ҚАЗАҚСТАН РЕСПУБЛИКАСЫ ҒЫЛЫМ ЖӘНЕ ЖОҒАРЫ БІЛІМ МИНИСТРЛІГІ

Л.Н. ГУМИЛЕВ АТЫНДАҒЫ ЕУРАЗИЯ ҰЛТТЫҚ УНИВЕРСИТЕТІ КӨЛІК – ЭНЕРГЕТИКА ФАКУЛЬТЕТІ

«КӨЛІК ЖӘНЕ ЭНЕРГЕТИКАНЫҢ ӨЗЕКТІ МӘСЕЛЕЛЕРІ: ИННОВАЦИЯЛЫҚ ШЕШУ ТӘСІЛДЕРІ» ХІ ХАЛЫҚАРАЛЫҚ ҒЫЛЫМИ-ТӘЖІРИБЕЛІК КОНФЕРЕНЦИЯСЫНЫҢ БАЯНДАМАЛАР ЖИНАҒЫ

СБОРНИК МАТЕРИАЛОВ XI МЕЖДУНАРОДНОЙ НАУЧНО – ПРАКТИЧЕСКОЙ КОНФЕРЕНЦИИ: «АКТУАЛЬНЫЕ ПРОБЛЕМЫ ТРАНСПОРТА И ЭНЕРГЕТИКИ: ПУТИ ИХ ИННОВАЦИОННОГО РЕШЕНИЯ»

PROCEEDINGS OF THE XI INTERNATIONAL SCIENTIFIC-PRACTICE CONFERENCE «ACTUAL PROBLEMS OF TRANSPORT AND ENERGY: THE WAYS OF ITS INNOVATIVE SOLUTIONS»

Редакционная коллегия:

Председатель — Курмангалиева Ж.Д. Член Правления — Проректор по науке, коммерциализации и интернационализации; Заместитель председателя — Кокаев У.Ш. декан транспортно-энергетического факультета, к.т.н., доцент; Султанов Т.Т. — заместитель декана по научной работе, к.т.н., доцент; Арпабеков М.И. — заведующий кафедрой «Организация перевозок, движения и эксплуатация транспорта», д.т.н., профессор; Тогизбаева Б.Б. — заведующий кафедрой «Транспорт, транспортная техника и технологии», д.т.н., профессор; Байхожаева Б.У. — заведующий кафедрой «Стандартизация, сертификация и метрология», д.т.н., профессор; Сакипов К.Е.— заведующий кафедрой «Теплоэнергетика», к.т.н., доцент; Жакишев Б.А.— заведующий кафедрой «Электроэнергетика», к.т.н., доцент.

А43 Актуальные проблемы транспорта и энергетики: пути их инновационного решения: XI Международная научно — практическая конференция, г. Астана, 16 марта 2023/Подгот. Ж.Д. Курмангалиева, У.Ш. Кокаев, Т.Т. Султанов — Астана, 2023. — 709с.

ISBN 978-601-337-844-2

В сборник включены материалы XI Международной научно — практической конференции на тему: «Актуальные проблемы транспорта и энергетики: пути их инновационного решения», проходившей в г. Астана 16 марта 2023 года.

Тематика статей и докладов участников конференции посвящена актуальным вопросам организации перевозок, движения и эксплуатации транспорта, стандартизации, метрологии и сертификации, транспорту, транспортной техники и технологии, теплоэнергетики и электроэнергетики.

Материалы конференции дают отражение научной деятельности ведущих ученых дальнего и ближнего зарубежья, Республики Казахстан и могут быть полезными для докторантов, магистрантов и студентов.

ОБОСНОВАНИЕ БЕЗОПАСНОСТИ ДВИЖЕНИЯ ЛЕГКОВЫХ АВТОМОБИЛЕЙ ПРИ ВЫБОРЕ ИХ ПО ОТРАСЛИ ЛОГИСТИКИ

Сарсембенова Карина Ерболовна

tas-bek@mail.ru
Евразийский национальный университет имени Л. Н. Гумилёва
Научный руководитель - Бекенов Т.Н.

Актуальность работы. В результате дорожно-транспортных происшествий в Республике Казахстан, как и в других странах, ежегодно страдает множество людей, принадлежащих к одной из наиболее социально активных групп общества. Анализ статистических данных по Казахстану показывает, что доля высокодинамичных легковых автомобилей в автопарке постоянно увеличивается, а их аварийность выше, чем у нединамичных автомобилей. Такое повышение динамических свойств автомобиля способствует увеличению ошибок водителей, что приводит к снижению безопасности дорожного движения (SAR).

