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8. Условия на бесконечности:  

0),,,( tzyxc     при  0222  zyx   ,  00  zz                                              (4)  

\     При этих допущениях математическая модель имеет следующий вид  [1-4]: 
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где  с =с(x,y,z,t) – концентрация примеси в атмосфере; t - время; )(t функция 

эмпирическая, физически отражающая уменьшение количества газа за счет оседания.и 

способности войти в реакцию с другими веществами. Общий вид функции )(t  является 

неизвестным, она зависит то физико-химических параметров примеси и гидродинамических 

условий атмосферы и каждый раз исследователю приходится внести в эту функцию новую 

информацию, определяющей постановку задачи. 

Уравнение (5) является уравнением математической физики второго порядка. Для его 

решения вместе с условиями (2), (3), (4) и  уравнением (1) наиболее эффективным является 

численный метод расщепления по физическим направлениям [1-3]. 

В настоящее время нами составляются алгоритм вышеназванного метода и 

компьютерная программа его реализации в случае, когда происходит рассеяние тяжелого 

газа. Тяжелый газ, т.е. смесь выбросов с атмосферным воздухом может быть 

охарактеризован по критерию Ричардсона [3]: 

)/()( 2vghRi aa   ,           (6) 

где aa g  /)(  - гравитационное ускорение турбулентной частицы; g - ускорение 

свободного падения;  ,a - плотности атмосферного воздуха и примеси, соответственно; v  - 

динамическая скорость для нейтрального состояния атмосферы. Для тяжелых газов может 

быть принята гипотеза о коэффициентах турбулентной диффузии, при которой 

математическая модель (1)-(6) может быть значительно упрощена. 
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1. Научный руководитель – А.Т. Турешбаев  

 

Как известно, одной из важных научных проблем естествознания является изучение 

поведения космического объекта во времени и в пространстве с учетом основных влияющих 

на него факторов на основе разработки адекватных моделей [1, 2]. При этом проблема 

определения облачных скоплений частиц и эволюции космических газопылевых 

образований в силовом поле двойных звездных систем представляет собой особый интерес 

для звездной динамики и космогонии [3, 4]. 

В реальных случаях изучения динамики космических объектов, обладающих 

значительной парусностью (определяемой отношением площади характерного сечения тела 

к его массе), следует учитывать кроме гравитационных сил, и силы светового давления со 

стороны излучающих масс [5, 6]. В такой динамической модели учитываются основные 

силы, действующие на частицу и, следовательно, ее движение, описываемое уравнениями 

ограниченной фотогравитационной задачи трех тел, можно принять за невозмущенное, а 

влияние остальных пренебрежимо малых факторов учитывать посредством теории 

возмущений [6, 7].  

Уравнения движения частицы в фотогравитационном поле двойной звезды можно 

записать в виде следующей системы дифференциальных уравнений [6]: 
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где W  силовая функция, а q 1 и 2q – коэффициенты редукции масс основных тел (звезд), 

которые в нашем случае принимают значения ,10 1  q  10 2  q ; 1R и 2R – расстояния 

частицы до основных тел, а 1  и   – их безразмерные массы,  vepr cos1/   – 

расстояние между основными телами ( p  и e  – параметр и эксцентриситет их кеплеровской 

орбиты), v истинная аномалия (производные по v обозначены штрихами). 

Поставим задачу отыскания всех положений относительного равновесия 

(стационарных точек)  частицы в орбитальной плоскости, которым соответствуют 

постоянные значения координат 0,,  zyyxx (для фиксированных  ,

1q  и 2q ), удовлетворяющие системе уравнений 
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Умножая первое уравнение (3) на ,/)( 1 yxx    а второе – на yxx /)( 2 и складывая, 

получим  

                                    3
11 qR   и  3

22 qR   .                                                      (3)     

5.                                                  

Отсюда видно, что эти точки, называемые треугольными точкми либрации возможны 

лишь при положительных значениях q  (оба тела притягивают частицу), а поскольку 1q , 

то все множество этих точек целиком заполняет область, ограниченную двумя окружностями 

одного и того же радиуса, равного единице, с центром в каждой точечных масс.  

При 121  qq  исследуемые положения относительного равновесия частицы 

соответствуют классическим точкам либрации 4L и 5L (когда оба основных тела не 

излучают световую энергию), нызываемым точками Лагранжа, расположенным в вершинах 

равносторонних треугольников, в двух вершинах которых находятся основные тела.  

Для решения задачи об устойчивости найденного семейства (2) положений 

относительного равновесия (треугольных точек либрации) введем возмущения  
0**,*,*,  zzzyyxx   

(
 zyx ,,  -координаты треугольных точек либрации), которые подставим в уравнения (1) 

невозмущенного движения (при 0e ). Разлагая правые части 
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Здесь коэффициенты устойчивости zzхх cс ,...,  (вычисленные при 0*,0*,0*  zyx  и 

с учетом (3)) равны  

 
2

2

2

2

1

1

2

1

1 3313 






 








 








 


R

xx

R

xx

R

xx
cxx   

                        ,313

2

2

2

1







 








 


R

y

R

y
c yy      1zzc  .                                    (5)  

Как видим, вопрос об устойчивости решается рассмотрением только первых двух 

уравнений системы (4). Составляя для них характеристическое уравнение, имеем  

 

