ӘОК 539.534.9; 621.039.542 ТіО₂-де латентті тректердің параметрлерін бағалауға арналған термиялық шың моделі

Өмірбекқызы Зейін¹, Аралбаева Гульнара² <u>zeiinomirbekkyzy@gmail.com</u>

¹Л.Н. Гумилев атындағы ЕҰУ студенті, Нұр-Сұлтан, Қазақстан ²Л.Н. Гумилев атындағы ЕҰУ аға оқытушысы Нұр-Сұлтан, Қазақстан Ғылыми жетекші – Аралбаева Г.М.

Кіріспе

Жылдам ауыр иондардың қатты денелермен өзара әрекеттесуін талдауда қолданылатын термиялық шың моделінде бір-бірінен ерекшеленетін екі тәсілді бөліп қарастыруға болады: серпімсіз және аналитикалық термиялық шың моделі. Осы екі модельді кеңінен қолдануға байланысты олардың сипатты ерекшеліктерін анықтау және салыстыру маңызды. Термиялық шыңның екі моделінің мұндай салыстырмалы талдауы ЖАИ (жылдам ауыр иондардың) қатты денемен өзара әрекеттесуінің эксперименталдық және теориялық зерттеулерінде маңызды болып табылады.

Термиялық шың моделін алғаш рет Десауэр ұсынып[1], оқшаулағыштар үшін Чадертон мен Монтегю-Поллок[2], ал металдар үшін Зейтц және Келлер[3] қайта қарады. Бұл модельдің негізгі идеясы мынада: кристалдық торға берілген энергия жылу беру механизмінің көмегімен сипатталуы мүмкін. Электрондардан торға жылу беру механизмі металдар мен диэлектриктер үшін әртүрлі. Электронды және атомдық жүйелер асты термодинамикалық тепе-теңдікті орнату уақыты олардың арасындағы релаксация уақытына қарағанда айтарлықтай аз болғандықтан, торлардың температурасы мен электрондардың температурасы туралы айтуға болады. Координаталардың цилиндрлік жүйесінде жылу беру процесі г ортасынан арақашықтыққа және t уақытына байланысты келесі байланысқан екі дифференциалдық теңдеулердің көмегімен сипатталады[4]:

$$C_{e}(T_{e})\frac{\partial T_{e}}{\partial t} = \frac{1}{r}\frac{\partial}{\partial r}\left[rK_{e}(T_{e})\frac{\partial T_{e}}{\partial r}\right] - g(T_{e} - T_{a}) + A(r)$$

$$C_{a}(T_{a})\frac{\partial T_{a}}{\partial t} = \frac{1}{r}\frac{\partial}{\partial r}\left[rK_{a}(T_{a})\frac{\partial T_{a}}{\partial r}\right] + g(T_{e} - T_{a})$$
(1.1)

мұндағы C(T), K(T), T — меншікті жылу сыйымдылық пен жылу өткізгіштіктің температуралық тәуелділігі, электрондық (е) және атомдық (а) жүйелер асты температурасы. A(r,t) — ионизация нәтижесінде электрондарға берілген энергияның кеңістіктік және уақытша таралуы, g — электрон-фонондық өзара әсерлесу константасы [5].

Термиялық шың моделінде жылдам ауыр иондардың қатты денелермен өзара әрекеттесуін талдауда пайдаланылатын бір-бірінен ерекшеленетін екі тәсілді бөліп көрсетуге болады:

1) Сенеш ұсынған[6, 7] аналитикалық термиялық шың моделі (a-TS), энергия электрондыдан атомдық жүйелер асты берілуін елеместен, дифференциалды теңдеудің аналитикалық шешімін береді (1.1). Бұл модель Тринкауспен қарастырылды[8].

