближения полиномами Уолша функции  1;0pLf  , которая представляет сумму ряда 

Уолша. 

Приведем необходимые определения. Говорят что, что последовательность 
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