                             04 224  xyyyxxyyxx ccccc  .                                             (6)  

 

Требуя, чтобы корни полученного уравнения (6) относительно 
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положительных вещественных частей, придем к необходимости выполнения следующих 

неравенств: 
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Подставляя в полученные неравенства выражения для коэффициентов из (5),  

получим необходимые условия устойчивости треугольных точек либрации в виде  
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В рассматриваемой задаче для треугольных точек возможными оказались резонансы 

3-го и 4-го порядков 

                                   
21 2  , 

21 3  ,                                                          (9)    

где  1  и 2 - частоты линейной системы, определяемые корнями характеристического 

уравнения. После замены  в уравнении  (7)   22    , получим 

                                                      024  qp ,                                                           (10) 

для которого должны быть выполнены условия    
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óóõõ ññp  4 ,  2хууухх ссcq   

Как ивестно [2, 6], устойчивая в линейном приближении система будет оставаться 

устойчивой по Ляпунову за исключением множества точек, отвечающих внутренному 

резонансу 3-го и 4-го порядков, в которых может быть нарушена устойчивость. Используя 

формулы [8-11] и специальный разработанный программный продукт, можно стоить области 

устойчивости частиц газопылевых образований (малых космических объектов), обладающих 

значительной парусностью. Ниже приводятся области устойчивости в конфигурационном 

пространстве для различных значений массового параметра основных излучающих тел 

(звезд). Как нетрудно заметить, область устойчивости эвалюционирует при значительном 

изменении значений параметров двойной звезды: с уменьшением массы одного из 

компонентов звездной пары область устойчивости значительно увеличивается (рисунки 1-4). 

А это в свою очередь означает, что в орбитальной плоскости область устойчивых скоплений 

частиц газопылевых облаков с увеличением разницы значений масс компонентов основных 

излучающих тел (звезд) заметно расширяется.   

 Проведение  вычислительного эксперимента позволило в области устойчивости в 

первом приближении указать множества точек, отвечающих внутреннему резонансу 3-го и 4-

го порядков (рисунки 1-4).   

                                      

 
Рисунок 1 – Область устойчивости для 1,0 . 

1 – область устойчивости в  линейном приближении 

2 – резонансное множество точек 3-го порядка ( 21 2  ) 
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Рисунок 2 – Область устойчивости для 3,0 . 

1 – область устойчивости в  линейном приближении. 

2 – резонансное множество точек 3-го порядка ( 21 2  ) 

 

 

 
Рисунок 3 – Область устойчивости для 45,0 . 

1 – область устойчивости в  линейном приближении. 

2 – резонансное множество точек 4-го порядка ( 21 3  ) 

 

 
Рисунок 4 – Область устойчивости для 05,0 . 

1 – область устойчивости в  линейном приближении. 

2 – резонансное множество точек 4-го порядка ( 21 3  ) 

 

 Таким образом, компьютерное математическое моделирование рассматриваемой 

задачи дает возможность графических иллюстраций полученных результатов численного 

анализа. В указанных областях частицы газопылевых образований будут оставаться 

устойчивыми по Ляпунову за исключением кривых, отвечающих внутренному резонансу 3-

го и 4-го порядков [1], на которых может быть нарушена  устойчивость.  
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Основной целью работы является разработка информационной системы для водоемов 

Казахстана, включающей базы разнокачественных данных о водоеме и его экосистеме, 

средства управления данными и их обработки, а также комплекс математических моделей 

функционирования экосистемы водоема. В качестве объекта исследования были выбраны 

водоемы Щучинско-Боровской курортной зоны, значимые с точки зрения водопользования и 

рекреации и в то же время экологическое состояние этого региона остается достаточно 

сложным.  

Щучинско-Боровская курортная зона имеет большое рекреационное и туристическое 

значение. В то же время экологическое состояние этого региона является достаточно 

сложным. Превышающие ПДК в десятки раз загрязнения захватывают п. Боровое, основные 

комплексы рекреационных учреждений, фиксируются на побережье озер Бурабай, Щучье, 

Большое и Малое Чебачье и протягиваются вдоль автомагистралей. В результате 

безвозвратного забора воды на промышленные и питьевые нужды, распашки земель на 

склонах, вырубок леса в водосборной площади происходит смыв загрязняющих и 

органических веществ, что увеличивает процессы заиливания озер. 

Озеро Бурабай (Аулиеколь) - расположено в пределах Кокшетауского нагорья, у 

восточного подножия г. Кокше на север от озера Щучье. Площадь водного зеркала 

составляет около 11 кв. км. Средняя глубина озера 3,4 м, наибольшая глубина наблюдается в 

северной части и достигает 7 м. Водная поверхность озера, в основном, открытая, только 

вдоль западного и северо-западного побережий имеются заросли тростника и камыша. Дно 

ровное, с уклоном на север, у берегов песчаное и каменистое, в середине илистое, мощность 

ила в северной части озера 0,5-1,0 м, в южной 1,6 м. Озеро проточное. В него впадают: с 

юго-восточного берега Сары-Булак, с запада - ручей Иманаевский и два безымянных ручья. 

Из озера, в его северо-восточной части вытекает река Куркуреук длиной 1,5 км, 
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