2) Серпімсіз термиялық шың (iTS) моделі[9-16] жылу өткізгіштік дифференциалдық теңдеулер жүйесінің толық сандық шешімін береді (1.1)

Аналитикалық термиялық шың моделі. Аналитикалық термиялық шың моделінде, тректі қалыптастыру саласындағы температуралық таралуды анықтау кезінде, электронды және атомдық жүйелер асты энергия тасымалдау процесі түсіндіріліп, ол бойынша температуралық таралу Гаусс таралуы түрінде ұсынылуы мүмкін[17]. Бұл үлгіге сәйкес, трек аймағындағы температураның таралуы Гаусстық деп есептеледі:

$$\Delta T(r,t) = \frac{\gamma S_e}{\pi \rho \alpha a^2(t)} \cdot e^{-(r^2/a^2(t))}$$
(1.2)

мұндағы ρ және с – нысана материалының тығыздығы мен орташа меншікті жылусыйымдылығы, γ - энергияның берілу тиімділігі және a(0) температураның радиалды таралуының бастапқы ені. Сенеш[6] температуралық таралу өзінің максимумына жеткенде, тректің ең үлкен өлшемі t = 0 кезінде жетеді деп болжады, сондықтан $\Delta T(r,0) = T_m - T_{ir}$, мұндағы T_m және T_{ir} сәйкесінше балқу және сәулелендіру температурасы тек a(0) үшін ғана анықталады. Осыған байланысты, сәулелену температурасына байланысты тректердің радиустарын мына формула бойынша анықтауға болады:

$$R(T_{ir}) = a(0) \sqrt{\ln\left(\frac{\gamma S_e}{3\pi kn(T_m - T_{ir})a^2(0)}\right)}$$
(1.3)

мұндағы S_e , k, n, T_m , T_{ir} , энергияның меншікті ионизациялық шығындары, Больцман тұрақтысы, нысана материалы атомдарының концентрациясы, нысана материалының балқу температурасы және сәулелену температурасы; a(0), γ – термиялық шыңның аналитикалық моделінің параметрлері, көптеген оқшаулағыштар үшін тиісінше 4,5 нм және 0,4-0,17 тең (ион жылдамдығына байланысты). Түзілу шегі мынадай формула бойынша анықталады:

$$S_{et} = \frac{3\pi kn(T_m - T_{ir})a^2(0)}{\gamma}$$
(1.4)

Сенешке сәйкес, бастапқы гаусстық ені барлық материалдар үшін бірдей a(0) = 4.5 нм. Энергия беру тиімділігі тек бөлшектердің жылдамдығына байланысты. Төмен (E < 2

МэВ/нуклон) жылдамдық кезінде $\gamma \sim 0.4$, ал жоғары жылдамдық кезінде (E > 8МэВ/нуклон) иондар $\gamma \sim 0.17$. Осылайша, бұл модельде иондардың төмен және жоғары жылдамдықтарында әртүрлі оқшаулағышқа тән еркін параметр жоқ.

Демек, a-TS моделі t = 0 уақыт кезінде a(0) гаусстық ені S_{et} түзілу шегінен шығарылуы мүмкін болған жағдайда материалдардағы трек радиустарының сандық сипаттамасын береді . γ коэффициенті қатты фазадан сұйық фазаға өзгерту үшін қажетті энергияның жасырын жылуын ескермей, энергияның берілу тиімділігін анықтайды. Дегенмен, бұл модель атомдық жүйе асты температурасының бастапқы таралуын сипаттайды. Ол γ = 0,6 пайдалана отырып, Клаумюнзермен сәтті қолданылды[18].

Серпімсіз термиялық шың моделі. Термиялық шыңның серпімсіз моделінде ионның ұшып өту аймағында қозған электрондардың термиялық релаксация процестері және энергияның кристалдық тор иондарына ыстық электрондардан тасымалдануы карастырылады. беру жылуөткізгіштіктің байланысқан Жылу механизмі екі дифференциалдық теңдеулер жүйесінің көмегімен сипатталады[19]:

$$C_{e}(T_{e})\frac{\partial T_{e}}{\partial t} = \frac{1}{r}\frac{\partial}{\partial r}\left[rK_{e}(T_{e})\frac{\partial T_{e}}{\partial r}\right] - g(T_{e} - T_{a}) + A(r,t)$$

$$C_{a}(T_{a})\frac{\partial T_{a}}{\partial t} = \frac{1}{r}\frac{\partial}{\partial r}\left[rK_{a}(T_{a})\frac{\partial T_{a}}{\partial r}\right] + g(T_{e} - T_{a})$$
(1.5)

