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a b s t r a c t

We propose a cosmological scenario in which the universe undergoes through a non-singular bounce,
and after the bounce, it decelerates having a matter-like dominated evolution during some regime
of the deceleration era, and finally at the present epoch it evolves through an accelerating stage.
Our aim is to study such evolution in the context of Chern–Simons corrected F(R) gravity theory
and confront the model with various observational data. Using the reconstruction technique, and in
addition by employing suitable boundary conditions, we determine the form of F(R) for the entire
possible range of the cosmic time. The form of F(R) seems to unify a non-singular bounce with
a dark energy epoch, in particular, from a non-singular bounce to a deceleration epoch and from
a deceleration epoch to a late time acceleration era. It is important to mention that the bouncing
scenario in the present context is an asymmetric bounce, in particular, the Hubble radius monotonically
increases and asymptotically diverges at the late contracting era, while it seems to decrease with time
at the present epoch. The decreasing behaviour of the Hubble radius ensures a late time acceleration
era of the universe. Moreover, due to the aforesaid evolution of the Hubble radius, the primordial
perturbation modes generate at the deep contracting era far away from the bounce when all the
perturbation modes lie within the horizon. Correspondingly we calculate the scalar and tensor power
spectra, and accordingly, we evaluate the primordial observable quantities like the spectral index of
the scalar curvature perturbation, the tensor-to-scalar ratio, and as a result, they are found to be in
agreement with the latest Planck 2018 constraints. In this regard, the Chern–Simons term seems to
have considerable effects on the tensor perturbation evolution, however keeping intact the scalar part
of the perturbation with that of in the case of a vacuum F(R) model, and as a result, the Chern–Simons
term proves to play an important role in making the observable quantities consistent with the Planck
results. Furthermore the theoretical expectation of the effective equation of state parameter of the
dark energy epoch is confronted with the Planck+SNe+BAO data.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

Cosmology today is largely data-driven which opens up the
pportunity to construct a consistent history of the universe that
xplains the observations. In this light, it is intriguing that the
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current observations and experiments delimits the evolution of
the universe in terms of the well established laws of physics,
e.g. general relativity or some modified theories of gravity, the
Standard Model of particle physic, fluid dynamics etc. However,
direct experimental results probing physics above the TeV scale
ceases to exist which also turns out to be a major impediment
towards an unambiguous understanding of the physics of the very
early universe. This has given birth to diversified early universe
scenarios, e.g. the inflationary scenario [1–7], the bouncing uni-

verse [8–59], the emergent universe scenario [60–62] etc., all of
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hich can consistently explain the nearly scale-invariant power
pectrum or the low tensor to scalar ratio observed by the Planck
atellite [63].
In the present work, we take the route of bouncing scenario

hich comprises of an era of contraction followed by an era of
xpansion of the scale factor, both the epochs being connected by
non-singular bounce. Such a scenario is interesting, particularly

n the absence of a successful quantum theory of gravity, as it
vades the Big Bang singularity which is indeed an unavoidable
eature of inflationary scenario in the realm of classical gravity
hen extrapolated backwards in time.
The bouncing scenario has been studied extensively in the

ontext of scalar tensor models and other modified gravity the-
ries [8–59], some of which are often inspired from string the-
ry. Among various bounce models proposed so far, the matter
ounce scenario (MBS) [14,22,23,45–59] earned a lot of atten-
ion as it generates an almost scale invariant primordial power
pectrum and also leads to a matter dominated epoch during the
ate expanding phase. Moreover in the matter bounce theory, the
niverse evolved from an epoch at large negative time in the
ontracting era where the primordial spacetime perturbations are
enerated deeply inside the Hubble radius, and is thus able to
olve the horizon problem. Despite these successes, the matter
ounce scenario hinges with some serious problems, in particular,
n exact MBS characterized by a single scalar field leads to an ex-
ctly scale invariant power spectrum or equivalently a vanishing
unning of the spectral index and a tensor-to-scalar ratio of order
nity, all of which are inconsistent with the latest Planck results.
uch problematic issues was also confirmed from a different point
f view, in particular in the context of F(R) gravity in [52,56]
for early and late time cosmology in F(R) gravity, see [64–66]).
n this regard, we would like to mention that a scalar-tensor
odel can be equivalently mapped to F(R) gravity by a suitable
onformal transformation of the spacetime metric and thus the
nconsistencies of MBS with the Planck observations in both the
calar-tensor and F(R) model are well justified. Furthermore in
oth the matter bounce or quasi-matter bounce scenarios, the
omoving Hubble radius (defined by rh = 1/(aH)) monotonically
ncreases with time and diverges to infinity at the distant future,
hich in turn leads to a deceleration stage of the universe at the

ate expanding phase and thus fails to explain the dark energy
poch of the universe as expected from SNe-Ia+BAO+H(z)+CMB
bservations [67–69].
Some of the above mentioned problems seem to be cured

hen the background bounce scenario is considered to be a
uasi-matter bounce scenario where the FRW scale factor be-
aves as quasi-matter dominated epoch during the asymptotic
ime. In particular, the scalar-tensor of F(R) quasi-matter bounce
odel yields a nearly scale invariant power spectrum (in ac-
ordance with the Planck results), although the amplitudes of
ensor and scalar perturbations continue to be comparable, due to
hich the tensor-to-scalar ratio remains to be order of unity [14].

n order to resolve the issue of the high tensor-to-scalar ratio,
ome suitable higher curvature gravity theories come into the
icture, with success in many of the cases [56,58] (for a general
eview on modified gravity, see [64,65,70,71]). However in most
odified gravity theories describing the bouncing cosmology, the
omoving Hubble radius increases with cosmic time and leads to
deceleration era of the universe at distant future, and thus the
roblem of describing a dark energy epoch still persists in such
ouncing models.
Motivated by this problem, in the present work, we aim to

tudy bouncing cosmology which is also compatible with the
ark energy epoch of our current universe. For this purpose, we
onsider the Chern–Simons (CS) corrected F(R) gravity theory,

here the presence of the CS coupling induces a parity violating

2

term in the gravitational action. The gravitational Chern–Simons
term arises in the low-energy effective action of several string
inspired models [72,73] and studying its role in explaining the
primordial power spectrum may provide an indirect testbed for
string theory. The parity violating Chern–Simons gravity distin-
guishes the evolution of the two polarization modes of primordial
gravitational waves [74,75], which leads to the generation of
chiral gravitational waves leaving non-trivial imprints in the Cos-
mic Microwave Background Radiation (CMBR). Such signatures
if detected in the future generation of experiments may signal
the presence of the string inspired Chern–Simons gravity in the
early universe. This has motivated several works in this direction,
see for example [75–83]. The astrophysical implications of the
gravitational Chern–Simons (GCS) term has also been explored
e.g. [84]. A further and important motivation to include the CS
term in the present context of F(R) gravity stems from the fact
that, as mentioned earlier, vacuum F(R) bounce models generally
cannot reproduce the observed tensor-to-scalar ratio in respect
to the Planck data. However the addition of the Chern–Simons
term in the F(R) gravity will possibly resolve this issue as the
CS term does not affect the evolution of the spatially flat FRW
background or the scalar perturbations, but plays a pivotal role
in the evolution of the tensor perturbations. Moreover some of
our authors explored the importance of the Chern–Simons F(R)
model in producing a viable inflationary scenario compatible with
the Planck results [85]. This further motivates us to explore
the relevance of such a model in inducing a bouncing universe
and subsequently unifying it with the dark energy epoch. Based
on these arguments, in the present paper, we try to provide a
cosmological model which unifies certain cosmological era of the
universe — from a non-singular bounce to a matter dominated
era and from the matter dominated to the dark energy epoch.
Here we would like to mention that the unification of bounce
with dark energy era has been studied earlier in [17,18,28,86],
however in a different context; for instance, in [28], the Hubble
radius asymptotically goes to zero at both sides of the bounce
and thus the primordial perturbation modes generate near the
bounce, unlike to the present work where the perturbation modes
generate at the distant past far away from the bounce.

The paper is organized as follows: in Section 2, we will briefly
describe the essential features of Chern–Simons F(R) gravity the-
ory. Having set the stage, Section 3 describes the background
evolution and the constraints on various model parameters, while
Section 4 is reserved for studying the perturbation evolution and
their confrontation with the Planck results. The paper will end
with some conclusions along with some scope for future work.

2. Essential features of Chern–Simons F(R) gravity

Let us briefly recall some basic features of Chern–Simons
corrected F (R) gravity, which are necessary for our presentation
[74,85]. The gravitational action of F (R) gravity generalized by
Chern–Simons coupling is given by,

S = S =

∫
d4x

√
−g

1
2κ2

[
F (R) +

1
8
ν(R) R̃µναβRµναβ

]
(1)

where ν(R) is known as Chern–Simons coupling function, R̃µναβ =
γ δµνR αβ

γ δ , κ2 stands for κ2
= 8πG =

1
M2

Pl
and also MPl is the

educed Planck mass. By using the metric formalism, we vary the
ction with respect to the metric tensor gµν , and the gravitational
quations read,

′(R)Rµν −
1
2
F (R)gµν − ∇µ∇νF ′(R) + gµν□F ′(R) = T (c)

µν , (2)

with

T (c)
µν =

2
√

δ

µν

{
1√

−g ν(R)R̃µναβRµναβ

}

−g δg 8
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(
δR
δgµν

)
+ ϵ cde

µ

[
ν,e;f R

f
νcd − 2ν,eRνc;d

]
(3)

s the energy–momentum tensor contributed from the Chern–
imons term [74]. Moreover Rµν is the Ricci tensor constructed
rom gµν and ν ′(R) =

dν
dR . Since the present article is devoted

o cosmological context, the background metric of the Universe
ill be assumed to be a flat Friedmann–Robertson–Walker (FRW)
etric,

s2 = −dt2 + a2(t)
[
dx2 + dy2 + dz2

]
(4)

with a(t) being the scale factor of the Universe. For such metric,
the non-zero components of the Riemann tensor are given by R 0j