В данной дипломной работе рассматривается оценка влияния дорожных условий на безопасность дорожного движения на основе теории взаимодействия водителя с дорожной средой. Показано, что на количество дорожно-транспортных происшествий влияют факторы, связанные с окружающей средой, дорожным движением, участниками дорожного движения и транспортным средством. Поэтому при решении задачи повышения безопасности дорожного движения необходимо обратить внимание на методы исследования, изучающие закономерности поведения водителя и позволяющие оценить влияние дорожных условий на вероятность дорожно-транспортных происшествий. На основании наблюдения установлена взаимосвязь между элементами дорожной обстановки и показателями функционального состояния водителя. Оптимальная скорость устанавливается для различных дорожных условий. В результате приспособления легких автомобильных дорог к рельефу при минимальном объеме необходимых земляных работ прилегающие участки дорог часто имеют существенно различающиеся радиусы кривых, продольные уклоны и расстояния видимости. Чем сильнее эти характеристики, чем наиболее благоприятные характеристики вертикального сечения для движения транспорта, тем чаще в них происходят дорожнотранспортные происшествия. Хотя каждое дорожно-транспортное происшествие является результатом совокупного действия многих факторов, обычно среди них есть один, оказывающий наибольшее влияние в конкретном месте и определяющий причину дорожнотранспортных происшествий. Поэтому материалы статистики дорожно-транспортных происшествий дают принципиальную возможность сравнить степень безопасности движения при разной величине каждого из дорожных элементов и интенсивности движения на дороге.

Необходимо прибегать к широкому использованию статистических данных, так как исследования в области безопасности движения исключают возможность постановки специальных физических экспериментов для сбора данных о событиях в различных ситуациях по созданию опасных участков на дорогах. Поэтому целесообразно обобщать и анализировать статистические материалы разных стран по единой методике. Эти данные, несомненно, свидетельствуют о том, что многие факторы - состояние дорожной сети, степень автомобилизации, природно-климатические условия, типы дорожных покрытий, специфика правил дорожного движения, даже национальные особенности и темперамент водителей и тех, кто погибает в дорожно-транспортных происшествиях в разные страны разные дни.

Дорожно-транспортные происшествия часто освещаются в средствах массовой информации не как убийцы, а как события и как огромная потеря человеческих, медицинских и финансовых ресурсов страны. Представляя безопасность дорожного

движения как историю здоровья и развития с помощью данных и информации, журналисты могут повлиять на то, как эти истории рассказываются, и помочь изменить поведение и отношение общественности, повлиять на политику и, таким образом, спасти жизни.

Проблема аварийности в стране стала особенно актуальной в последнее десятилетие в связи с тем, что дорожная инфраструктура не отвечает потребностям общества и государства в обеспечении безопасности дорожного движения. Причины дорожно-транспортных происшествий могут быть разными. По информации МВД РК, самым распространенным в стране является превышение скорости. В 2019 году на его долю пришлось 34% всех аварий. Неблагоприятные погодные условия, время суток, агрессивное вождение и вождение в нетрезвом виде также влияют на риск развития ИБС. При этом пострадать может как сам водитель, так и третьи лица, такие как пассажиры, пешеходы, велосипедисты или владельцы других автомобилей.

Таблица 1 Распространенные причины дорожно-транспортных происшествий в Республике Казахстан

Причины ИБС	Сколько случаев от общего числа ВГС			
Ускорить	34%			
Движение ночью	17%			
Внезапные изменения скорости, смещения и поворотов	15%			
Несоблюдение дистанции	8%			
Плохая погода	7%			
Вождение в нетрезвом виде	3%			

Статистика аварий в Казахстане. По данным Комитета статистики МНЭ РК, за 9 месяцев 2020 года зарегистрировано около 9 000 ДТП, в которых пострадали более 13 000 человек. По сравнению с прошлым годом показатели снизились на 22,2%. Основной причиной такого снижения стало ограничение движения на дорогах во время карантина.

По официальным данным, за пять лет в Казахстане произошло 86 300 случаев домашнего насилия. Алматы и Алматинская область ежегодно лидируют по стихийным бедствиям. За пять лет в дорожно-транспортных происшествиях пострадали 24 847 и 10 343 человека соответственно. Наименьшее количество пострадавших зафиксировано в Шымкентской и Северо-Казахстанской областях — 692 и 1120 случаев соответственно.