мұндағы C(T), K(T), T — меншікті жылу сыйымдылық пен жылу өткізгіштіктің температуралық тәуелділігі, электрондық (е) және атомдық (а) жүйелер асты температурасы. A(r,t) — ионизация нәтижесінде электрондарға берілген энергияның кеңістіктік және уақытша таралуы, g -электрон-фонондық өзара әсерлесу константасы, $g=D_eC_e/\lambda^2$.

Металл материалдар үшін серпімсіз термиялық шың моделіне i-TS тән белгілер келесідей[9-16,20]:

a) Энергияның жоғалуы Монте-Карло[22] әдісімен алынатын A(r,t) электрондарының радиалды және уақытша таралуымен сипатталады.

б) Жылу беру процесі Фурье теңдеулерімен сипатталады, олар координаталардың цилиндрлік жүйесінде шешіледі. Теңдеулердің сандық шешімі (1.1) ЖАИ-дан электрондық және атомдық жүйелер асты берілген энергияны есептеуге мүмкіндік береді. Есептеулердің бастапқы шекаралық шарттары сәулеленген тордың (T_0) температурасы немесе $E_i(T_0)$ ішкі энергия, және есептеулер орындалатын көлем болып табылады. Ішкі энергия меншікті жылусыйымдылықты 0 К-нен T_0 -ге дейін интегралдау жолымен есептеледі. Есептеу орындалатын қашықтық жеткілікті үлкен болуы тиіс (әдетте цилиндр радиусы ~200 нм).

в) Қозған электрондық жүйелер асты релаксациясы g электрон-фонондық байланыс константасымен[22, 33] сипатталатын электрон-электрондық және электрон-атомдық соқтығысулар себебінен өтеді деп болжанады. Бұл шама $\tau = C_e(T_e)/g$ еркін жүрістің электрон-фонондық орташа уақытымен және $\lambda^2 = D_e(T_e) \times \tau = K_e(T_e)/g$ еркін жүрістің электрон-фонондық орташа ұзындығымен байланысты , мұндағы $C_e(T_e)$ және $K_e(T_e)$ температура T_e кезіндегі электрондық (е) кіші жүйе үшін меншікті жылусыйымдылық пен жылуөткізгіштік[9,13,15].

г) Заттың өте қысқа уақыттағы қыздырылуынан, T_m балқу температурасы балқу процесін сипаттау үшін тиісті параметр болып табылмайды. Бұл фемтосекундты лазерлермен эксперименттерде дәлелденген [24], мұнда T_m балқу температурасында температураның өсуі тоқтамайды, T_m температурасынан жоғары өсуін жалғастырады. g электрондық-фонондық байланыс коэффициенті еркін параметр болып табылады, ол өз кезегінде басқа параметрлер

арқылы көрсетілуі мүмкін. Жартылай өткізгіш материалдар жағдайында g анықтаудың екі жолын пайдалануға болады. Мысалы, торлардың температурасы Дебая температурасынан кем болмаған жағдайда металдар үшін[25] жұмыста алынған формуланы қолдануға болады,

$$g = \frac{\pi^2 m_e n_e v_s^2}{6\tau_e(T_e)T_e} \tag{1.6}$$

мұндағы m_e - электрон массасы; n_e - электрондардың концентрациясы; υ_S - $\upsilon_S = 2\pi k_B T_d / (h \cdot 6\pi^2 n_a)$ формуласымен жазылған нысана материалындағы дыбыс жылдамдығы, мұндағы n_a - атом тығыздығы , k_B Больцман тұрақтысы, T_D Дебай температурасы және h Планк тұрақтысы; τ_e - электрондардың бос жүрісінің орташа уақыты.

