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Potential theory for a degenerate-type heat equation of the following type 

0  ,0  , ),()( 



 txtxfut

t

u
uL   

 was constructed in [1].  This equation has been investigated  in [1,3,4].  The aim of this paper is to 

study potentials of a degenerate diffusion equation. We consider the following degenerate diffusion 

equation: 
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Here and throughout the coefficient ],0[)( 1 TLt   is defined in ],0[ T  and satisfies one of the 

following conditions I and II: 

I. )(t  is non-negative and can be zero only at isolated points in ],0[ T ; 

II. )(1 t  defined by the formula 
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is positive for all ,0t which provides )(t  to be negative in an interval. 

We denote  
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If )(t  satisfies the condition I, then ),( tb is positive for all .0t  
Under the condition II the fundamental solution of (1) can be found by means of the Fourier 

transform xF . 

Lemma 1. The fundamental solution of the equation (1) can be represented as 
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  is the fundamental solution of the heat conduction operator  

(see [2, p.148] ), )(t is the Heaviside function. 

 The function (2) has the following properties 

1

mailto:mukhtarkarazym@gmail.com


1122 

 

   


,1
)(2

)(
),(

)(4

1

,
1

2

n
R

t

x

nan dxe
t

t
dxtx





  

)(),(, xtxan    with  0t  

that are similar to the fundamental solution of the heat conduction operator  (see [2, p.148] ). 

 Degenerate diffusion potential (under the condition I) with a density ),( txf can be defined 

by 
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Degenerate diffusion  potential (under the condition II) with a density )()( tx    (or  surface 

degenerate diffusion potential ) can be defined by
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where )),(,(),(,  tbxtx nbn   

It is well known that fbn *,  satisfies the equation (1). We  shall distinguish a class of 

densites ),( txf  for which the  degenerate diffusion potential exists. Let M  denote a  class of 

functions which are bounded in the strip ],0[ T and which vanish at 0t . 

 Theorem 1. Let )(t  satisfy the condition I. Then the following statements hold: 

1. ),( txV  belongs to the class M  for any Mtxf ),( ; 

2. ),( txV satisfies the estimate 
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3. ),( txV  is a distributional solution of (1) for all 
n

Rx , 0t  satisfying zero initial  

condition as  0t ; 

4. If 
2
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Rx  and 0t  and its deriratives up to the second order belong to the 

class M  and )()(  RCt , then )0()0( 12  tCtCV . 

Theorem 2.  Let )(t  satisfy the condition II. Then: 

1. ),()0(
txV  belongs to the class M  for any bounded function )(x ; 

2. ),()0(
txV satisfies the estimate 
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3. If )()( Cx , then the surface  potential ),()0(
txV satisfies the initial condition 
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4. If 
2

C  for all 
n

Rx  and 0t  and its deriratives up to the second order belong to the 

class M  and )()(  RCt ,  then )0()0(2)0(  tCtCV . 
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R. O'Neill [1] investigated the boundedness of the convolution operator 

 

in Lorentz spaces. 

In particular, the following inequality was obtained: for , , 

, and , one has 

. 

This theme was further developed in the works of Hunt [2], Yap [3], Blozinski [4], [5], [6], 

E. Nursultanov and S. Tikhonov [7], and other authors. 

The main goal of this work is to investigate the Young-O'Neil-type inequality in anisotropic 

Lorentz spaces. 

Let ,  be such that if , then , if , then 

, where . 

 is the anisotropic Lorentz space (see [8]), which is defined as the set of 

measurable, 1-periodic functions  with respect to each variable with finite norm 

, 

where  is the function obtained by applying a decreasing rearrangement of  

sequentially with respect to variables and for a fixed other variable. Here the expression 

, for  is understood as .  

Let be a measurable function locally integrable in . We define a function 

in as follows 
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