Типы ВПЦ в Казахстане. Наиболее частый вид ДТП — наезд на пешехода. За последние пять лет в стране зарегистрировано 37 032 таких случая. Больше всего это произошло в Алматы и Алматинской области — 12 318 и 4 086 случаев соответственно. Меньше всего — в Шымкентской и Северо-Казахстанской областях — 431 и 433 случая соответственно.

Второе место в категории дорожно-транспортных происшествий занимает столкновение транспортных средств. Там было ранено 29 723 казахстанца. Наибольшее количество в Алматы и Алматинской области — 8 259 и 3 776 человек соответственно, в Шымкенте и Северо-Казахстанской области — 179 и 420 человек соответственно.

На третьем месте - 6 925 случаев дорожно-транспортных происшествий, в которых люди получили тяжелые травмы при опрокидывании транспортного средства. Наибольшее количество пострадавших было в Алматинской области - 1056, Алматинской области - 933 и Жамбылской области - 892. Меньше всего ДТП в Шымкенте (13 случаев) и Астане (24 случая).

Далее в статистике самые распространенные виды ДТП - наезд на препятствие. За пять лет таких аварий было 3969. Из них 933 и 857 случаев относятся к Алматы и Алматинской области. Меньше всего аварий произошло в Шымкенте, Северо-Казахстанской и Атырауской областях -23, 33 и 44 случая соответственно.

Цель статьи - обосновать влияние дорожного покрытия на безопасность движения путем анализа дорожно-транспортных происшествий. и обоснование безопасного путешествия. Обосновать важность мероприятий, направленных на снижение аварийности их участков в процессе подготовки к ремонту или реконструкции автомобильных дорог.

Основные задачи исследования:

- оценка влияния интенсивности транспортного потока и дорожных условий на ДТП;
- экспериментально-расчетный метод создания комплексного показателя динамических свойств автомобиля и определения комплексного показателя динамических свойств автомобиля; разработка методики определения статистической зависимости между; комплексный показатель динамических свойств и показателей перед ВГС;
- разработка методики определения нужных и необходимых показателей; требованиям достаточного количества средств индивидуальной защиты для оценки соответствия режима вождения транспортного средства;
- определение числовых значений показателей качества, соответствующих безопасным режимам движения;
- разработка методики обучения водителей выбору безопасных режимов движения при вождении и их реализации автомобильным маршрутным компьютером;
- разработать предложения по повышению безопасности дорожного движения в Республике Казахстан посредством осуществления деятельности, направленный на изменение поведения водителя. Обоснование объекта расчета (автомобиль).

Рисунок 3 - Габаритные размеры Лада Веста седан

Таблица 3 Технические характеристики Лада Веста

Тело							
Колесная формула / Ведущие колеса:	4x2 / передний						
Расположение двигателя	передний горизонтальный						
Тип кузова/количество дверей	седан / 4						
Количество мест	5						
Длина/ширина/высота, мм	4410/1764/1497						
База, мм	2635						
Колея передних/задних колес, мм:	1510/1510						
Дорожный просвет, мм	178						
Объем багажника, л:	480						
Двигатель							
Код двигателя	21129						
Тип двигателя	бензин						
Система питания:	впрыск топлива с электронным						
	управлением						
Количество цилиндров, расположение:	4, в очереди						
Рабочий объем, куб.см:	1596						

Рекомендуемое топливо:	бензин-92								
Объем топливного бака, л:	55								
Динамические ха	арактеристики								
Максимальная скорость, км/ч:	182								
Время разгона 0-100 км/ч, с:	11.2								
Время разгона 0-100 км/ч, с:	11.2								
Потребление топлива									
Городской цикл, л/100 км:	9.3								
Загородный цикл, л/100 км:	5,5								
Комбинированный цикл, л/100 км:	6,9								
масса									
Снаряженная масса, кг:	1230 - 1280								
Технически допустимая максимальная	1670								
масса, кг:									
Максимальный вес прицепа без	450/900								
тормозной системы:									
Передача и	инфекции								
Тип передачи	5 тонн								
Передаточное число главной передачи:	3,9								
Не вешай трубку									
Фронт	независимый								
Задний:	полузависимый								
Шины									
Размер	185/65 P15								
Рулевое управление									
Рулевой механизм:	зубчатая рейка								

Дорожные системы охватывают широкий диапазон размеров и типов транспортных средств, от самых маленьких компактных автомобилей до самых больших комбинаций двухи трехколесных тракторов. В соответствии с различными геометрическими характеристиками автомагистралей, такими как ширина полосы движения, расширение полосы движения на поворотах, минимальный радиус обочины и угол поворота, высота дорожного просвета и т. д., были предложены некоторые стандартные физические размеры транспортных средств.

