UDC 517.52

THE GENERALIZED FRACTIONAL-MAXIMAL FUNCTION AND ESTIMATE OF ITS NON-INCREASING REARRANGEMENT

Abek Azhar Nartaikyzy

azhar_18@inbox.ru, azhar.abekova@gmail.com

2nd year doctoral student, L.N. Gumilyov Eurasian National University, Nur-Sultan, Kazakhstan Research supervisors – N.A. Bokayev, A.Gogatishvili

Let $L_0 = L_0(R^n)$ be the set of all Lebesgue measurable functions $f: R^n \to C$; $L_0 = L_0(R^n)$ is the set of functions $f \in L_0$, for which the non-increasing rearrangement of the f^* is not identical to infinity. Non-increasing rearrangement f^* defined by the equality:

$$f^*(t) = \inf \{ y \in [0, \infty) : \lambda_f(y) \le t \}, \ t \in R_+ = (0, \infty),$$

where

$$\lambda_f(y) = \mu_n \left\{ x \in \mathbb{R}^n : \left| f(x) \right| > y \right\}, \ y \in [0, \infty)$$

is the Lebesgue distribution function [1].

The function $f^{**}:(0,\infty)\to[0,\infty]$ is defined as

$$f^{**}(t) = \frac{1}{t} \int_{0}^{t} f^{*}(\tau) d\tau; \quad t \in R_{+}$$

We define the following classes of function.

Definition 1. Let $R \in (0, \infty]$. We say that a function $\Phi: (0, R) \to R_+$ belongs to the class $A_n(R)$ if:

- (1) Φ decreases and is continuous on (0, R);
- (2) $\Phi(r)r^n \uparrow$, $r \in (0,R)$.

For example, $\Phi(t) = t^{-\alpha} \in A_n(\infty)$, $0 < \alpha < n$.

Definition 2 [2]. Let $R \in (0, \infty]$. A function $\Phi: (0, R) \to R_+$ belongs to the class $B_n(R)$ if the following conditions hold:

- (1) Φ decreases and is continuous on (0,R);
- (2) There exists a constant $C \in \mathbb{R}_+$ such that

$$\int_{0}^{r} \Phi(\rho) \rho^{n-1} d\rho \leq C\Phi(r) r^{n}, \ r \in (0, R).$$

For example,

$$\Phi(\rho) = \rho^{\alpha - n} \in \mathfrak{I}_n(\infty) \ (0 < \alpha < n); \ \Phi(\rho) = \ln \frac{eR}{\rho} \in \mathfrak{I}_n(R), \ R \in R_+.$$

For $\Phi \in B_n(R)$ the following estimate also holds:

$$\int_{0}^{r} \Phi(\rho) \rho^{n-1} d\rho \ge n^{-1} \Phi(r) r^{n}, \ r \in (0, R).$$

Therefore

$$\int_{0}^{r} \Phi(\rho) \rho^{n-1} d\rho \cong \Phi(r) r^{n}, \ r \in (0, R).$$

$$\Phi(\rho) \in \mathfrak{I}_n(R) \Longrightarrow \left\{ 0 \le \Phi \downarrow; \Phi(r)r^n \uparrow, r \in (0, R) \right\}.$$

Lemma 1. $B_n(R) \subset A_n(R)$.

Definition 3. Let $R \in (0, \infty]$. We will say that $\Phi: (0, R) \to R_+$ belongs to the class $E_n(R)$ if

$$\int_{0}^{r^{n}} \frac{ds}{\Phi(s^{1/n})s} \le \frac{C}{\Phi(r)}, \ \forall t \in (0, R).$$

Note that relation (1) is equivalent to the inequality (can be obtained by a change of variables):

$$\int_{0}^{r} \frac{dt}{\Phi(t)t} \le \frac{C}{\Phi(t)}.$$
(1')

For example the function $\Phi(t) = t^{\alpha - n} \in A_n(\infty)$ $(0 < \alpha < n)$. Indeed in this case

$$\int_{0}^{t^{n}} \frac{ds}{\Phi(s^{1/n})s} = \int_{0}^{t^{n}} \frac{ds}{s^{\alpha/n-1}} = C_{\alpha,n} \frac{1}{t^{\alpha-n}} = \frac{C_{\alpha,n}}{\Phi(t)}, \ \forall t \in R_{+}.$$

Lemma 2. $E_n(R) \subset B_n(R)$.

Definition 4. Let $\Phi: R_+ \to R_+$. The *generalized fractional-maximal function* $M_{\Phi}f$ is defined for the function $f \in E(R^n) \cap L_1^{loc}(R^n)$ by the equality

$$(M_{\Phi}f)(x) = \sup_{r>0} \Phi(r) \int_{B(x,r)} f(y)dy,$$

where B(x,r) is a ball with the center at the point x and radius r. That is, consider the operator $M_{\Phi}: L_1^{loc}(\mathbb{R}^n) \to L_0^{\square}(\mathbb{R}^n)$.

In the case $\Phi(r) = r^{\alpha-n}$, $\alpha \in (0,n)$ we obtain the classical fractional-maximal function $M_{\alpha}f$ [3]:

$$(M_{\alpha}f)(x) = \sup_{r>0} \frac{1}{r^{n-\alpha}} \int_{B(x,r)} |f(y)| dy$$

We denote by $M_E^{\Phi} = M_E^{\Phi}(R^n)$ the set of the functions u, for which there is a function $f \in E(R^n)$ such that

$$u(x) = (M_{\Phi}f)(x),$$

$$\|u\|_{M_E^{\Phi}} = \inf \{\|f\|_E : f \in E(R^n), M_{\Phi}f = u \}.$$

Theorem 1. Let $\Phi \in A_n(\infty)$. Then there exist a positive constant C depending from n such that

$$(M_{\Phi}f)^*(t) \le C \sup_{t \le s < \infty} s\Phi(s^{1/n}) f^{**}(s), \ t \in (0, \infty)$$

for every $f \in L_1^{loc}(\mathbb{R}^n)$.

Theorem 2. Let $\Phi \in A_n(\infty)$. Inequality (10) is sharp in the sense that for every $\varphi \in L_0^+(0,\infty; \downarrow)$ there exists a function $f \in L_1(\mathbb{R}^n)$ such that $f^* = \varphi$ a.e. on $(0,\infty)$ and

$$(M_{\Phi}f)^*(t) \ge C \sup_{t \le s \le \infty} s\Phi(s^{1/n}) f^{**}(s), \ t \in (0, \infty),$$

where, C is a positive constant which depends only on n.

Theorem 3. Let $\Phi \in B_n(\infty)$. Then there exist a positive constant C depending from n such that

$$(M_{\Phi}f)^{**}(t) \le C \sup_{t < s < \infty} s\Phi(s^{1/n}) f^{**}(s), \ t \in (0, \infty)$$

for every $f \in L_1^{loc}(\mathbb{R}^n)$.

References

- 1. C.Bennett, R.Sharpley, Interpolation of operators. Pure and applied mathematics, Volume 129. Boston, MA: Acad. Press Inc., 1988.
- 2. M.L. Goldman, E.G. Bakhtigareeva Some classes of operators in general Morrey-type spaces // Eurasian Mathematical Journal, Volume 11, №4, 2020, p.35-44.
- 3. R.Ch. Mustafayev, N.Bilgicli Generalized fractional maximal functions in Lorentz spaces A // Journal of Mathematical Inequalities, Volume 12, №3, 2018, p.827-851.