Алайда, $\tau_e(T_e)$ анықтамасы қазіргі күнге дейін шешілмеген күрделі мәселе болып табылады. Шалаөткізгіштер үшін бірінші жақындау ретінде τ_e тұрақты және 10^{-16} - 10^{-15} с тең деп санауға болады.

Екінші жағынан, λ еркін жүріс ұзындығы арқылы g көрсетуге болады

$$\lambda^2 = D_e C_e / g = K_e / g \tag{1.7}$$

мұндағы D_e -термиялық диффузия коэффициенті.

Тринкаус және т.б.[8, 26] әзірленген модель арқылы жылдам ауыр иондармен сәулеленудің нәтижесінде аморфты металдардың[58] және диэлектриктердің[52, 59-61] анизотропты өсуі сәтті сипатталуы мүмкін. Бұл анизотропты өсу ион траекториясының бойымен тректің пайда болуының нәтижесі болып табылады.

Экспериенттер және талқылау. ТіО₂ монокристалды үлгілердің әр түрлі температураларда 5×10¹⁰ флюенске дейінгі 220 МэВ энергиялы Хе иондарымен сәулеленуі бойынша эксперименттер ДЦ-60 үдеткішінде жүргізілді.

Сәулеленген үлгілердің морфологиясы Оңтүстік Африка, Элизабет Порты, Н.Манделы атындағы университетіндегі жоғары шешімді электронды микроскопия орталығында JEOL ARM 200F микроскопында жарықтандырушы электронды микроскопия әдісімен зерттелді. Жарықтандырушы электрондық микроскопияға үлгілерді дайындау FEI Helios Nanolab 650 қондырғысында фокусталған ион шоғырының (Focused Ion Beam, FIB) көмегімен жүзеге асырылды.

Нәтижелер.

1-суретте TiO₂ сәулеленуге арналған эксперименттерімізде пайдаланылған ауыр иондардың энергия шығыны көрсетілген. Иондардың энергия шығыны мен жүрісінің мәндері 2-кестеде келтірілген, иондардың энергия шығыны мен жүрісінің шамаларын анықтау үшін SRIM 2008 коды пайдаланылды

1-сурет – TiO₂ сәулелену кезiнде пайдаланылған бетiнде 220 МэВ энергиясы бар Хе иондарының ионизациялық энергия шығынының профилi.

1-кесте

TiO₂ монокристаллдарының Хе иондарымен сәулелену параметрлері

Ион	Энергия	$(\mathrm{d}E/\mathrm{d}x)_{\mathrm{HOH}}$	$(\mathrm{d}E/\mathrm{d}x)_{\mathrm{ynp}}$	Толық жүргені
Xe	220 МэВ	25,4 кэВ/нм (бетінде)	0,1 кэВ/нм (бетінде)	13,2 мкм

Серпімсіз термиялық шың моделі шеңберінде ұсынылған (1.1) теңдеулер жүйесін шешу үшін ThermalSpike02 коды пайдаланылды [31]. Жүйеде өзгерген жалғыз еркін параметр электрон-фонондық өзара әрекеттесудің λ еркін жүрісінің ұзындығы болды.[32] жұмысқа сәйкес TiO₂ үшін λ шамасы 5,8±1,36 нм мәнін қабылдау керек . Серпімсіз термиялық шың моделінде тректердің пайда болу шегін анықтау үшін тректің ішіндегі температура балқу температурасынан асып түсетін Хе үшін энергияның меншікті ионизациялық шығынының мәнін таңдау қажет. Шекті энергия шығыны Т_{ir}=573 К кезінде 11,54 кэВ/нм, Т_{ir}=773 К кезінде 10,15 кэВ/нм және T_{ir}=973 К кезінде 8,69 кэВ/нм құрайтынын суреттен бағалауға болады.