Обоснование и выбор уравнений для расчета показателей безопасности движения с учетом качества движения и использования автомобильных дорог.

Дорожно-транспортные происшествия являются значительной статьей расходов автомобилизации. Удивительно, но наименьшее количество аварий наблюдается зимой, а наибольшее – летом.

Важную роль в увеличении или уменьшении количества дорожно-транспортных происшествий играет режим дорожного движения - это основная характеристика, определяющая работу транспортного комплекса. Транспортный поток — это совокупность отдельных автомобилей, движущихся по дороге. С увеличением интенсивности движения снижается скорость транспортного потока, увеличивается поток автобусов и грузовиков. Влияние состава интенсивности транспортного потока учитывается при расчете коэффициента снижения пропускной способности. Метод коэффициента запаса, учитывающий равномерное изменение скорости автомобиля на определенном участке дороги, особенно эффективен на дорогах с высокой интенсивностью движения и в городах.

При определении скорости движения на дорогах необходимо исходить из фактических скоростей движения по этим дорогам, которые отражают восприятие условий движения подавляющим большинством водителей, поэтому введение ограничений на уровне

80-85 % обеспечивает выравнивание скорости в транспортном потоке. Это действие приведет к снижению ВГС на 20%. Также учитывайте въезд и выезд с сложных участков дорог. Превышение скорости на этом участке не только опасно, но и важнейшим фактором, часто приводящим к авариям, является частота смены скорости. Риск дорожнотранспортного происшествия характеризуется коэффициентом безопасности, то есть отношением скорости, обеспечиваемой опасным участком (v_{op}), к скорости выезда водителя с опасного участка (v_{v}):

$$K_6 = \frac{V_{0\Pi}}{V_{EX}},\tag{1}$$

При расчете коэффициента безопасности участка дороги уровень опасности участка дороги можно определить путем сопоставления конечных значений со следующими законами. K_6 =0,8÷1 секции безопасные, =0,6÷0,8 менее опасные, =0,4÷0,6 опасные, K_6K_6 0,4 считается очень опасным.

Участки с перекрестками и развязками считаются опасными для движения автомобилей. По статистическим данным, на вышеперечисленных участках дорог происходит до 40% аварий.

При въезде на сложные участки дороги водители будут интуитивно снижать скорость, чем ниже коэффициент безопасности. Коэффициент безопасности K_6 <0,4при этом отрицательное ускорение1,1÷1,2 м/сек²может достигать С учетом коэффициента запаса коэффициент снижения пропускной способности определяется по следующей формуле:

$$\mathbf{K_c} = \frac{\mathbf{K_6}^* \mathbf{v_1} + \mathbf{v_0}}{\mathbf{v_1} + \mathbf{v_0}} \tag{2}$$

здесь

 v_1 - скорость пересечения опасного участка,

 v_0 - оптимальная скорость движения на опасном участке (=23 км/ч). v_0

Следовательно, запас прочности можно определить по следующей формуле:

$$K_6 = \frac{K_c^*(v_1 + v_0) - v_0}{v_1}$$
(3)

Расчет показателей безопасности движения с учетом качества движения и использования автомобильных дорог

В целях обеспечения безопасности движения коэффициент сцепления дорожного покрытия должен быть не ниже 0,3 для мокрого и не ниже 0,25 для смоченного противоскользящими соусами.

