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Modified theories of gravity or alternative theories of gravity are theories that generalize 

Einstein's theory of gravity. The purpose of alternative theories is to describe gravity within the 

framework of a modified theory, while offering a better description of phenomena in cosmology, 

and also not to contradict the available experimental data at the moment. 

In fact, in many existing approaches to cosmological issues in modified gravity, the 

equations are reduced to second-order differential equations. There are a number of popular models 

of modified gravity:  Rf , Gauss-Bonnet theory  Gf  string theory, nonlocal gravity, Horav-

Lifshitz  Rf  gravity and renormalized covariant gravity. 

One of the most widely used are  Rf  type gravity and Gauss-Bonnet gravity  Gf . Gauss-

Bonnet gravity  Gf  refers to scalar theories of gravity. It is assumed that this theory can describe 

the late epoch of cosmic acceleration [1]. 

 Gf  gravity, otherwise called Gauss-Bonnet gravity, is a modified version of an action 

that includes a Gauss-Bonnet invariant or a function depending on a given parameter. 

The Gauss-Bonnet invariant is calculated by the formula 

 





 RRRRRG  42 .                                           (1) 

 

This model is considered within the framework of the Friedman-Robertson-Walker metric in        

4-dimensions with the signature (−, +, +, +). The natural system of units of measurement is used 

18  cG  . 

  22222 dzdydxtadtds  .                                         (2) 

 

Adopting a Friedmann-Robertson-Walker (FRW) metric in 4-dimensions, the Lagrange 

multiplier for  Gf  results [2] 
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Solutions of the  Gf  gravity 

Nonvacuum case 

The action in 4-dimensions will have the following form 
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where  V  – scalar field potential,  t  – scalar field,   – Lagrange multiplier.  Varying this 

action with respect to G , we obtain    Gftg   , 3ag  , and hense Eq. (4) becomes 
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Replacing in Eq. (5) and integrating by part the Lagrangian finally takes the form: 
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 ;,, Gaq      Gaq  ,, . 

 

Euler–Lagrange equations (7) lead to 
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The system is completed by the Energy function 
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The Noether symmetry approach 

In the present case, the vector field of the generator is defined as 
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on the tangent space  of the configuration space . Here,     

 Ga ,,  ,  Ga ,,   and  Ga ,,    are symmetry generators to be found and 

 GaGaTQ  ,,,,,   GaQ ,,
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After the action according to (4), taking into account (6), we explicitly make elementary 

transformations 

0XL , 
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  As a result, we obtain a system of equations for symmetry generators 
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where  Gf,,,   are unknowns to be determined. We solve this set of equations using the 

method of separation of variables and a power-law form [3]. 

First, we solve Eqs. (16)–(21) by separation of variables. For this, we set 
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where 321321 ,,,,, BBBAAA  and 321 ,, CCC  are unknowns to be determined. Solving Eqs. (19), (20) 

and (21) using Eq. (22) 
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   ,320 GAAa                 ,320 GBBb                 GCCc 320                   (23) 

 

where 00 ,ba  and 0c  are arbitrary constants.  
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Eq. (24) substitute into Eq. (22)    
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where 111 ,, cba – arbitrary constants,  – separation  constant. We use equation (26) by (16) to get 

  

         
2

1

101010 223
2

3











 tGaaccaGaGbbGtaaGttakGf 


,        (27)                                                                                                         

 

where k  is the constant of integration. Thus, the symmetry generator turns out to be 
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which obviously corresponds to the scaling symmetry generator. The conserved quantity 

determined as follows [4] 
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We use the power law approach to solve the system of  Eqs. (16)–(21) 
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where 210210210 ,,,,,,,,   are the unknown powers. Equations (16) and (17) with Eq. 

(18) imply that 0102    ,we obtain  
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Using these values in (18) with 000    (without any loss of generality), we obtain 
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The function  Gf  is obtained by using Eqs. (32) and (16) as 
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Where 1k – another constant of integration. Consequently, the symmetry generator takes the form 
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which obviously corresponds to a scaling symmetry generator. The corresponding conserved 

quantity is 
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Modified theories with their corresponding actions involving higher-order curvature as extra 

terms can lead to a better description of the phenomenon of cosmic accelerated expansion. In this 

context, we study solutions of the field equations in  Gf   (modified Gauss– Bonnet) gravity using 

the Noether symmetry approach for the FRW universe model by assuming vacuum and nonvacuum 

cases. In the nonvacuum case, we have taken dust fluid just for simplicity. The symmetry generators 

are found using separation of variables and a power-law form. We have found the  Gf  model, and 

the corresponding conserved quantities [5]. 
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The Modified Korteweg-De Vries equation models a variety of nonlinear phenomena, 

including ion acoustic waves in plasmas, and shallow water waves. In this research the mKdV 

equation shall be simulated using Comsol Multiphysics, computer simulation environment where 

this partial differential equation can be modeled and visualized. Generally, this equation looks the 

next way: 

 

                                                                       (1) 

 

The parameter a can be considered as any real number, where the commonly used values are 

                   
The function  (   ) represents the water’s free surface in non-dimensional variables. The 

nonlinear KdV equation gives a large variety of solutions. The solutions propagate at speed c while 

retaining its identity. We usually introduce the new wave variable         , so that  (   )   
  (  )  

The derivative    characterizes the time evolution of the wave propagating in one direction, 

the nonlinear term     describes the steepening of the wave, and the linear term      accounts for 

the spreading or dispersion of the wave. [1] 

 

Obtaining analytical solution of Modified Korteweg-De Vries equation 

Integrating once (1) we find, where constant of integration is taken to be zero: 
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Then we use cosine method to find the solution of the mKdV equation: 
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