2-сурет – Т_{іг}=573 К (жасыл), Т_{іг}=773 К (көк) және Т_{іг}=973 К (қызыл) сәулелендіру температурасы кезінде ТіО₂-де латентті тректердің пайда болу шегінің профилі

Аналитикалық термиялық шың моделінде сәулелендіру температурасына байланысты тректердің радиустарын (1.3) формула бойынша анықтауға болады. Тректердің пайда болуының шекті энергиясын (1.4) формула бойынша табуға болады.

3-суретте ТіО₂ (рутил)-де латентті тректердің пайда болу шегінің сәулелену температурасына тәуелділігі көрсетілген. Латентті тректердің пайда болу шегі сәулелену

температурасының ұлғаюымен азаяды. Стандартты параметрлер пайдаланылған серпімсіз термиялық шың моделінің есептеулерінен аналитикалық модель шеңберіндегі есептеулер төмен болады.

3-сурет – ТіО₂-де латентті тректердің пайда болу шегінің температураға тәуелділігі. Қызыл және көк тұтас сызықтар стандартты параметрлермен теориялық есептеулерге сәйкес келеді, қызыл және көк үзік сызықтар эксперименттік деректердің неғұрлым жақын сипаттамасын беретін теориялық есептеулерге сәйкес келеді.

4-суретте TiO₂ (рутил)-дегі латентті тректер өлшемдерінің сәулелендіру температурасына тәуелділігі берілген, ол аналитикалық және серпімсіз термиялық шың модельдерінің деректерін, сондай-ақ жарқырайтын электрондық микроскопия әдісімен алынған эксперименталды деректерді қамтиды. Серпімсіз термиялық шың моделі шеңберіндегі есептеу нәтижелері эксперименттік деректер стандартты параметрлер (серпімсіз модель ушін $\lambda = 5,8 \pm 1,36$ нм, аналитикалық модель ушін a(0) = 4,5 нм, $\gamma = 0,4$) қолданылған теориялық бағалардан төмен екенін көрсетті. Аналитикалық және серпімсіз термиялық шың модельдерінің параметрлері эксперименталды деректерді дәл сипаттай алатындай етіп өзгерді. Есептеу және эксперименттің ең жақын сәйкестілігі аналитикалық модель үшін a(0)=4,1 нм, $\gamma = 0,14$; және серпімсіз модель үшін $\lambda = 7,3$ нм кезіндегі жетті.

4-сурет – ТіО₂-дегі латентті тректер радиусының температураға тәуелділігі. Ақ нүктелер эксперименталды деректерге сәйкес келеді, қызыл және көк тұтас сызықтар стандартты параметрлер теориялық есептеулерге сәйкес келеді, қызыл және көк үзік сызықтар эксперименталды деректердің ең жақын сипаттамасын беретін теориялық есептеулерге сәйкес келеді.

Аналитикалық термиялық шың моделінде энергия беру тиімділігінің шамасы 0,14 шамамен (~1,67 МэВ/нуклон) ион энергиясы кезінде басқа материалдардың үлкен саны үшін тректердің параметрлерін талдау негізінде күтілетін энергия беру тиімділігінен 3 есе аз.[32]

жұмыста серпімсіз термиялық шың моделі бойынша электрон-фонондық өзара әрекеттесудің еркін жолының мәні 7,3 нм тең, ондағы λ =5,8±1,36 нм қателік шамалы асып тұрғанын көрсетеді. Осыдан, серпімсіз термиялық шың моделі жоғары температура кезінде 220 МэВ энергиялы Хе иондарымен TiO₂ сәулелендіру нәтижесінде тректерге жақын ағатын жылу процестерін сипаттау үшін көбірек қолайлы деп айтуға болады. Бұл ауыр ионнан нысана электрондарына және одан кейін нысана атомдарына электрондардан энергия тасымалдау процестерін егжей-тегжейлі сипаттаумен байланысты болуы тиіс.