Если в результате измерения коэффициенты сцепления на участках ниже допустимого значения, шероховатость дорожного покрытия следует увеличить. С момента обнаружения высокой пробуксовки до ее устранения требуется установка знаков ограничения скорости с табличками, указывающими на необходимость снижения скорости только при мокром дорожном полотне на въездах на скользкие участки. Скорость до 50 км/ч безопасна для передаточных чисел сцепления в диапазоне 0,25–0,3, скорость должна быть ограничена до 40 км/ч для передаточных чисел ниже 0,25.Коэффициент запаса можно определить по следующей формуле:

$$K_6 = \sqrt{\frac{1}{1 + \frac{2\varphi G_2 h_{\text{ILT}}}{kFgRB}}}.$$
 (4)

здесь

Г2 -вес на заднюю ось автомобиля;

ф - коэффициент связи;

к -коэффициент текучести;

Ф-передняя часть автомобиля;

ч с т -высота центра тяжести автомобиля;

R - радиус поворота;

Б -ширина шоссе.

$$F=0.78*B*H$$
 (5)

Расчет площади поверхности легкового автомобиля Лада Веста:

=1,96F=0.78*B*H=0.78*1.67*1.51

Необходимость определения передаточного числа сцепления возникает при расчете замедления при экстренном торможении легкового автомобиля, при решении некоторых трудностей, связанных с маневрированием и движением на участке дороги с чрезмерными углами наклона. Его значение часто связано с типом и состоянием дорожного покрытия, поэтому ориентировочное значение коэффициента для конкретной ситуации можно найти по таблице 3.

Таблица 6 Необходимость определения коэффициента связи

Таолица		ачение к							CDUSIA	OHB 7	рарисі	AT OT	
	Эна	ачение к	оэффі							ψиρφ	зависі	11 01	
Тип дорожного	Этапо	типа покрытия и его состояния. Эталон мокрый мокрый рыхлый замерзший Скользкий											
покрытия						(грязный)		1		-			
	(сухой)		(чистый)		1.		снег		снег		лед		
II	ф 0,80	ф - 0,002	ф 0,65 -	φ 0,0035	ф 0,40 -	φ · 0,0025	ф 0,15 -	ф • OT	ф 0,20 -	φ 0,0025	ф	φ · 0,002	
Цементобетон	0,80	-0,002	0,03 -	0,0033	0,40 -	0,0023	0,13	0,001	0,20 -	0,0023	0,08 · 0,15	0,002	
	0,03		0,70		0,43		0,55	до	0,50		0,13		
								до 0,004					
Асфальтобетон	0,80	- 0,0035		0,0035		0,0035	0,15 -	от		0,0025	1 1	0,002	
шероховатый	0,85		0,65		0,55		0,35	0,001	0,50		0,20		
обработанный								ДO					
A 1 ~	0.00	-0,002	0,50 -	0,0035	0.25	0,0025	0,15 -	0,004	0,20 -	0,0025	0.00	0,002	
Асфальтобетон	0,80	-0,002	0,50 -	0,0033	0,33 -	0,0023	0,13	0,001	0,20 -	0,0023	0,08	0,002	
	0,03		0,00		0,40		0,55	до	0,50		0,13		
обработки								0,004					
Из холодного	0,60	- 0,005	0,40 -	0,004	0,30 -	0,0025	0,12 -	OT	0,20 -	0,0025	0,08	0,002	
асфальтобетона			0,50		0,35		0,30	0,001	0,50		0,15		
								до					
								0,004					
Черный	0,60	- 0,004	0,50 -	0,004	0,30 -	0,0025	0,15	OT	0,20 -	0,0025		0,002	
щебень,	0,70		0,60		0,35		0,35	0,0015	0,50		0,20		
обработанный								до 0,004					
Тот же щебень,		- 0,004	0,40 -	0,005	0,25 -	0,003	0,12 -	от	0,20 -	0,0025		0,002	
без обработки	0,60		0,50		0,30		0,30	0,001	0,50		0,15		
								до					
Γ	0.60	0.004	0,55 -	0.0045	0.25	0.002	0.15	0,004	0.20	0.0025	0.10	0.002	
Гравий и почва	0,60	- 0,004	0,55 - 0,60	0,0045	0,25 - 0,30	0,003	0,15 - 0,35	от 0,001	0,20 - 0,50	0,0025	0,10 0,15	0,002	
	0,70		0,00		0,50		0,55	о,оот до	0,50		0,13		
								0,004					
Вспаханная	0,40	- 0,005	0,25 -	0,005	0,20	0,003	0,12 -	от	0,20 -	0,0025	0,08	0,002	
почва	0,50		0,40				030	0,001	0,50		0,18		
								до					
								0,004					

Факторы, изменяющие передаточное отношение: скорость движения (с увеличением скорости движения передаточное отношение уменьшается.

