ПРИНЦИП РАБОТЫ ТЕПЛОВОЙ МАШИНЫ, ПРЕОБРАЗУЮЩЕЙ СОЛНЕЧНУЮ ЭНЕРГИЮ В МЕХАНИЧЕСКУЮ

Тасболат Айсұлу Нұрлыбекқызы

t.aisulu97@inbox.ru

Магистрант 2-курса Евразийского национального университета им. Л. Н. Гумилева, г. Нур-Султан, Казахстан Научный руководитель – К.О. Сабденов

Преобразование энергии солнечного излучения в тепло, которое может быть либо сразу потреблено, либо использовано для получения электричества (по термодинамическому циклу, в котором тепловая машина приводит в движение электрогенератор), в силу своей простоты является достаточно доступным способом энергообеспечения потребителей различных уровней. Интерес к этому направлению использования энергии солнца в последние годы растет во всем мире. Известно, что солнечная энергия, преобразованная в тепловую, широко используется для бытовых целей, отопления и горячего водоснабжения, подогрева воды в бассейнах. Солнечная энергия может быть преобразована в тепловую, механическую и электрическую энергию, использована в химических и биологических процессах [1].

При всех достоинствах солнечной энергии её использование сегодня является самым затратным. Следовательно, надо совершенствовать существующие технологии преобразования солнечной энергии с целью увеличения их эффективности и снижения стоимости [2].

Тепловые машины экологичны по сравнению с электрохимическими системами, просты в конструкции и обслуживании. Поэтому работы по применению тепловых машин для преобразования солнечной энергии в рабочую или электрическую должны быть продолжены. Здесь необходимо искать пути повышения коэффициента полезного действия тепловых машин, что повысит их конкурентоспособность.

Предлагаемый проект тепловой машины для преобразования солнечной энергии в механическую основан на двухкомпонентном шатунном механизме (рис. 1).

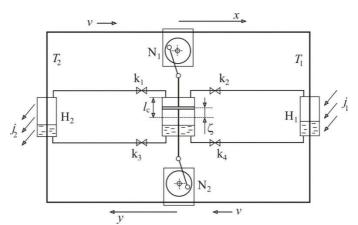


Рисунок 1 - Схема тепловой машины

В нем имеются два механических устройства N_1 , N_2 — кривошипно-шатунные механизмы с центробежным насосом. Они превращают поступательное движение штока цилиндра во вращательное движение лопастей насоса. Насосы приводят в движение жидкий теплоноситель в правом и левом трубопроводах. Причем скорость движения жидкости ν всегда направлена по часовой стрелке (рис. 1) вне зависимости от направления движения штока.

Трубопровод системы регуляции условно разделен на две части, правая часть имеет длину $L_{\rm x}$, левая $-L_{\rm y}$. Энергия солнечного излучения принимается в нагревателе $H_{\rm 1}$, отвод лишнего тепла происходит в холодильнике $H_{\rm 2}$.

Техническая реализация такой машины изображена на рисунке 2. Здесь открытие и закрытие клапанов k_1 – k_4 осуществляется автоматически с применением особенностей конструкции цилиндрической камеры и поршня.

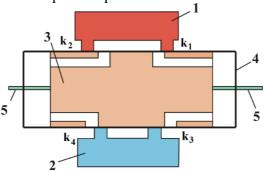


Рисунок 2 - Устройство, принцип работы которого такой же, как и у тепловой машины: 1 — нагреватель, 2 — холодильник, 3 — поршень, 4 — цилиндрическая камера, 5 — шток поршня

Нагреватель находится в верхней части рисунка, а холодильник — в нижней. На этом рисунке насос не показан, так как не имеет существенного значения. Роль клапанов выполняют отверстия и трубчатые каналы в поршне и цилиндре, обозначенные толстыми черными линиями. Обратим внимание, что отверстия в нижней части поршня смещены по сравнению с теми, которые находятся в верхней части, длина сдвига — это ζ ход поршня. Холодильник и нагреватель плотно прикреплены к цилиндру, короткие вертикальные каналы в них выходят через отверстия, соответствующие камере. Порядок работы конструкции, изображенной на рисунке 2, показан на рисунке 3.