5-суретте латентті тректердің жарықтандырушы электрондық микроскопиядағы суреттері көрсетілген. 220 МэВ энергиядағы ксенон иондарымен сәулеленген ТіО₂ үлгілерінің көлденең қимасының геометриясында жарықтандырушы электрондық микроскопияның суреттерінде тек сәулеленген үлгінің бетінде ғана емес, ішінде де үздіксіз аморфты құрылымы бар латентті тректер байқалады.

a)

б)

в)

5-сурет – Көлденең қима геометриясындағы ТіО₂-де 220 МэВ Хе латентті тректердің жарықтандырушы электрондық микроскопиясының суреттері (сәулелену температурасы T_{ir}=573 K (а), T_{ir}=773 K (б), T_{ir}=973 K (в)).

 TiO_2 -де латентті тректердің өлшемдерін эксперименталды өлшеу үшін Ітаде бағдарламасы қолданылды. Тректердің радиустарын өңдегеннен кейін T_{ir} =573 К кезінде 3,1±0,7 нм, T_{ir} =773 К кезінде 3,5±0,5 және T_{ir} =973 К кезінде 3,9±0,8 радиустардың мәндері алынды.

Латентті тректердің параметрлерін есептеу нәтижелері 2-кестеде көрсетілген.

2-кесте

		Тре	Тректердің пайда болу шегі				
Сэулелену						(S _{et} , кэВ/нм)	
температурасы (Т. К)	Экспери	аналитикалық		серпімсіз		аналитикал ық	серпімсіз
(-,-,	мент R _{exp}	R_{aTS} (γ =0,4)	R _{aTS} (γ=0,14)	$\begin{array}{c} R_{iTS} \\ (\lambda = 5, 8) \end{array}$	$\begin{array}{c} R_{iTS} \ (\lambda=7,4) \end{array}$	S _{et} (analytical)	S _{et} (inelastic)
573	3,1±0,7	5,3	3	4,2	3	11,54	6,14
773	3,5±0,8	5,6	3,4	4,6	3,5	10,15	5,35
973	3,9±0,8	5,9	3,8	5	3,9	8,69	4,56

Әртүрлі температура кезіндегі ТіО₂-дегі латентті тректер параметрлерінің есептік және эксперименттік мәндері

Қорытынды

микроскопия әдісімен Жарқырайтын электронды сәулеленудің əр түрлі температурасы кезінде 220 МэВ энергиялы Хе иондарымен сәулелену нәтижесінде түзілетін TiO₂(рутил)-гі латентті тректердің пайда болу шегі мен өлшемдерінің мәндері анықталды. Тректердің эксперименталды алынған параметрлері термиялық шың моделі шеңберінде алынған есептеудегі мәндермен салыстырылды. Бұл жұмыс бойынша серпімсіз термиялық шың моделі жақсы болжам көрсетті, ал аналитикалық модель шеңберіндегі бағалаулар айтарлықтай жоғары болды. Мұндай нәтиже бірқатар себептерге байланысты болуы мүмкін, олардың ішіндегі негізгілердің бірі серпімсіз термиялық шың моделі шеңберінде ЖАИ-дан нысана материалына энергия тасымалдау және диссипациялау процестерін барынша егжейтегжейлі карау.

Жұмыс нәтижелері TiO₂ жылдам ауыр иондармен сәулелену жағдайлары үшін латенттік тректердің экспериментальды анықталатын параметрлері серпімсіз термиялық шың моделі шеңберіне салынатыны туралы қорытынды жасауға мүмкіндік береді.

Қолданылған әдебиеттер тізімі

1. Desauer F., Z. Phys. 38, 12 (1923).

2. Chadderton L.T., Montagu-Pollock H.M., Proc. Roy. Soc., London, A 274, 239 (1963)

3. Seitz F., Koehler J.S., Solid State Phys. 2, 305 (1956).

4. Lifshitz I.M., Kaganov M.I, Tanararov L.V, J. Nucl. Energy A 12, 69 (1960).

5. Miterev A.M., Theoretical aspects of the formation and evolution of charged particle tracks, Physics-Uspekhi, 45, 1019–1050 (2002).