На гладком льду тяга очень маленькая); шероховатость направления (неровность дороги увеличивает частоту прямого действия силы тяжести, коэффициент сцепления связан с условиями, которые изменяются в месте контакта шины с дорогой и уменьшается за счет подпрыгивания колес); обогащение дорожного покрытия вязкими материалами (большое количество вязких материалов делает дорожное покрытие скользким, при высокой температуре воздуха вязкие материалы плавятся, поднимаются на поверхность дороги, снижается коэффициент сцепления; смачивание дорожного покрытия (появляются вода, дорожный грунт, частицы шин, остатки нефтепродуктов и другие жидкие лужи, снижающие коэффициент сцепления дороги при смазывании колес); срок службы дорожного покрытия (когда увеличивается срок службы покрытия, из-за малой вогнутости уменьшается коэффициент связи); шероховатость поверхности (чем выше шероховатость, тем важнее трущаяся часть дорожного покрытия с шиной, и тем выше коэффициент передачи и выше коэффициент сцепления.

Максимальная высота неровной части дорожного покрытия не должна превышать 4-5 мм. Высокая неровность дорожного покрытия приводит к снижению коэффициента сцепления); намерзание на поверхности дорожного покрытия, образование на нем слоя снега (коэффициент сцепления слишком низкий, незначительно увеличивается при температуре воздуха от 0°С до -15°С); смазывание дорожного покрытия (смазывание дорожного покрытия остатками масла сразу снижает коэффициент сцепления. На сухой или мокрой дороге коэффициент сцепления примерно на 30% ниже к середине участка движения); характеристика сцепления колеса с дорожным покрытием (наибольший коэффициент сцепления проявляется при продольном скольжении с оценкой 11÷16% продольного скольжения.

При заблокированном колесе (юсе) несколько падает передаточное отношение сцепления); увеличение веса колеса (уменьшается передаточное число сцепления при увеличении давления на плотном дорожном покрытии); высокое давление в шинах колес (при повышении давления воздуха в колесах коэффициент сцепления сначала увеличивается, а затем начинает медленно снижаться).

Высокая температура шины (сцепление на бетонном покрытии с повышением температуры шины несколько снижается, на асфальтобетонном увеличивается, коэффициент сцепления в этот момент увеличивается из-за примерзания элементов протектора на дорожное покрытие, что отражается в высокой температура контактной части при торможении); Износ протектора шины (при износе протектора шины коэффициент сцепления снижается на 35-45 процентов.

Часто снижается при движении по мокрым или грязным дорогам (примерно на $15 \div 25$ процентов); Тип рисунка протектора шины колеса (шина с рисунком протектора, обладающим хорошим сцеплением на мягком снегу и незамерзшей почве, как правило, имеет более высокий коэффициент сцепления, чем шины с направленным рисунком.

Шины с большим отрывом на мокром покрытии обеспечивают высокий коэффициент гистерезиса): тип материала (шины из качественной гистерезисной резины обеспечивают высокий коэффициент сцепления); шероховатость дорожного покрытия (чем выше шероховатость, тем выше площадь трения дорожного покрытия с шиной, и тем выше сцепление и больше сцепление.

Максимальная высота неровностей дорожного покрытия не должна превышать 5-6 миллиметров. Чрезмерная неровность дорожного покрытия приводит к снижению передаточного числа сцепления).

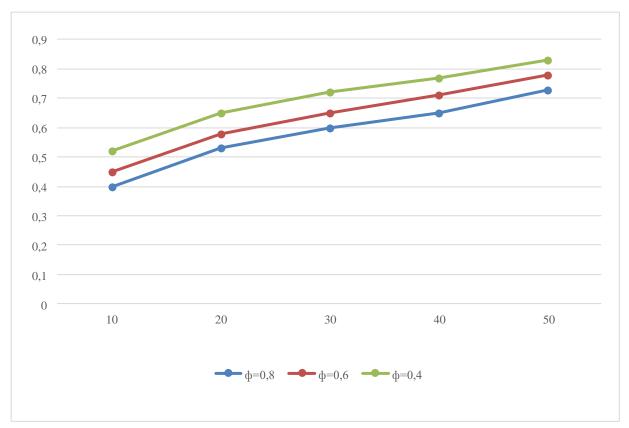


Рисунок 4: График коэффициента безопасности

В данной статье подготовлен комплекс мероприятий с целью повышения уровня безопасных условий вождения транспортных средств в зависимости от условий движения транспорта и использования легких автомобильных дорог.