0i
and R kl

ij (with i, j, k, l denote the spatial indices), in particular,
the FRW metric Eq. (4) leads to the Ricci scalar and the non-zero
components of Ricci tensor, Riemann tensor as,

R = 6
(
ä
a

+
ȧ2

a2

)
, R00 = −3ä/a , Rij =

(
aä + 2ȧ2

)
δij

0j
0i = −

(
ä
a

)
δ
j
i , R kl

ij =
ȧ2

a2
(
δliδ

k
j − δki δ

l
j

)
espectively, where an overdot represents d

dt . In effect, the
nergy–momentum tensor T (c)

µν identically vanishes in the back-
round of FRW spacetime, i.e we may argue that the Chern–
imons term does not affect the background Friedmann equa-
ions, as also stressed in [74]. However as we will see later that
he Chern–Simons term indeed affects the perturbation evolution
ver the FRW spacetime, particularly the tenor type perturbation.
ence the temporal and spatial components of Eq. (2) become,

= −
F (R)
2

+ 3
(
H2

+ Ḣ
)
F ′(R) − 18

(
4H2Ḣ + HḦ

)
F ′′(R)

0 =
F (R)
2

−
(
3H2

+ Ḣ
)
F ′(R) + 6

(
8H2Ḣ + 4Ḣ2

+ 6HḦ +
...
H

)
F ′′(R)

+36
(
4HḢ + Ḧ

)2F ′′′(R) , (5)

where H = ȧ/a denotes the Hubble parameter of the Universe.
Comparing Eq. (5) with the usual Friedmann equations, it is
easy to reveal that the F(R) gravity provides an effective energy–
momentum tensor with the following forms of effective energy
density (ρeff) and effective pressure (peff),

eff =
1
κ2

[
−

f (R)
2

+ 3
(
H2

+ Ḣ
)
f ′(R) − 18

(
4H2Ḣ + HḦ

)
f ′′(R)

]
(6)

eff =
1
κ2

[
f (R)
2

−
(
3H2

+ Ḣ
)
f ′(R) + 6

(
8H2Ḣ + 4Ḣ2

+6HḦ +
...
H

)
f ′′(R) + 36

(
4HḢ + Ḧ

)2f ′′′(R)
]

(7)

espectively, where f (R) is the deviation of F (R) gravity from the
instein gravity, that is F (R) = R + f (R). Thus, the effective
nergy–momentum tensor (EMT) depends on the form of F (R), as
xpected. Therefore, different forms of F (R) will lead to different

evolution of the Hubble parameter. We will use such effective
EMT of F (R) gravity to realize the cosmological evolution of the
Universe.

In the present context, we are interested to study a unified
scenario of a non-singular bounce and dark energy epoch, in
particular, from a non-singular bounce to a deceleration epoch
and from a deceleration epoch to a late time acceleration era.
The bouncing scenario requires a violation of energy condition(s),
which we incorporate here through a modified gravity theory in
the form of a higher curvature gravity model. This is motivated
from the fact that the spacetime curvature becomes large during
the bounce and thus it is natural to generalize the Einstein–
Hilbert action by adding higher order curvature terms in the
3

gravitational action. Such higher curvature terms may also nat-
urally arise from the diffeomorphism property of the action.
Furthermore, with the help of higher curvature gravity theories,
the unification of inflation and dark energy epochs has been
studied earlier by some of our authors [87,88], thereby we hope
that higher curvature theories may have a significant role also
in unifying the bounce with dark energy epoch. In particular,
here we consider a Chern–Simons (CS) corrected F(R) theory in
a four dimensional spacetime model. The importance of Chern–
Simons Lagrangian from various perspectives has been reported
in [89]. Here we would like to mention that in four dimensional
spacetime, a special case of Lanczos–Lovelock theory, namely the
Gauss–Bonnet (GB) theory becomes a total surface term and thus
has no contributions in the field equations. The scenario however
becomes different in higher dimensional spacetime where the
GB term affects the field equations non-trivially [89]. Coming
back to our present model, i.e the Chern–Simons corrected F(R)
model in four dimensional FRW spacetime, the Chern–Simons
term shows no contributions in the background Friedmann equa-
tions, and thus the background evolution is entirely controlled
by the vacuum F(R) term (see Eq. (5)). This is in contrast to [89]
where the authors considered an AdS invariant Chern–Simons
Lagrangian in five dimensional spacetime, which can be recovered
from the Lovelock theory, and found the corresponding cosmo-
logical as well as spherically symmetric solutions. On contrary,
in our present scenario (which is a four dimensional spacetime
model), the effective energy density and pressure arises from the
higher curvature F(R) degrees of freedom drive the background
evolution. However the vacuum F(R) theory is known to predict
a large tensor-to-scalar ratio in the bouncing cosmology, which is
not consistent with the Planck data. Thus in order to reduce the
tensor-to-scalar ratio, we consider the Chern–Simons term along
with the F(R) model. Although, the Chern–Simons term does not
affect the background FRW equations, it indeed modifies the
perturbation evolution considerably. Moreover it has been shown
earlier that the Chern–Simons term helps to reduce the tensor-to-
scalar ratio in an inflationary spacetime [85]. This motivates us to
consider the Chern–Simons corrected F(R) model to explore the
unification of a non-singular bounce to the dark energy epoch,
with a hope that due to the effect of the CS term, the tensor-
to-scalar ratio gets reduced (and fit within the Planck constraint)
compared to that of in the vacuum F(R) case.

3. Background evolution

As mentioned earlier, we are interested in getting an unified
cosmological picture of a non-singular bounce to a late time dark
energy epoch. In this regard, the background scale factor present
in the FRW metric is considered as [86],

a(t) =

[
1 + a0

(
t
t0

)2
]n

exp

[
1

(α − 1)

(
ts − t
t0

)1−α
]
, (8)

where a0, n, α are positive valued dimensionless parameters,
while the other ones like ts and t0 have the dimensions of time.
The parameter t0 is taken to scale the cosmic time in billion years,
so we take t0 = 1By (the By stands for ’billion years’ throughout
the paper) and consequently, the scale factor becomes,

a(t) =
[
1 + a0t2

]n
× exp

[
1

(α − 1)
(ts − t)1−α

]
= a1(t) × a2(t) (say) . (9)

The scale factor is taken as a product of two factors- a1(t) and
a2(t) respectively, where the factor a2(t) is motivated in getting
a viable dark energy epoch at late time. Actually a(t) = a1(t)
is sufficient for getting a non-singular bouncing universe where
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he bounce occurs at t = 0. However at late expanding phase
f the universe, the scale factor a1(t) goes as ∼ t2n, which, in

turn, does not lead to a viable dark energy model according to
the Planck results. Thereby, in order to get a bounce along with a
viable dark energy epoch, we consider the scale factor as of Eq. (9)
where a1(t) is multiplied by a2(t). We will show that the presence
of a2(t) does not harm the bouncing character of the universe,
however it slightly shifts the bouncing time from t = 0 to a
negative time and moreover the scale factor Eq. (9) leads to an
asymmetric bounce scenario (as a(t) ̸= a(−t)). In particular, due
to the exponential term, the a2(t) seems to have negligible effects
at negative values of t i.e during the contracting universe; how-
ever it shows considerable effects during the expanding phase,
which, along with a1(t), leads to a viable dark energy epoch. We
will come back to this point in details at some stage.

The scale factor of Eq. (9) immediately leads to the Hubble
parameter (H = ȧ/a) and the Ricci scalar (R(t) = 12H2

+ 6Ḣ)
s (an overdot represents d

dt of the respective quantity),

(t) =
1
a
da
dt

=
2a0nt(

1 + a0t2
) +

1
(ts − t)α

(10)

nd

(t) =
12a0n(

1 + a0t2
)2 {

1 − a0t2 (1 − 4n)
}

+
12

(ts − t)2α

+
6α

(ts − t)1+α
+

48a0nt(
1 + a0t2

)
(ts − t)α

(11)

espectively. Eq. (10) refers different types of finite time singu-
arity at t = ts (see [90] for different types of finite time future
ingularity), where the singularity structure depends on the value
f α. In particular,

• For α > 1, a Type-I singularity appears at t = ts, i.e the scale
factor, the effective energy density (ρeff) and the effective
pressure (peff) simultaneously diverge at t = ts.

• For 0 < α < 1, a Type-III singularity occurs at t = ts, i.e
the scale factor tends to a finite value, while the ρeff and peff
diverge at t = ts.

• For −1 < α < 0, a Type-II singularity appears at t = ts.
In this case, the scale factor and ρeff tend to a finite value,
while peff diverges at t = ts.

• For α < −1 and non-integer, a Type-IV singularity appears
at t = ts, in which case, the scale factor, ρeff and peff tend to
a finite value t = ts, however the higher derivatives of the
Hubble parameter diverge at the singularity point.

Therefore the finite time singularity at t = ts is almost
inevitable in the present context. Thus in order to describe a
singularity free universe’s evolution up-to the present epoch (≈
13.5By), we consider the parameter ts to be greater than the
present age of the universe, i.e ts > tp ≈ 13.5By. Therefore
with this condition, we may argue that the Hubble parameter of
Eq. (10) describes a singularity free cosmological evolution up-to
t ≳ tp. During the cosmic time t ≫ tp: either the universe will hit
to the finite time singularity at t = ts (predicted by the present
model) or possibly some more fundamental theory will govern
that regime by which the finite time singularity can be avoided.

Coming back to our present model, the Hubble horizon at
distant past gets the evolution as |1/aH| ∼ |t|1−2n which, for
n < 1/2 (which is indeed compatible with the Planck results
in regard to the observables like spectral index, tensor to scalar
ratio — as we will demonstrate in Section 4), diverges to infinity
at t → −∞. This indicates that the primordial perturbations
generate in the deep contracting era when all the perturbation
modes are within the Hubble radius. Such generation era of the
primordial perturbation modes is similar to that of in the matter
4

Fig. 1. Blue Curve: ρ vs. n and Yellow Curve: δ vs. n; as per the Eq. (15). (For
nterpretation of the references to colour in this figure legend, the reader is
eferred to the web version of this article.)

ounce scenario. However the matter bounce model leads to
deceleration phase at late expanding phase and thus is not

onsistent with dark energy model, unlike to the present bounce
cenario which indeed leads to a dark energy era at the present
poch.
In regard to the background evolution at late contracting era
the scale factor, Hubble parameter and the Ricci scalar have the

ollowing expressions:

(t) ≈ an0t
2n , H(t) ≈

2n
t

and R(t) ≈ −
12n(1 − 4n)

t2
.