6.. Szenes G, Phys. Rev., B 51, 8026 (1995).

7. Szenes G., Phys. Rev., B 52, 6154 (1995).

8. Trinkaus H., J. Nucl. Mater. 223, 196 (1995).

9. Toulemonde M., Dufour Ch, Meftah A, Paumier E., Nucl. Instr. Meth. B 166–167, 903(2000).

10. Trautmann C., Toulemonde M., Dufour C., Paumier E, Nucl. Instr. Meth. B 108, 94 (1996).

11. Meftah A,. Brisard F,. Costantini J.M,. Dooryhée E, Hage-Ali M., Hervieu M., Stoquert J.P., Studer F., Toulemonde M., Phys. Rev. B 49, 12457 (1994).

11. Meftah A., Djebara M., Khalfaoui N, Toulemonde M, Nucl. Instr. Meth. B 146, 431 (1998).

12. Dufour Ch., Audouard A., Beuneu F., Dural J., Girard J.P., Hairie A, Levalois M., Paumier E, Toulemonde M., J. Phys. Condens. Matter 5, 4573, (1993).

13. Dufour Ch., Wang Z.G., Paumier E., Toulemonde M, Bull. Mater. Sci. 22, 671 (1999).

14.. Wang Z.G., Dufour Ch, Paumier E, Toulemonde M., J. Phys. Condens. Matter 6, 6733(1994).

15.. Dufour C, Lesellier de Chezelles B., Delignon V., Toulemonde M., Paumier E., in Proceedings of Conference on Chemical and Physical Modifications Induced by Irradiationin Glasses, ed. by P. Mazzoldi (E-MRS, Strasbourg, 1992), 61.

16. Szenes G., Comparison of two thermal spike models for ion-solid interaction, Nucl. Instrum. Methods Phys. Res. Sect. B., 269, 174–179 (2011).

17. Klaumünzer S., Mat. Fys. Medd. 52, 293 (2006).

18 Lindhard. J., M. Scharff, Phys. Rev. 124, 128 (1961).

19. Toulemonde M., Assmann W., Dufour C., Meftah A., Studer F., Trautmann C., Mat. Fys.Medd., 52, 263 (2006).

20. Kaganov M., Lifshitz I.M, Tanatarov L.V., Sov. Phys. JETP 4, 173 (1957).

21. Kaganov M., Lifshitz I.M., Tanatarov L.V, Sov. Phys. JETP 4, 173 (1957).

22. Lifshitz I.M., Kaganov M.I., Tanararov L.V., J. Nucl. Energy A 12, 69 (1960).

23 Hermes P., Danielzik B., Fabricius N., von der Linde D., Luhl J., Heppner Y, Stritzker B., Pospieszczyk A., Appl. Phys. A 39, 9 (1986).

24. Toulemonde M., Nucl. Instr. Meth. B 250, 263 (2006).

25.. Ryazanov A.L,. Trinkaus H, Volkov A.E., Phys. Rev. Lett. 84, 919 (2000).

26.. Hou M.D, Klaumünzer S., Schumacher G., Phys. Rev. B 41, 1144 (1990).

27. Benyagoub A., Loffler S., Rammensee R., Klaumunzer S., Radiat. Eff. Defects Solids 110, 217 (1989).

28. Benyagoub A., Loffler S., Rammensee R., Klaumunzer S., Saemann-Ischenko G., Nucl. Instr. Meth. 65, 228 (1992).

29. Benyagoub A., Klaumunzer S., Toulemonde M., Nucl. Instr. Meth., B 146, 449, 2 Models for the Description of Track Formation 103 (1998).

30. Dufour C., Stoquert J.P., Toulemonde M., TSpike02, EuNITT Work. Ion Track Technol, (2002).

31. Awazu K., Wang X., Fujimaki M., Structure of latent tracks in rutile single crystal of titanium dioxide induced by swift heavy ions, Appl.