Подготовленные мероприятия позволят снизить частоту аварий и обеспечат безопасность движения на подконтрольных участках района.

Текущие производственные затраты на использование производственного капитала в организации дорожного движения включают необходимую сумму следующих затрат, а именно 3 040 446,73 тенге.

В первой части подготовки проекта был проведен анализ причин и последствий дорожно-транспортных происшествий на автомобильных дорогах. Информация об уровне аварии проверена путем анализа документов (официальные данные).

При подготовке практических мероприятий по развитию дорожного движения обсуждались замена установки дорожных знаков с малой вторичной информацией, установка дорожных знаков, доработка, замена, строительство дорожных знаков. Подготовленные в ходе данной работы мероприятия могут быть использованы на автомобильных дорогах Северо-Казахстанской области и сети автомобильных дорог между городами Петропавловск-Астана.

В целях сохранения жизни работников при проведении ремонтно-строительных работ на автомобильных дорогах в разделе по безопасности утвержденной техники рассмотрены: подготовка мероприятий по организации безопасного использования автомобилей в районах проведения дорожных работ; средства защиты и безопасности при ремонте автомобильных дорог или стоянок; перед монтажными или ремонтными работами или в ходе выполнения задач по охране труда рабочих на производстве.

Можно контролировать экономическую эффективность деятельности, инструментально-экономический анализ которой представлен в статье.

В частности, согласовано, что предлагаемые действия по построению надежного маршрута считаются правильными и пригодными для использования.

Список использованных источников

- 1. Колмогоров Г.Л. Динамическая реакция дорожной одежды на действиедвижущейся нагрузки / Г.Л. Колмогоров, В.И. Кычкин, И.А. Есипенко // Строительная механика инженерных конструкций и сооружений. 2015. № 5.
- 2. Юшков Б.С. Влияние нагрузок от транспортных средств на автомобильных дорогах / Б.С. Юшков, А.С. Сергеев, Р.И. Габдулхаев // Актуальные направления научных исследований XXI века: теория и практика. 2015. Т. 3. № 8-3. С. 104-108.
- 3. Васильев А.Ю. Изучение влияния шипованных шин на износ дорожного покрытия / А.Ю. Васильев, Л.В. Спиридонова // Автомобиль. Дорога. Инфраструктура. 2019. No 1 (19). C. 15.

УДК 656

АКТУАЛЬНЫЕ ПРОБЛЕМЫ МОДЕЛИРОВАНИЯ ЛОГИСТИЧЕСКИХ СИСТЕМ И ПУТИ ИХ РЕШЕНИЯ

Силкина Ольга Юрьевна, Зарипова Римма Солтановна

zarim@rambler.ru

Казанский государственный энергетический университет, г. Казань, Россия

Аннотация. Целью данной статьи является изучение того, насколько важно учитывать неопределенность в проблеме моделированиялогистической системы на этапе планирования. Рассмотрены структурные различия между решением, основанным на неопределенном спросе, и решением, основанным на детерминированном спросе. Некоторые из этих различий помогают хеджировать неопределенность, не увеличивая при этом стоимость эксплуатации графика.

Ключевые слова: логистика, моделирование логистических систем, стохастика, модели, транспортировка.

Роль логистических центров постоянно возрастает. Важную роль в логистической системе играет транспорт, т.к. он определяет наиболее высокую стоимость связанных элементов в логистических системах. Функции транспорта проявляются в различных поэтому учёт взаимосвязи отношений разделах логистических процессов, транспортными логистическими предприятиями способствует эффективности, определяя общую производительность логистической Исследование логистической системы в широком смысле может помочь повысить их качество. С другой стороны, исследование транспортных систем дает более четкое представление о транспортных приложениях в логистической деятельности [1]. Оперативно технологией транспортировки грузов позволяют терминально-складские комплексы. Практически любая логистическая деятельность использует транспорт. Основным фактором, определяющем повышение конкурентоспособности компаний, является логистический менеджмент. Следовательно, сделать бизнес более эффективным и легким позволяют электронная коммерции и Интернет.

Логистика — это процесс планирования, а также эффективного и результативного осуществления поставок. Современная логистика ориентирована на организацию, планирование, контроле и осуществление потока товаров, денег, информации и потока людей.

Цельюпроектирования логистической системы является определение маршрутов, по которым будет предлагаться услуга, тип услуги, которая будет предлагаться, а также периодичность расписания [2]. Выбранные услуги и расписание сгруппированы в план