(12)

ith these expressions, the F(R) gravitational Eq. (5) turns out to
e,

2
1 − 4n

)
R2 d

2F
dR2 −

(
1 − 2n
1 − 4n

)
R
dF
dR

+ F (R) = 0 , (13)

n solving which, we get the form of F(R) at late contracting era
s,

(R) = R0

[(
R
R0

)ρ
+

(
R
R0

)δ]
(14)

here R0 is a constant, and the exponents ρ, δ have the following
orms (in terms of n),

=
1
4

[
3 − 2n −

√
1 + 4n (5 + n)

]
,

δ =
1
4

[
3 − 2n +

√
1 + 4n (5 + n)

]
(15)

espectively. From Eq. (14), we get the expression of F ′(R) which
roves to be useful to investigate the stability of the primordial
erturbations in the present context,
′(R) =

ρ

(R/R0)
1−ρ + δ (R/R0)

δ−1 (16)

In order to have a clear understand, we give the plots of ρ and
δ with respect to n in Fig. 1 which clearly demonstrates that δ
remains positive for all possible values of n, however in the case
of ρ - it starts from a positive value at n = 0 and gets a zero
crossing from positive to negative values at n = 1/4. Depending
on the choices whether n < 1/4 or n > 1/4, we get two different
physical pictures in regard to the sign of F ′(R). The demonstration
goes as follows:

• The case n > 1/4: In this regime, ρ is negative. Therefore
at late contracting era (at t → −∞) where R → 0, the
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Comparison between the evolutions of H1(t) and H2(t) during t ≤ 0.
Evolution of H1(t) Evolution of H2(t)

H1(t) = 0 at t → −∞ H2(t) = 0 at t → −∞

H1(t) = 0 at t = 0 H2(t) = 1/tαs (i.e positive) at t = 0

H1(t) has a maximum at −∞ < t < 0 H2(t) monotonically increases during −∞ < t < 0

dH1/dt
⏐⏐⏐⏐
t→−∞

∼ 1/|t|2 dH2/dt
⏐⏐⏐⏐
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dominant term of F ′(R) is the first term of Eq. (16) which
makes the F ′(R) negative at distant past. This in turn yields
the instability of the primordial perturbations in the deep
contracting regime when the perturbation modes generate
inside the Hubble radius.

• The case n < 1/4: In this regime, 0 < ρ < 1 and δ > 1.
Thereby both the terms present in the F ′(R) are positive and
thus F ′(R) > 0 in the deep sub-Hubble regime. This makes
the primordial perturbations stable at their generation era.

Based on the above discussions, we consider n < 1/4 in
the present work. However for n < 1/4, the Ricci scalar at
distant past, from Eq. (12), becomes negative and thus in order
to get real valued function of F (R), we consider the constant R0
(appeared in the solution of F (R) in Eq. (14)) to be negative as
well. Here it deserves mentioning that Eq. (12) is valid at distant
past, from which it seems that the Ricci scalar is negative, only at
late contracting era. In particular, by using the expression of R(t)
in Eq. (11) which is valid for entire cosmic time, we will show
that the R(t) indeed has a zero crossing from negative to positive
values at the contracting era. In particular, the zero crossing (from
negative to positive values) of R(t) occurs before the instant of
bounce, and after that zero crossing, the Ricci scalar remains
positive throughout the cosmic time. Before moving to the full
evolution of R(t), let us demonstrate the bouncing behaviour of
the a(t) of Eq. (9).

3.1. Realization of a non-singular asymmetric bounce

In this section, we will show that the scale factor Eq. (9) allows
a non-singular bounce at a finite time. The universe’s evolution
in a general bouncing cosmology consists of two eras, an era of
contraction where the Hubble parameter is negative and an era
of expansion having positive Hubble parameter. In particular, the
bounce phenomena is defined by the conditions H(t) = 0 and
Ḣ > 0 respectively. To realize this in the present context, we
borrow the expression of H(t) from Eq. (10), i.e

H(t) =
2a0nt(

1 + a0t2
) +

1
(ts − t)α

. (17)

s the parameters a0, n and α are positive, the Hubble parameter
uring t > 0 remains positive. However during negative time, i.e
or t < 0, the first term of Eq. (17) becomes negative while the
econd term remains positive, thus there is a possibility to have
(t) = 0 and Ḣ > 0 at some negative t . Let us check it more
xplicitly.
For t < 0, we can write t = −|t| and Eq. (17) can be expressed

as,

H(t) = −
2a0n|t|(

1 + a0|t|2
) +

1
(ts + |t|)α

= −H1(t)+H2(t) (say) . (18)

he term H1(t) starts from the value zero at t → −∞ and reaches
to zero at t = 0, with an extremum (in particular, a maximum)
at an intermediate stage of −∞ < t < 0. However the second
term H2(t) starts from the value zero at t → −∞ and reaches
to 1/tα at t = 0, with a monotonic increasing behaviour during
s

5

−∞ < t < 0. Furthermore both the H1(t) and H2(t) increase at
t → −∞ with their respective rate of increasing are given by:

dH1

dt

⏐⏐⏐⏐
t→−∞

∼ 1/|t|2 ,
dH2

dt

⏐⏐⏐⏐
t→−∞

= 1/|t|(1+α)

respectively, i.e H1(t) increases at a faster rate compared to that
of H2(t) at t → −∞ for α > 1. Here it may be mentioned that the
ondition α > 1 is also related to the positivity of the Ricci scalar,
as we will establish in Eq. (24), and thus α > 1 is well justified
in the present context. Such evolutions of H1(t) and H2(t) during
t ≤ 0 are given in the following Table 1, which are essential to
ealize a bouncing behaviour of the Hubble parameter:

Therefore at t → −∞: both the H1(t) and H2(t) start from the
alue zero with an increasing behaviour, however their rate of
ncreasing are different to each other, in particular H1(t) increases
t a faster rate compared to that of H2(t). Moreover at t = 0: the
erm H2(t) is positive while H1(t) = 0, i.e H2(t) becomes larger
han H1(t). These arguments clearly indicate that there exists a
egative finite t , say t = −τ with τ being positive, for which the
ollowing statements of H(t) hold true:

• H1(t) > H2(t) or equivalently H(t) < 0 during t < −τ ,
• H1(t) = H2(t) or equivalently H(t) = 0 at t = −τ ,
• H1(t) < H2(t) or equivalently H(t) > 0 during t > −τ .

herefore, t = −τ (with τ > 0) is the instant when the bounce
ccurs, and can be determined by the condition H(−τ ) = 0, i.e,
2a0nτ(

1 + a0τ 2
) =

1
(ts + τ)α

. (19)

n order to see whether the above equation has a real solution
for τ ), we need to put some definite values of the parameters,
s Eq. (19) may not be solved in a closed form. In the following
wo subsections, we will determine the constraints on the model
arameters from various requirements (like — to get a late time
ccelerating stage, the effective EoS parameter at present epoch
atches with the Planck results [91] etc.). However for instance,

et us choose some specific values of the parameters which indeed
atch with the constraints that we will determine after Eq. (34),

n particular, we consider: a0 = 0.30, n = 0.185, ts = 30 and
= 4/3, for which the algebraic Eq. (19) yields τ ≈ 0.09 (recall

he bounce occurs at t = −τ ). Furthermore, we would like to
ention that the scale factor remains positive at the instant of
ounce, particularly the aforementioned parametric regime leads
o a(−τ ) ≈ 2.62, i.e the bounce in the present context is indeed
non-singular bounce.
In regard to the time evolution of the Ricci scalar, Eq. (12)

learly indicates that R(t) behaves as ∼ −1/t2 at distant past,
.e the Ricci scalar starts from 0− at t → −∞. However at the
nstant of bounce, the R(t) becomes positive, due to the reason
hat the Hubble parameter vanishes and its derivative is positive
t the bounce point. Therefore the Ricci scalar must undergo a
ero crossing from negative to positive value before the bounce
ccurs. At this stage, we require that after that zero crossing,
he Ricci scalar remains to be positive throughout the cosmic
ime, which can be realized by a more stronger condition that
he Ricci scalar has to be positive during the expanding phase of
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he universe, in particular,

(t > −τ ) > 0 , (20)

here we may recall that t = −τ is the instant of bounce.
ere we will determine the constraints on the model parameters
uch that the above requirement holds true. For this purpose, we
orrow the expression of R(t) from Eq. (11) as,

R(t) =
12a0n(

1 + a0t2
)2 {

1 − a0t2 (1 − 4n)
}

+
12

(ts − t)2α

+
6α

(ts − t)1+α
+

48a0nt(
1 + a0t2

)
(ts − t)α

(21)

he only term (present in the above expression) due to which the
icci scalar may acquire negative values during the expanding
hase is given by the second term a0t2 (1 − 4n), in particular
uring a0t2 (1 − 4n) > 1, the terms within the curly bracket

provide negative contributions to R(t). Thereby we consider the
duration 1

a0(1−4n) < t2 < t2s where the Ricci scalar can be
expressed as,

R(t) =
12a0n(

1 + a0t2
)2 {

1+
4
tαs

t−a0t2 (1 − 4n)+
4a0
tαs

t3
}

+
12
t2αs

+
6α
t1+αs

.