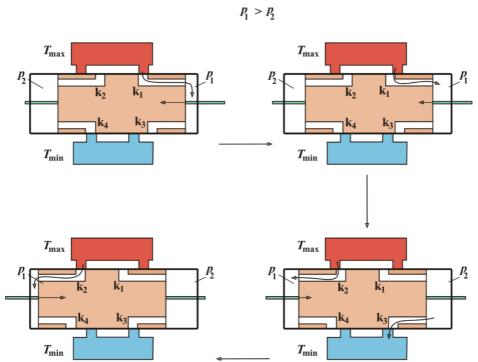


Рисунок 3. Один цикл работы машины: последовательные этапы расположения поршня и направления движения поршня и рабочего газа по его каналам.

Установка симметрична относительно вертикальной линии, проходящей через центр поршня. Поэтому рабочий цикл начинается с движения поршня с одного конца на другой. На рисунке 3 движение начинается с правой части, свободное пространство правой части

камеры заполняется горячим газом при высоком давлении p_1 . Левая часть камеры соединена с охладителем при давлении $p_2 < p_1$, поэтому поршень перемещается влево. после хода ζ нижнее отверстие становится открытым для холодильника, в левую сторону перемещается горячий газ, выполняющий механическую работу, и начинает охлаждаться. Одновременно открывается клапан между левым пространством камеры и нагревателем, где давление увеличивается с p_2 до p_1 . На этом заканчивается один рабочий цикл машины, второй цикл поршневого движения идет слева направо. Если в качестве рабочего тела используется жидкость с низкой температурой кипения, то в холодильнике образуется конденсированная жидкость. Если это так, то теплоноситель должен быть соединен с насосом по трубам с нагревателем. Эффективность использования легко испаряемой жидкости заключается в том, что при небольшой разнице между $T_{\rm max}$ и $T_{\rm min}$ давление p_1 , которое делает работу машины эффективной, имеет высокие значения.

Для записи уравнений движения поршня цилиндра k_i (i=1,2,3,4) определим следующий алгоритм действия клапанов. При движении вверх клапаны k_1 , k_4 находятся в открытом положении, клапаны k_2 , k_3 — в закрытом положении. При движении вниз клапаны k_1 , k_4 закрыты, а клапаны k_2 , k_3 находятся в открытом положении. Переключение клапанов осуществляется по достижении поршнем верхней и нижней крайних точек.

Температура в правом и левом трубопроводах $T_1(t, x)$, $T_2(t, x)$ на рис. 1 определяются решением уравнений

$$\begin{split} \frac{\partial T_1}{\partial t} + v \frac{\partial T_1}{\partial x} &= J_0, \quad J_0 = \frac{j_1}{x_* c \rho}, \\ \frac{\partial T_2}{\partial t} + v \frac{\partial T_2}{\partial y} &= -\beta (T_2^4 - T_0^4), \quad \beta &= \frac{\sigma}{x_* c \rho} \end{split}$$

Уравнения температур дополняются граничными условиями

$$T_1(t, x = 0) = T_2(t, y = L_y)$$
; $T_2(t, y = 0) = T_1(t, x = L_x)$.

Эти граничные условия требуют непрерывности значения температуры при переходе теплоносителя из части 1 в часть 2 и, наоборот, из части 2 в часть 1.

Теплообменики H_1 и H_2 находятся в хорошем тепловом контакте с трубопроводами, одновременно они генерируют пар или же его переводят в жидкое состояние в зависимости от температуры. Легкокипящая жидкость имеет молярную массу μ и теплоту фазового перехода $L_{\rm m}$.