(22)

he last two terms in the above expression contribute positive
alues to the Ricci scalar and thereby in order to determine
he constraint(s) (on the model parameters) corresponds to the
equirement R(t > −τ ) > 0, we can only consider the terms that
are within the curly bracket of Eq. (22). Let us denote it by R̃(t),
.e

(t) =

{
1 +

4
tαs

t − a0t2 (1 − 4n)+
4a0
tαs

t3
}

(23)

It is clear that the condition R̃ > 0 during the expanding phase in
turn leads to our requirement given in Eq. (20). One can check
that for n < 1/4 (which is indeed our consideration to make
the primordial perturbations stable, as discussed earlier after
Eq. (16)), the R̃(t) during the expanding phase becomes positive
if the model parameters satisfy the following relations:

α > 1 and
√
a0 (1 − 4n)

8
√
3

<
1
tαs
<

√
a0 (1 − 4n)

4
√
3

(24)

espectively. We determine the above constraints by finding the
inimum of R̃(t) (from its derivative with respect to t) and
se the condition that R̃min > 0: which is indeed a necessary

condition to make a function positive valued. Thus as a whole,
Eq. (24) confirms that the Ricci scalar remains positive after its
zero crossing which, in fact, occurs before the instant of bounce.
Hence we stick to these parameter constraints throughout the
paper. Furthermore, here we would like to mention that one of
the above constraints α > 1 leads to a Type-I singularity at
t = ts, i.e the Hubble parameter as well as the ρeff and peff
diverge at t = ts, as mentioned after Eq. (11). However, since
ts ≳ tp, the present model satisfactorily describes a singularity
free cosmological evolution up-to t ≳ tp with tp ≈ 13.5By being
the present age of the universe.

3.2. Acceleration and deceleration stages of the expanding universe

The acceleration factor of the universe is given by ä/a =

Ḣ + H2 which, from Eq. (10), turns out the be,

ä
a

=
2a0n

{
1 − a0t2(1 − 2n)

}(
2
)2 +

α

(t − t)1+α
1 + a0t s

6

+
4a0nt(

1 + a0t2
)
(ts − t)α

+
1

(ts − t)2α
. (25)

o understand the acceleration or deceleration stages of the
niverse, we need to give the plot of the above expression of

¨/a, which in turn requires the values of the model parameters
resent in Eq. (25). However before moving to such quanti-
ative description and the corresponding plot of ä/a, first we
ant to analyse that how much information(s) of ä/a can obtain
ualitatively from Eq. (25).
It is evident that near t ≈ 0, ä

a ≈ 2a0n +
α

t1+αs
+

1
t2αs

, i.e
ä is positive. This is however expected, because t ≈ 0 is the
bouncing regime where, due to the fact that Ḣ > 0 near the
bounce, the universe undergoes through an accelerating stage.
However, as t increases particularly during t2 > 1

a0(1−2n) , the
first term of Eq. (25) becomes negative and hence the universe
may expand through a decelerating phase. As t increases further,
the terms containing 1/(ts − t) starts to grow at a faster rate
compared to the other terms (since α is positive) and possibly ä
becomes positive, i.e the universe may transit from a decelerating
phase to an accelerating one. The transition of the universe from
acceleration to deceleration or vice-versa can be described by
ä = 0 which, due to Eq. (25), is expressed as,

2a0n
{
1 − a0t2(1 − 2n)

}(
1 + a0t2

)2 +
α

(ts − t)1+α
+

4a0nt(
1 + a0t2

)
(ts − t)α

+
1

(ts − t)2α
= 0 . (26)

The above algebraic equation of t may not be solved in a closed
form, however based on the above arguments, we consider two
different regimes of the cosmic time to understand the transition
from acceleration to deceleration (or vice-versa) of the expanding
universe.

• During, 1
a0(1−2n) < t2 ≪ t2s : In this regime of t , Eq. (26) can

be written as
4a0n
tαs

t3 − 2a0n (1 − 2n) t2 + 2n = 0 (27)

where ts − t ≈ ts is considered. Here we need to investigate
whether the above algebraic equation of t has a solution
in the regime 1

a0(1−2n) < t2 ≪ t2s ; thus we may consider
the solution ansatz as t1 =

1√
a0(1−2n)

(1 + δ), with t1 being

the root of Eq. (27) and δ < 1. Plugging back the ansatz
into Eq. (27) and retaining up-to the first order in δ yields
δ =

a0
tαs (a0(1−2n))3/2

and consequently t1 is given by

t1 =
1

√
a0 (1 − 2n)

(
1 +

a0
tαs (a0(1 − 2n))3/2

)
. (28)

Thereby, we may argue that Eq. (27) contains a root in
the aforesaid regime for at t = t1. This along with the
fact that the universe passes through an acceleration near
the bounce, indicate that during 1

a0(1−2n) < t2 ≪ t2s the
universe makes a transition from the accelerating phase to
a decelerating one. Later we will show that this is indeed
the case when we give the plot of the full effective EoS in
Fig. 4b.

• During, 1
a0(1−2n) ≪ t2 < t2s : In this regime of t , Eq. (26) can

be expressed as,(
1
t2αs

)
t2 +

2α
ts
(1 − 2n) t − (1 − 2n) = 0 (29)

where the term 1
(ts−t)2α

is considered to be the dominant
piece compared to the others. According to the ‘‘Descartes
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rule of signs’’, Eq. (29) must contain one positive and one
negative real root for t . The positive root (say at t2) is
obtained as,

t2 = αt2α−1
s (1 − 2n)

{√
1 +

1
α2 (1 − 2n) t2α−2

s
− 1

}
≃

ts
2α

,

(30)

which, due to α > 1, is less than ts. The existence of the
above root depicts that during 1

a0(1−2n) ≪ t2 < t2s , the
universe makes another transition from the intermediate
decelerating phase to an accelerating one and continues the
expansion in that accelerating stage. Finally at t = ts, ä
diverges, which is expected due to the occurrence of the
Type-I singularity at t = ts in the present context.

hereby Eq. (25) has two positive real roots for t during the
egime 1

a0(1−2n) < t2 ≪ t2s and 1
a0(1−2n) ≪ t2 < t2s respectively.

As a whole, the picture is following: (1) the universe undergoes
through an accelerating stage near the bounce during the expand-
ing era, (2) as t increases, particularly during 1

a0(1−2n) < t2 ≪ t2s ,
he universe gets a transition from the accelerating phase to a
ecelerating phase and (3) with further increases of t , the uni-
erse makes a second and final transition from the intermediate
ecelerating stage to an accelerating one. The second transition
rom ä < 0 to ä > 0 is identified with the late time acceleration
poch of the universe. Therefore we require t2 ≲ tp, where t2 is

the instant of the second transition and recall, tp represents the
present age of the universe. In particular, Eq. (29) has the solution
at,

t2 = αt2α−1
s (1 − 2n)

{√
1 +

1
α2 (1 − 2n) t2α−2

s
− 1

}
≃

ts
2α

(31)

here in getting the second equality, we expand the terms within
he square root binomially (as α > 1 and also ts ≳ tp) and retain
upto the first order. Therefore the above solution of t2 along with
the requirement t2 ≲ tp put a constraint on the model parameters
as,

ts ≲ 2αtp . (32)

Here we need to recall that the present model predicts a Type-
I singularity at t = ts (since α > 1) and thus in order to get
a singularity free cosmological evolution upto the cosmic time
t ≳ tp, the parameter ts satisfies ts > tp. Combining this condition
with Eq. (32), we get the allowed range of ts as,

tp < ts ≲ 2αtp . (33)

The EoS parameter of the dark energy epoch is defined as ωeff(t)
= −1−

2Ḣ
3H2 , where H(t) is shown in Eq. (10). With this expression

of ωeff, we confront the model with the latest Planck+SNe+BAO
results which put a constraint on the dark energy EoS parameter
as [91]

ωeff(tp) = −0.957 ± 0.080 (34)

ith tp ≈ 13.5By being the present age of the universe. Thereby
e choose the model parameters in such a way that the above
onstraint on ωeff(tp) holds true.
As a whole, we have four parameters in our hand: n, a0, ts and

. Below is the list of their constraints that we found earlier from
arious requirements,

• C1: The parameter n is constrained by n < 1/4 in order
to make the primordial perturbations stable at the deep
sub-Hubble radius in the contracting era.
7

• C2: ts is larger than the present age of the universe, i.e
ts > tp ≈ 13.5By to describe a singularity free evolution
of the universe upto the cosmic time t ≳ tp.

• C3: ts ≲ 2αtp in order to have an accelerating stage of the
present universe. This along with the previous condition C2
lead to tp < ts ≲ 2αtp.

• C4: In regard to the parameters α and a0, they are found to
be constrained as α > 1 and

√
a0(1−4n)
8
√
3

< 1
tαs
<

√
a0(1−4n)
4
√
3

.
These make the Ricci scalar positive after its zero crossing
at the contracting era. In particular, the zero crossing (from
negative to positive values) of the Ricci scalar occurs before
the instant of the bounce.

• C5: ωeff(tp) = −0.957±0.080, to confront the theoretical ex-
pectations of the dark energy EoS with the Planck+SNe+BAO
results.

In order to better understand the above constraints on the
model parameters, we give contour plots in Fig. 2 depicting the
allowed regions of the parameters. The aforesaid constraints from
C1 to C5 are taken care in Fig. 2 which actually demonstrates
he variation of ts vs. a0 for three different set of values of α
and n, in particular we take — (α, n) = (1.2, 0.185), (α, n) =

( 43 , 0.185) and (α, n) = (1.5, 0.185) respectively. The value n =

.185 is motivated due to the fact that this certain value of n
eads to the central value of the spectral index of scalar curvature
erturbation, as we will show in Section 4 during the analysis the
osmological perturbation.
Keeping the parameter constraints in mind, we further give

he plots of the background H(t), R(t) and ωeff(t) (with respect
o cosmic time) by using Eqs. (10) and (11), see Figs. 3 and 4.
he parameter values are considered as n = 0.185, α = 4/3 and
s = 30 in getting the plots, which are within the green region
f Fig. 2 and thus are allowed in the present context. With such
alues of n, α, ts, the condition C4 gives 0.08 < a0 < 0.33 while
he C5 leads to a0 > 0.12. Combining these two, one may take
.12 < a0 < 0.33 to satisfy both the C4 and C5, and consequently
e consider a0 = 0.30 in the plots. Actually this specific value
f a0 (along with n = 0.185, α = 4/3 and ts = 30) leads
o ωeff(tp) = −0.997, which is in agreement with [92] where
he authors considered an exponential F(R) model to explain
he dark energy model, (here it may be mentioned that such
alue of current ωeff is also consistent with the holographic dark
nergy model, see [93]). Fig. 3a clearly depicts that the Hubble
arameter becomes zero and shows an increasing behaviour with
ime (i.e Ḣ > 0) near t ≈ 0, which indicates the instant of
non-singular bounce. In particular, t ≈ −0.09By is the time
hen the bounce occurs (see Fig. 3b), which is consistent with
he arguments of Section 3.1 where we realized a non-singular
ounce at some negative t . In regard to the evolution of the Ricci
calar, Fig. 4a demonstrates that R(t) starts from 0− at asymptotic
ast. The negative values of R(t) during the asymptotic past is
ue to Eq. (12) with n < 1/4. However as the cosmic time
ncreases, the Ricci scalar gets a zero crossing from negative to
ositive values at the contracting era. In particular, such zero
rossing of R(t) happens before the bounce occurs and after that
ero crossing the Ricci scalar seems to be positive throughout the
osmic time. This, in fact, is in agreement with the constraint C4
s mentioned above. Here we would like to mention that both
he Hubble parameter and the Ricci scalar diverge at t = ts =

0By (recall we consider ts = 30By in the plots), which in turn
efers to a Type-I singularity at t = ts. However as evident from
he figures that the occurrence of the Type-I singularity is far
way from the present age of the universe and thus we argue
hat the present model satisfactorily describes a singularity free
osmological evolution of the universe upto t ≳ tp. Coming to
he evolution of the effective EoS parameter, the red curve of
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Fig. 2. The contour regions of ts (in the unit of By.) vs. a0 for three different set of values of α and n, in particular — (α, n) = (1.2, 0.185), (α, n) = ( 43 , 0.185) and
(α, n) = (1.5, 0.185) respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. The above figure depicts the time evolution of (a) the Hubble parameter H(t) and (b) the zoomed-in version of H(t) near the bounce. Both the plots correspond
to n = 0.185, α = 4/3, ts = 30 and a0 = 0.30. Moreover the shaded region in the left plot corresponds to the cosmic time larger than the present age of the
universe, i.e t > tp ≈ 13.5By.

Fig. 4. The above figure depicts the time evolution of (a) the Ricci scalar R(t) and (b) the EoS parameter ωeff(t). Both the plots correspond to n = 0.185, α = 4/3,
ts = 30 and a0 = 0.30. Moreover the shaded region in the plots correspond to the cosmic time larger than the present age of the universe, i.e t > tp ≈ 13.5By. In
the right plot, the black, yellow and blue curve correspond to ωeff = 0,− 1

3 ,−0.997 respectively. The curve ωeff = 0 helps to investigate whether the present model
exhibits a matter-like dominated epoch during some regime of cosmic time, the curve ωeff = −1/3 is to demonstrate the accelerating or decelerating stages of the
universe and the ωeff = −0.997 curve reveals that the effective EoS of the present model matches with the Planck results at the present epoch i.e at t = 13.5By.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

8
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Fig. 5. The above figure depicts- (a) the time evolution of F (R(t)) and (b) the F (R) vs. R. The initial condition during this numerical analysis is considered to be
(R(t)) = (R(t)/R0)

ρ
+ (R(t)/R0)

δ with R0 = −1(By)−2 , recall the parameter R0 is negative, as discussed after Eq. (16). The right plot is obtained from the parametric
lot of F (R(t)) and R(t). Both the plots correspond to n = 0.185, α = 4/3, ts = 30 and a0 = 0.30. (For interpretation of the references to colour in this figure legend,
he reader is referred to the web version of this article.)
ig. 4b represents the weff (t) for the present model while the
ellow one of the same is for the constant value −

1
3 (we will keep

he yellow graph to investigate the accelerating or decelerating
ra of the Universe). Fig. 4b clearly demonstrates that near the
ounce i.e. near t ≈ 0, the EoS parameter diverges from the
egative side, however this is expected because at the bounce
he Hubble parameter itself becomes zero and in turn makes the
eff = −1 −

2Ḣ
3H2 → −∞. Then after the bounce, weff crosses

he value −
1
3 leading to a transition from a bounce to a deceler-

ating phase of the Universe, and during the deceleration epoch,
the EoS parameter becomes zero during an epoch indicating a
matter-like dominated Universe. The deceleration era continues
till t ≈ 8.5By when the EoS parameter again crosses the value −

1
3

nd thus the Universe transits from a stage of deceleration to a
tage of acceleration which, in turn, is identified with the present
ark energy epoch. Therefore, the present model may provide an
nified scenario of certain cosmological epochs from bounce to
ate-time acceleration followed by a matter-like dominated epoch
n the intermediate regime. Moreover, the present value of the
ark energy EoS parameter seems to be ωeff(tp) ≃ −0.997 from
he Fig. 4b

(
the blue curve is for the constant value −0.997, that

oincides with the red one at t = tp ≈ 13.5By
)
, which is indeed

onsistent with the Planck-2018+SNe+BAO results [91].
The remaining task is to determine the form of F (R) from the

ravitational Eq. (5), which leads to such background cosmolog-
cal evolution of the universe. In accordance the form of H(t) in
q. (10), the F(R) gravitational equation may not be solved ana-
ytically and thus we will solve it numerically. For this purpose,
q. (5) is re-written in terms of cosmic time as,

(t)Ṙ(t)
dF

dt2
−

{
ḢṘ + H2Ṙ + HR̈

} dF
dt

+
1
6
Ṙ2(t)F (t) = 0 , (35)

where F (t) = F (R(t)). Using the form of H(t) from Eq. (10)
along with the expression R(t) = 12H2

+ 6Ḣ , we numerically
solve Eq. (35) for F = F (t) during a wide range of cosmic
time, see Fig. 5a. The initial condition of this numerical analysis
is considered to be F (R(t)) = (R(t)/R0)

ρ
+ (R(t)/R0)

δ , i.e the
analytic form of F (R(t)) during the late contracting era is taken
as the initial condition of the numerical solution of Eq. (35).
Such numerical solution of F = F (t) along with the expression
of R = R(t) (see Eq. (11)) lead to the form of F (R) (by using
‘‘parametric plot’’ in MATHEMETICA), see Fig. 5b. Actually the
form of F (R) is demonstrated by the red curve, while the green
one represents the Einstein gravity. Fig. 5b clearly depicts that
the F(R) in the present context matches with the Einstein gravity
9

as the Ricci scalar approaches to the present value, while the F(R)
seems to deviate from the usual Einstein gravity, when the scalar
curvature takes larger and larger values. It is evident that F ′(R)
is positive, which, as we will show in Section 4, is connected
to the stability of the primordial perturbation near the bounce;
moreover F ′(R) > 0 also indicates that the model is free from the
Ostrogradsky instability.

Here we would like to mention that in regard to the back-
ground evolution, the effective EoS parameter at distant past is
given by ωeff = −1+

1
3n which is indeed less than unity due to the

aforementioned range of n that makes the observable quantities
viable with the Planck results. In effect, the anisotropic energy
density grows as a−6 during the contracting era and thus the
background evolution in the contracting stage becomes unstable
to the growth of anisotropies, which is known as BKL instabil-
ity [94]. Thereby like many other bounce models, the present
model is suffered from the BKL instability. However on contrary,
in the ekpyrotic bounce scenario, the bouncer field decays more
faster than the anisotropic energy density, by which the BKL
instability can be resolved [22,24,95,96]. Therefore it may be
an interesting avenue to unify an ekpyrotic bounce with a dark
energy epoch in some appropriate modified theories of gravity,
which we expect to address in future work. Moreover the Chern–
Simons F(R) gravity can be extended by axion DM, as considered
in [97,98] in the context of inflationary background spacetime.
The possible effects of DM may also be included in the current
unified scenario of bounce and dark energy epochs, which will
be considered elsewhere.

4. Cosmological perturbation

In this section, we perform the cosmological perturbation of
the background spacetime in the present context and conse-
quently determine various observable quantities like scalar spec-
tral index, tensor to scalar ratio etc. In a bouncing scenario, the
Hubble parameter vanishes and thus the comoving Hubble radius
(defined by rh = 1/(aH)) diverges at the instant of bounce.
However the asymptotic behaviour of the Hubble radius may be
different in different bounce models, which qualitatively differ
various bounce model(s) in regard to the generation era of the
primordial perturbation. In some bounce models (for example,
the matter bounce scenario), the Hubble radius monotonically
increases with time at late contracting era and asymptotically
diverges at t → −∞, due to which the perturbation modes in
such bounce models generate at deep contracting era where all
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he perturbation modes lie within the horizon. On other hand,
here may exist some bounce models (see [28]) where the Hubble
adius decreases with time and asymptotically goes to zero at
→ −∞; in such scenario, the primordial perturbation generate
ear the bounce where the Hubble horizon has an infinite size to
ontain all the perturbation modes within it.
In the present context, the scale factor at late contracting era

ehaves as a(t) ∼ |t|2n and thus the Hubble radius goes as
h ∼ |t|1−2n. Here we need to recall that n < 1/4 (see the
forementioned condition C1), due to which the Hubble radius
iverges at t → −∞. This makes the generation era of the
rimordial perturbation at the early contracting stage within the
eep sub-Hubble radius. We would like to mention that the
cale factor is asymmetric with respect to the bounce point, in
articular, unlike to the fact that the Hubble radius diverges at
→ −∞, it monotonically decreases with cosmic time at the late
tage of the expanding era. Actually, such decreasing behaviour
f the Hubble radius ensures a dark energy epoch of the present
niverse.