Давления в термостатах H_1 и H_2 рассчитываем по уравнению Клапейрона – Клаузиуса:

$$p_1 = p_0 \exp \left[\frac{L_m \mu}{R} \left(\frac{1}{T_b} - \frac{1}{T_1'} \right) \right], \qquad p_2 = p_0 \exp \left[\frac{L_m \mu}{R} \left(\frac{1}{T_b} - \frac{1}{T_2'} \right) \right],$$

где температура T_1' определена в точке $x=L_x/2$: $T_1'=T_1(t,L_x/2)$, соответственно температура T_2' определена в точке $y=L_y/2$: $T_2'=T_1(t,L_y/2)$. Базовое давление $p_0=10^5$ Па; R—универсальная газовая постоянная.

Масса поршня m, плотность теплоносителя ρ , эффективное сечение трубопровода системы терморегуляции $S_{\rm t}$, коэффициент гидравлического сопротивления системы $C_{\rm f}$. Уравнение движения поршня можно записать следующим образом:

$$m \frac{d^2 \zeta}{dt^2} + k \frac{d \zeta}{dt} = \text{sign}(\zeta) \cdot S_c(p_1 - p_2) - C_f \frac{S_t \rho v^2}{2}$$

Давление в цилиндрической камере зависит от экспоненциальной температуры. Незначительное изменение температуры может привести к значительному увеличению давления в течение короткого промежутка времени и, как следствие, к увеличению скорости движения поршня. Поэтому для постоянного и плавного движения поршня требуется сила сопротивления. В используемой здесь модели такая сила вычисляется коэффициентом k и множителем в виде производной $d\zeta/dt$.

По результатам моделирования построена диаграмма p-T термодинамического цикла машины (рисунок 4). Этот цикл очень похож на цикл Ренкина, разница в незначительном ступенчатом изменении давления в адиабатных зонах. Термический коэффициент полезного действия η вычисляется по формулам, где интегрирование производится за цикл t_p :

$$Q_{1} = \int_{0}^{t_{p}} \frac{j_{1}(t)}{x_{*}c\rho} dt = \int_{0}^{t_{p}} J_{0}dt, \quad Q_{2} = \int_{0}^{t_{p}} \frac{j_{2}(t)}{x_{*}c\rho} dt = \beta \int_{0}^{t_{p}} (T_{2}^{4} - T_{0}^{4}) dt \quad \eta = 1 - \frac{Q_{2}}{Q_{1}},$$

Поскольку $J_0(t)$ независим от времени, интеграл легко вычисляется, и тепло, принимаемое машиной, равно $Q_1 = J_0 \cdot t_p$. Второй интервал вычислялся численно с использованием метода прямоугольников. Заметим, что у теплоты Q_1 и Q_2 есть разность температур, но она не имеет существенного значения: она постоянна и равна действительным значениям теплоты с точностью до одних и тех же множителей. Поэтому это не влияет на расчет КПД.

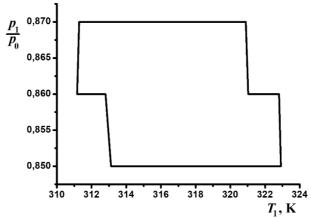


Рисунок 4 - Представление термодинамического цикла машины на *p-T* диаграмме

Для значений Q_1 и Q_2 и коэффициента теплового полезного действия, рассматриваемого на рисунке 4, появились следующие значения: $Q_1 = 5.2$ K; $Q_2 = 5.107$ K; $\eta = 0.018$. Очень небольшое значение коэффициента полезного действия 1,8% объясняется тем, что машина в модели не производит полезную механическую работу, она работает «на себя».

Список использованных источников

- 1. Рустамов Н.А., Чекарев К.В. Преобразование энергии солнечного излучения в тепло: возможности и перспективы использования // Энергия, экономика, техника, экология. -2006. №10. С.33-37
- 2. Подгуренко В.С. (ч.1, разделы 1, 3-5, 7.1). Книга 1. От огня и воды к электричеству // Энергетика: история, настоящее и будущее. Киев, 2005 –304 с.