.1. Scalar perturbations

The scalar perturbation of FRW background metric is defined
s follows,

s2 = −(1 + 2Ψ )dt2 + a(t)2(1 − 2Ψ )δijdxidxj , (36)

here Ψ (t, x⃗) denotes the scalar perturbation. Here we are work-
ng in the comoving gauge, in which case the curvature pertur-
ation (R(t, x⃗)) becomes identical to the Ψ (t, x⃗) and thus we
an proceed with the perturbation variable Ψ (t, x⃗). The perturbed
ction up to Ψ 2 order is [74,99,100],

Sψ =

∫
dtd3x⃗a(t)z(t)2

[
Ψ̇ 2

−
1
a2
(∂iΨ )

2
]
, (37)

here z2(t), in the present context of Chern–Simons corrected
F(R) gravity theory, has the following expression [74],

z2(t) =
a2(t)

κ2
(
H(t) +

1
2F ′(R)

dF ′(R)
dt

)2

{
3

2F ′(R)

(
dF ′(R)
dt

)2}
. (38)

s it can be observed from the above form of z(t), the Chern–
imons (CS) term does not affect the scalar perturbation; due to
he reason that it is not possible to form a scalar energy momen-
um tensor nor vector or symmetric tensor, which contains the
evi-Civita tensor and scalar derivatives only [74]. However the
S term indeed affects the tensor type perturbation, which we
ill demonstrate in the next section. Coming back to Eq. (37),

t is evident that the speed of the scalar perturbation waves (or
he sound speed) is unity, which indicates the absence of the
uperluminal modes from the present model, or equivalently we
ay argue that the model is free from the gradient instability. The
tability of the scalar perturbations is ensured from the condition
2(t) > 0 which along with Eq. (38) leads to F ′(R) > 0. We have

the expression of F ′(R) at contracting stage in Eq. (16), which is
indeed positive due to n < 1/4 — this indicates the stability of
the scalar perturbation during the contracting stage at where the
perturbation modes generate. Moreover the numerical solution
of F (R) in Fig. 5 clearly indicates that the F ′(R) is positive during
ide range of cosmic time, which makes the scalar perturbations
table in the present context.
Here we are interested to determine various observable quan-

ities like the scalar spectral index and tensor-to-scalar ratio
hich are eventually evaluated at the time of horizon crossing
f the large scale modes. Due to the fact that the Hubble radius
iverges at t → −∞, the large scale modes cross the horizon
10
at deep contracting stage (later we will explicitly calculate the
horizon crossing instant of the large scale modes) where the
Hubble parameter and F (R) follow Eqs. (12) and (14) respectively.
hereby using such expressions of H(t) and F (R), we determine
arious terms present in the expression of z(t) (see Eq. (38)) as,

a(t)(
H(t) +

1
2F ′(R)

dF ′(R)
dt

) =
an0 (12n(4n − 1))n+1/2

(−R)n+1/2

×

⎧⎪⎪⎨⎪⎪⎩2n +

(1 − ρ)
[
1 +

δ(δ−1)
ρ(ρ−1)

(
R
R0

)δ−ρ]
[
1 +

δ
ρ

(
R
R0

)δ−ρ]
⎫⎪⎪⎬⎪⎪⎭

−1

,

and

3
2F ′(R)

(
dF ′(R)
dt

)2

= |R0|

(
R
R0

)ρ

×

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ρ(1 − ρ)2

[
1 +

δ(δ−1)
ρ(ρ−1)

(
R
R0

)δ−ρ]2

2n(1 − 4n)
[
1 +

δ
ρ

(
R
R0

)δ−ρ]
⎫⎪⎪⎪⎬⎪⎪⎪⎭ .

where, recall, R(t) is negative at late contracting era due to n <
/4 and thus (−R)n+1/2 present in the previous expression is real.

Consequently z(t) takes the following form,

z(t) =

{
an0|R0|

n [12n(1 − 4n)]n

κ (R/R0)
n+1/2−ρ/2

}
×

(
P(R)
Q (R)

)
(39)

here P(R) and Q (R) are defined as follows,

(R) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
√
ρ(1 − ρ)

[
1 +

δ(δ−1)
ρ(ρ−1)

(
R
R0

)δ−ρ]
[
1 +

δ
ρ

(
R
R0

)δ−ρ]1/2

⎫⎪⎪⎪⎬⎪⎪⎪⎭ , (40)

nd

(R) =

⎧⎪⎪⎨⎪⎪⎩2n +

(1 − ρ)
[
1 +

δ(δ−1)
ρ(ρ−1)

(
R
R0

)δ−ρ]
[
1 +

δ
ρ

(
R
R0

)δ−ρ]
⎫⎪⎪⎬⎪⎪⎭ . (41)

Eq. (37) clearly indicates that Ψ (t, x⃗) is not canonically nor-
malized and to this end we introduce the well-knownMukhanov–
Sasaki variable as v = zℜ (= zΨ as we are working in the comov-
ing gauge). The corresponding Fourier mode of the Mukhanov–
Sasaki variable satisfies,

d2vk
dη2

+

(
k2 −

1
z(η)

d2z
dη2

)
vk(η) = 0 , (42)

where η =
∫
dt/a(t) is the conformal time and vk(η) is the

Fourier transformed variable of v(t, x⃗) for the kth mode. Eq. (42)
may not be solved analytically in general, as z(η) depends on the
background evolution. However the equation can be solved at late
contracting era, as we now demonstrate. The conformal time η is
related to the cosmic time as, η(t) =

1
an0(1−2n) t

1−2n for n ̸= 1/2;
since the parameter n is constrained to be less than 1/4, we can
safely work with this expression of η(t). Using the η = η(t), we
can express the Ricci scalar as a function of the conformal time,

R(η) =
1

η2/(1−2n)

{
12n(1 − 4n)[
n

]2/(1−2n)

}
∝

1
η2/(1−2n) (43)
|R0| a0(1 − 2n)
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aving this in mind, we can express z(η) from Eq. (39) in terms
f η as follows,

(η) ∝

(
P(η)
Q (η)

)
× η

2n+1−ρ
1−2n (44)

where P(η) = P(R(η)) and Q (η) = Q (R(η)), with P(R), Q (R)
are given in Eqs. (40), (41) respectively. The above expression of
z = z(η) yields the expression of 1

z
d2z
dη2

, which is essential for the
ukhanov–Sasaki equation,

1
z
d2z
dη2

=
ξ (ξ − 1)
η2[

1 +
2δ(δ − ρ)

{
(1 − ρ)2 + 2n(1 + ρ − δ)

}
ρ(1 − ρ)(4n − ρ)(2n + 1 − ρ)

(
R
R0

)δ−ρ]
(45)

ith ξ =
(2n+1−ρ)
(1−2n) . Recall ρ =

1
4

[
3 − 2n −

√
1 + 4n(5 + n)

]
and

=
1
4

[
3 − 2n +

√
1 + 4n(5 + n)

]
, which clearly indicate that

− ρ is a positive quantity. Thus the term containing (R/R0)
δ−ρ

ithin the parenthesis in Eq. (45) can be safely considered to be
mall during the late contracting era as R → 0 at t → −∞. As a
result, 1

z
d2z
dη2

becomes proportional to 1/η2 i.e., 1
z

d2z
dη2

= σ/η2 with,

= ξ (ξ−1)

[
1 +

2δ(δ − ρ)
{
(1 − ρ)2 + 2n(1 + ρ − δ)

}
ρ(1 − ρ)(4n − ρ)(2n + 1 − ρ)

(
R
R0

)δ−ρ]
.

(46)

which is approximately a constant in the era, when the primordial
perturbation modes generate deep inside the Hubble radius. In
effect along with the fact that c2s = 1, the Mukhanov Eq. (42) can
be solved as follows,

v(k, η) =

√
π |η|

2

[
c1(k)H (1)

ω (k|η|) + c2(k)H (2)
ω (k|η|)

]
, (47)

ith ω =

√
σ +

1
4 and c1 and c2 are integration constants which

an be determined from the initial Bunch–Davies condition. The
onsideration of Bunch–Davies vacuum initially, leads to these
ntegration constants as c1 = 0 and c2 = 1 respectively. Using the
olution of vk(η), we immediately evaluate the power spectrum
defined for the Bunch–Davies vacuum state) corresponding to
he kth scalar perturbation mode, which is defined as follows,

Ψ (k, η) =
k3

2π2
|Ψk(η)|2 =

k3

2π2

⏐⏐⏐⏐√π |η|

2z(η)
H (2)
ω (k|η|)

⏐⏐⏐⏐2 (48)

he horizon crossing of the mode k is given by k = |aH| which,
ue to Eq. (12), take the following form,

= an0

⏐⏐⏐⏐⏐ 2n
t1−2n
h

⏐⏐⏐⏐⏐ =
1

|ηh|

(
2n

1 − 2n

)
, (49)

here the suffix ‘h’ denotes the horizon crossing instant and in
he second expression, we use the aforementioned relation of
= η(t). Eq. (49) leads to the horizon crossing time for the large
cale modes, in particular for k = 0.002 Mpc−1 (around which
we will determine the observable quantities), as

|ηh| =

(
2n

1 − 2n

)(
1

0.002

)
Mpc ≈ 1017s ≈ −10By . (50)

herefore, the large scale modes crosses the horizon at ∼ −10By,
.e at deep contracting era. This justifies our consideration to use
he late contracting expressions of H(t) and F (R) (from Eqs. (12)
and (14)) to evaluate the observable quantities. At the horizon
crossing of the large scale modes, the Ricci scalar acquires |R| ∼

10−3By−2. Moreover, in the present context, the sub-Hubble and
11
super-Hubble scale from Eq. (49) are given by,

k |η| >
2n

(1 − 2n)
; sub Hubble scale

|η| <
2n

(1 − 2n)
; super Hubble scale (51)

espectively. Here we would like to mention that the factor
n/(1− 2n) is less than unity for n < 1/4 (see the condition C1),

and thus the superhorizon limit can be equivalently expressed as
k |η| ≪ 1. In such superhorizon limit, the scalar power spectrum
f Eq. (48) becomes,

Ψ (k, η) =

[
1
2π

1
z|η|

Γ (ω)
Γ (3/2)

]2 (
k|η|
2

)3−2ω

. (52)

y using Eq. (Eq. (52)), we can determine the spectral index of
he primordial curvature perturbations (denoted by ns). Before
roceeding to calculate ns, we will consider first the tensor power
pectrum, which is necessary for evaluating the tensor-to-scalar
atio.

.2. Tensor perturbation

In this section we consider the tensor perturbation on the FRW
etric background which is defined as follows,

s2 = −dt2 + a(t)2
(
δij + hij

)
dxidxj , (53)

here hij(t, x⃗) is the tensor perturbation. The variable hij(t, x⃗) is
tself a gauge invariant quantity, and the tensor perturbed action
p to quadratic order is given by [74,99,100],

Sh =

∑
L,R

∫
dtd3x⃗a(t)zL,R(t)2

[
ḣijḣij

−
1
a2

(
∂lhij

)2]
, (54)

where the suffix ‘L’ and ‘R’ characterize the polarization of the
tensor perturbation, in particular the left and right polarization
states respectively. The factor zL,R(t), in the Chern–Simons F(R)
theory i.e the case of the present context, has the following
form [74],

z2L (t) =

(
1
κ

)
a2(t)F ′(R)

{
1 −

2ν̇(R)k
aF ′(R)

}
,

z2R (t) =

(
1
κ

)
a2(t)F ′(R)

{
1 +

2ν̇(R)k
aF ′(R)

}
, (55)

with ν(R) being the CS coupling function (see Eq. (1)) and an
overdot denotes d

dt . It may be observed that the CS term has con-
siderable effects on the tensor perturbed action or equivalently
on the dynamical evolution of the tensor perturbation variable.
In particular, due to the presence of ν(R), the left and right
polarization modes of gravity waves evolve differently, unlike to
the case of vacuum F(R) model where both the tensor polarization
get similar evolution. Such difference of the tensor perturbation
evolution between the CS corrected F(R) and the vacuum F(R)
theory reflect on the primordial observable quantity, particularly
on the tensor to scalar ratio, as we will demonstrate at some
stage.

Eq. (54) depicts that the speed of the tensor perturbation
propagation is c2T = 1 for the polarization states. Here we would
o mention that the unit speed of the gravitational waves is
onsistent with the event GW170817, according to which the
ravitational waves have same speed with the electromagnetic
aves, i.e unity in natural units. In order to evaluate zL,R(t), we
onsider ν(R) (having the mass dimension [−2]) to be a power
aw form of the Ricci scalar, i.e

(R) =
1

(
R

)m+1

, (56)

|R0| (m + 1) R0
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ith m being a parameter. As demonstrated earlier, the large
cale modes cross the Hubble horizon during the deep contracting
ra (in particular, ∼ −1017s), due to which we consider the
ubble parameter and F (R) from Eqs. (12) and (14) respectively.
n effect and in conjunction with the above form of ν(R), we
etermine various terms present in zL,R(t) in Eq. (55):

(t)
√
F ′(R) =

an0 [12n(1 − 4n)]n

|R0|
n (R/R0)

n+1/2−ρ/2

{
1 +

δ

ρ

(
R
R0

)δ−ρ}1/2

(57)

nd

2ν̇(R)k
aF ′(R)

=
8n

ρ [12n(1 − 4n)]

(
R
R0

)3−ρ+m

(58)

respectively. To derive the above expression, the
mode-momentum k is evaluated from its horizon crossing con-
dition as,

k = |aH| =
2nan0 |R0|

−n+1/2

[12n(1 − 4n)]−n+1/2

(
R
R0

)−n+1/2

. (59)

qs. (57) and (58) lead to the zL,R from Eq. (55) as,

L,R =

(
an0 [12n(1 − 4n)]n

|R0|
n (R/R0)

n+1/2−ρ/2

)
×

{
1 +

δ

2ρ

(
R
R0

)δ−ρ
∓

4n
ρ [12n(1 − 4n)]

(
R
R0

)3−ρ+m
}
, (60)

here we consider the leading order terms of (R/R0) as R
R0
< 1

during the horizon crossing of the primordial perturbation modes.
For convenience, we parametrize m = ρ − 3 + (δ − ρ)(1 − g) in
respect to a new parameter g . With such parametrization, Eq. (60)
becomes,

zL,R =

(
an0 [12n(1 − 4n)]n

|R0|
n (R/R0)

n+1/2−ρ/2

)
×

{
1 +

δ

2ρ

(
R
R0

)δ−ρ
∓

4n
ρ [12n(1 − 4n)]

(
R
R0

)(δ−ρ)(1−g)
}

. (61)

he parameter g reflects the possible effects of the CS coupling
unction in the above expression of zL,R. In the vacuum F(R)

theory, z(F ) =

(
an0[12n(1−4n)]n

|R0|n(R/R0)n+1/2−ρ/2

){
1 +

δ
2ρ

(
R
R0

)δ−ρ}
which, by

comparing with Eq. (61), clearly indicates that the difference
between the CS corrected F(R) and the vacuum F(R) theory is
controlled by g . Thereby it seems that the parameter g plays a
crucial role in the present context and thus we need to scan it
carefully before proceeding further. Depending on various values
of g , below we give a list of zL,R in the leading order of R/R0,

zL,R =

(
an0 [12n(1 − 4n)]n

|R0|
n (R/R0)

n+1/2−ρ/2

)
×

{
1 +

δ

2ρ

(
R
R0

)δ−ρ}
; for g < 0 (62)

L,R =

(
an0 [12n(1 − 4n)]n

|R0|
n (R/R0)

n+1/2−ρ/2

)
×

{
1 +

(
δ

2ρ
∓

4n
ρ [12n(1 − 4n)]

)(
R
R0

)δ−ρ}
; for g = 0 (63)

L,R =

(
an0 [12n(1 − 4n)]n

|R0|
n (R/R0)

n+1/2−ρ/2

)
×

{
1 ∓

4n
ρ [12n(1 − 4n)]

(
R
R0

)(δ−ρ)(1−g)
}

; for 0 < g < 1 (64)

ow we need to investigate qualitatively that which of the above
xpressions of zL,R will be appropriate for evaluating the observ-
ble quantities in the present context. For this purpose, we may
12
recall that the vacuum F(R) theory is not consistent with the
Planck results of primordial observable quantities in the back-
ground of a non-singular bounce where a(t) ∼ t2n during the
arly contracting era [52,56]. In particular, the scalar and tensor
erturbation amplitudes in vacuum F(R) bounce scenario become
omparable to each other and thus the tensor-to-scalar ratio
omes as order of unity, which is not compatible with the Planck
onstraint. Thereby to get a viable bounce scenario, either the ten-
or perturbation amplitude needs to be suppressed or the scalar
erturbation amplitude needs to be enhanced in comparison to
he vacuum F(R) theory so that the tensor-to-scalar ratio becomes
ess than unity and comes within the Planck constraint. In this
egard, comparing the above three expressions of zL,R with z(F ), we
may argue that in the present context of CS corrected F(R) theory,
the zL,R and consequently the tensor perturbation evolution get
considerably different than the vacuum F(R) case, when the pa-
rameter g lies within 0 < g < 1 (i.e Eq. (64)); thus for 0 < g < 1,
there is a possibility to get viable observable quantities in the
CS corrected F(R) model. Based on these arguments, we consider
0 < g < 1, in which case the zL,R is given by Eq. (64).

Similar to scalar perturbation, the Mukhanov–Sasaki variable
for tensor perturbation is defined as vλ = zλ hλ (with λ = L, R)
which, upon performing the Fourier transformation, satisfies the
following equation,

d2vλ(k, η)
dη2

+

(
k2 −

1
zλ(η)

d2zλ
dη2

)
vλ(k, η) = 0 . (65)

By using Eq. (Eq. (43)), we evaluate zλ(η) and 1
zλ(η)

d2zλ
dη2

and these
read,

zL,R ∝

{
1 ∓

4n
ρ [12n(1 − 4n)]

(
R
R0

)(δ−ρ)(1−g)
}

× η(2n+1−ρ)/(1−2n)

(66)

and

1
zL,R

d2zL,R
dη2

=
ξ (ξ − 1)
η2

×

{
1 ∓

16n(δ − ρ)(1 − g)
ρ(4n − ρ) [12n(1 − 4n)]

(
R
R0

)(δ−ρ)(1−g)
}

(67)

respectively. Due to the fact that δ−ρ is positive, the variation of
the term in the parenthesis in Eq. (Eq. (67)), can be regarded to
be small in the low-curvature regime or equivalently during the
early contracting stage and thus 1

zλ
d2zλ
dη2

becomes proportional to

1/η2 that is 1
zλ

d2zλ
dη2

= σλ/η
2 (with λ = L, R), where

σL,R = ξ (ξ−1)

{
1 ∓

16n(δ − ρ)(1 − g)
ρ(4n − ρ) [12n(1 − 4n)]

(
R
R0

)(δ−ρ)(1−g)
}
,

(68)

nd recall ξ =
(2n+1−ρ)
(1−2n) . The above expressions yield the tensor

power spectrum, defined with the initial Bunch–Davies vacuum
state at the deep sub-Hubble radius, so we have,

Ph(k, η) = PL(k, η) + PR(k, η) (69)

ith

L(k, η) =

[
1
2π

1
zL|η|

Γ (ΩL)
Γ (3/2)

]2 (
k|η|
2

)3−2ΩL

,

PR(k, η) =

[
1 1 Γ (ΩR)

]2 (
k|η|

)3−2ΩR

. (70)

2π zR|η| Γ (3/2) 2



S.D. Odintsov, T. Paul, I. Banerjee et al. Physics of the Dark Universe 33 (2021) 100864

t
v
w
a
r
P

w
r
i
s

n

d
s

−

R

R
0
o

Fig. 6. PL/PR vs. k |η| in the superhorizon scale, i.e during k |η| < 2n
1−2n . The plot

corresponds to n = 0.185 and g = 0.5.

The factorΩL,R =

√
σL,R +

1
4 where σL,R is defined in Eq. (Eq. (68)).

It may be observed that the left and right polarization modes of
the tensor perturbation have different power spectra at a given
(k, η), due to the fact that ΩL ̸= ΩR which actually inherits
from the CS coupling function. In particular, Eq. (68) indicates
ΩR > ΩL, which in turn makes PL(k, η) suppressed compared to
he PR(k, η) in the superhorizon scale. We give the plot of PL/PR
s. k |η| in the superhorizon limit, i.e during k |η| < 2n

1−2n , in Fig. 6
hich corresponds to n = 0.185 and g = 0.5 (such values of n
nd g are compatible in respect to the Planck results of ns and
, as we will demonstrate soon). Fig. 6 clearly depicts that the
L(k, η) is indeed suppressed than the PR(k, η).
Now we can explicitly confront the model at hand with the

latest Planck observational data [63], so we calculate the spec-
tral index of the primordial curvature perturbations ns and the
tensor-to-scalar ratio r , which are defined as follows,

ns = 1 +
∂ ln PΨ
∂ ln k

⏐⏐⏐⏐
h.c
, r =

Ph(k, η)
PΨ (k, η)

⏐⏐⏐⏐
h.c

, (71)

here PΨ (k, η) and Ph(k, η) are obtained in Eqs. (52) and (69)
espectively, and the suffix ‘h.c’ denotes the horizon crossing
nstant when the mode k satisfies k = |aH|. From Eq. (52), the
calar spectral index comes with the following expression,

s = 4 −
√
1 + 4σ (72)

with σ being given in Eq. (46).
It may be noticed that ns depends on Rh

R0
and n, while r

depends on Rh
R0
, n and g . The dependency of r on the parameter g

comes from the fact that the CS coupling function, which contains
the parameter g , affects the tensor perturbation only. The Rh
enotes the Ricci scalar at the horizon crossing instant of the large
cale modes (in particular k = 0.002 Mpc−1) on which we are
interested to evaluate the observable quantities. As mentioned
earlier, the mode k = 0.002 Mpc−1 crosses the horizon at th ≈

10By and thereby the corresponding Ricci scalar is given by
(th) =

−12n(1−4n)
t2h

≈ −0.12n(1− 4n). Taking R0 = −1By−2 (recall

0 is negative, see the discussion after Eq. (16)), we get Rh
R0

=

.12n(1 − 4n). Thus, as a whole, the spectral index depends only
n n and the tensor-to-scalar ratio depends on n and g . With this

information, we now directly confront the theoretical expressions
of scalar spectral index Eq. (72) and tensor-to-scalar ratio Eq. (71)
derived from the present model with the Planck 2018 constraints
[63]. In particular, we estimate the allowed values of n and g
which in turn can give rise to n and r in agreement with the
s
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Planck data. This is presented in Fig. 7 where we compute ns and
r for three choices of n, viz. n = 0.1855 (blue point), n = 0.185
(black point) and n = 0.1845 (red point) with g = 0.5. The
allowed values of ns and r from Planck data within 1 − σ and
2−σ constraints are illustrated by the yellow and the blue regions
respectively in Fig. 7. We note that with g = 0.5 and all the
three aforesaid values of n, the model estimated ns and r are
within the 1 − σ or 2 − σ constraints reported by Planck 2018
data. Thereby in the present context, the scalar spectral index and
the tensor-to-scalar ratio are simultaneously compatible with the
latest Planck 2018 constraints. On contrary, here we would like to
mention that in the vacuum F(R) model, the observable quantities
like ns and r are not simultaneously compatible with the Planck
results in the background of a non-singular bounce where a(t) ∼

t2n during early contracting stage. In particular, the scalar and
tensor perturbation amplitudes in the vacuum F(R) bounce model
become comparable to each other and thus the tensor-to-scalar
ratio comes as order of unity which is excluded from the Planck
data. However, in the Chern–Simons corrected F(R) theory, the
CS coupling function considerably affects the tensor perturbation
evolution, keeping intact the scalar type perturbation with that
of in the vacuum F(R) case. In effect, the tensor perturbation
amplitude in the Chern–Simons generalized F(R) bounce model
gets suppressed compared to the vacuum F(R) case, and as a
result, the tensor-to-scalar ratio in the present context becomes
less than unity and comes within the Planck constraints. Such
effects of CS coupling function on the tensor type perturbation
is in agreement with [85] where some of our authors showed
the similar effects of the CS term in the context of an inflationary
background spacetime. It has been showed in [85], that a simple
power-law F(R) inflationary model, in particular F (R) = R + αRn

(with n ≈ 1.817), without the CS term yields the correct value of
the scalar spectral index, but the tensor-to-scalar ratio comes as
r ≈ 0.24 which is excluded from the Planck data [63]; however
the inclusion of CS term in this F(R) model reduces the value
of the tensor-to-scalar ratio without affecting the scalar spectral
index, and thus the inflationary parameters of the said R+αRn

+CS
model become compatible with the observations.

Before concluding, here we would like to mention that in
regard to the observable parameters related to the early epoch of
the universe, we have evaluated the scalar spectral index (ns) and
tensor-to-scalar ratio (r) of the primordial perturbations, which
appears to be consistent with the Planck data, well within the
1-σ and 2-σ region, for 0.1845 ≲ n ≲ 0.1855 (recall, n appears
in the power exponent of the scale factor). Therefore, in future,
if ns and r are further improved by the Planck collaborations,
the parameter n and hence the bouncing behaviour of the scale
factor can be better constrained. Beside the scalar spectral index
and the tensor-to-scalar ratio (that are related to the two point
correlators of scalar and tensor perturbations respectively), the
bounce scenario can also be examined from the corresponding
higher point correlators of primordial perturbations, in particular,
by estimating the theoretical expectations of various non-linear
parameters (like fNL, τNL etc, which represent the amplitudes of
the bispectrum and trispectrum respectively [63,101,102]) with
the respective Planck data. Furthermore, it is also important to
study the signatures of lower scale modes of tensor perturbation,
and investigate them with respect to the sensitivity of various
gravitational waves (GWs) observatories. The proposed GWs ob-
servatories may include advanced LIGO (10 − 103 Hz), ET (1 −

104 Hz), BBO (10−3
−10 Hz), DECIGO (10−3

−1 Hz), eLISA (10−5
−

1 Hz), and SKA (10−9
− 10−6 Hz) [103–105]. The presence of the

parity violating Chern–Simons term in the model distinguishes
the evolution of the two polarization modes of tensor pertur-
bation and leads to the generation of chiral gravitational waves,
which may have non-trivial imprints on today’s GWs spectrum.
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Fig. 7. 1σ (yellow) and 2σ (light blue) contours for Planck 2018 results [63], on ns − r plane. Additionally, we present the predictions of the present bounce scenario
with n = 0.1855 (blue point), n = 0.185 (black point) and n = 0.1845 (red point).
herefore the evolution of primordial gravitational waves in the
ackground of the bounce scenario discussed here may be com-
ared with the future GWs spectrum from various observatories
o provide a unique way to constraint our model. We hope to
ddress these issues in our future work.

. Conclusion

In this work, we proposed an unified cosmological scenario
f a non-singular bounce to a dark energy (DE) epoch in the
ontext of Chern–Simons corrected F(R) gravity theory, where
he Chern–Simons coupling function is assumed to have a power
aw behaviour with the Ricci scalar. Using the reconstruction
echnique, we analytically determine the form of F(R) during the
ate contracting era. Using such analytic solution, and in addition,
y employing suitable boundary conditions, we numerically solve
he gravitational equation and evaluate the F(R) for the entire
ossible range of the cosmic time, which clearly depicts that
he F(R) matches with the Einstein gravity in the low curvature
egime, while it deviates from the usual Einstein gravity as the
calar curvature acquires larger and larger values. The form of
(R) leads to an unified cosmological scenario of a non-singular
ounce to a dark energy epoch, in particular, from a bounce
o a deceleration stage having a matter-like evolution during
ome regime of the deceleration stage and from the deceleration
hase to a late time acceleration era. The effective EoS of the
ark energy epoch acquires the value ωeff = −0.997 at present
ime, which is indeed compatible with the results provided by
lanck+SNe+BAO data. Moreover the model predicts a finite time
uture singularity of the universe around 30By when the scale
actor, the effective energy density and the effective pressure
re found to diverge, and thus the singularity is a Type-I type
f singularity. However, since the present age of our universe
s tp ≈ 13.5By, i.e the Type-I singularity occurs at far future
rom the present age, we may argue that the current model
atisfactorily describes a singular free evolution of the universe
p-to the cosmic time t ≳ tp. Here it deserves mentioning that the
ounce in the present context is an asymmetric bounce, in par-
icular, the comoving Hubble radius monotonically increases with
osmic time and asymptotically diverges at distant past, while it
ecreases with time at the present epoch of the universe. Due to
14
such evolution of the Hubble horizon, the primordial perturba-
tion modes generate at distant past far away from the bounce
when all the relevant perturbation modes lie within the hori-
zon. Correspondingly the scalar and tensor perturbations power
spectra are determined, which in turn leads to the primordial
observable quantities like the spectral index of the scalar cur-
vature perturbation (ns) and the tensor-to-scalar ratio (r). The
theoretical expectations of ns and r in the present context are
found to be simultaneously compatible with the latest Planck
2018 constraints. In this regard, the Chern–Simons term proves
to play an important role in making the observable quantities,
particularly the tensor-to-scalar ratio, consistent with the Planck
data. Actually in the case of vacuum F(R) model in the background
of a non-singular bounce, the scalar and tensor perturbation
amplitudes are comparable to each other and thus the tensor-to-
scalar ratio becomes order of unity which is indeed excluded from
the Planck results. However, in the F(R) model generalized by the
Chern–Simons term, the perturbations evolution get considerably
affected due to the presence of the CS term, in particular the
tensor perturbation amplitude gets suppressed and the scalar
perturbation remains intact compared to that of in the vacuum
F(R) case. As a result, the tensor-to-scalar ratio in the Chern–
Simons corrected F(R) bounce model becomes less than unity and
moreover it comes within the Planck constraints for a suitable
parametric regime.

In summary, the present model provides an unified cosmolog-
ical scenario of a non-singular bounce to viable dark energy epoch
in the Chern–Simons generalized F(R) theory, where the Chern–
Simons term plays a crucial role in regard to the compatibility of
the primordial observable quantities with the Planck results.
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