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Abstract: Design approach of an output feedback tracking controller is proposed for a class of high-
order nonlinear systems with time delay. To deal with the time delays, an appropriate Lyapunov–
Krasovskii the tracking analysis is ingeniously constructed, and an output feedback tracking con-
troller is designed by using a homogeneous domination method. It is shown that the proposed
output controller independent of time delay can make the tracking error be adjusted to be sufficiently
small and render all the trajectory of the closed-loop system as bounded. An example is given to
illustrate the effectiveness of the proposed method.

Keywords: practical tracking; time delay; high-order nonlinear systems; output feedback; Lyapunov–
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1. Introduction

In the field of nonlinear control, stabilization and output tracking problems are two of
the most important and challenging problems. In this paper, we mainly focus on an output
feedback practical tracking problem for a class of high-order time delay nonlinear systems
of the form:

.
xi(t) = xi+1(t)

pi + ϕi(t, x(t), x(t− d), u(t)), i = 1, . . . , n− 1,
.
xn(t) = u + ϕn(t, x(t), x(t− d), u(t)),
y(t) = x1(t)− yr(t)

(1)

where x(t) = (x1(t), . . . , xn(t))
T ∈ Rn, u(t) ∈ R, and y(t) ∈ R are states, input, and ouput

of the system. Corresponding to this, yr(t) ∈ R is a given unmeasurable reference signal.
The constant d ≥ 0 is a given time delay parameter of the system, and the system initial
condition is x(θ) = ϕ0(θ), θ ∈ [0, d]. The nonlinear function ϕi(·) is a continuous function,
and pi ∈ R≥1

odd := {p/q ∈ [0, ∞) : p and q are odd integers, p ≥ q, (i = 1, . . . , n− 1).
The practical output tracking problem of a nonlinear system (1) has received a great

deal of attention over the past years, and many important results have been achieved. The
work [1] by Celikovsky and Huang studied the local output tracking problem. Because it is
not suitable for a global case, in [2], the problem of global output tracking was considered.
The work [3] investigated the adaptive practical output tracking problem. Later, in [4–14],
the above works are extended to more general cases under some weak conditions.

It has been known that solving the above problem via output feedback design for high-
order nonlinear systems is very challenging and difficult compared to the state feedback
case. Because there is no general and effective method to design a non-linear observer, the
theory of output feedback control design developed more slowly. Recently, some results
were reported, for example, [6–11].

However, most of the above results do not consider the effect of time delay. It is
well known that time delay phenomenon is ubiquitous and inevitable in nature, which is
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one of the main reasons for the instability of system performance. Therefore, the design
of a controller for stabilization and output tracking problems of nonlinear systems with
time delay has important significance in the field of control engineering. Thus, there is
little coverage on this issue. In [15–18], we only solved the problem by state feedback
control. Lyapunov–Krasovskii method is a powerful tool in stability analysis and controller
design for time delay systems in [19–26]. Study for the output tracking control time delay
problem developed more slowly than the stabilization case with time delay. For the output
tracking time delay problems via output feedback, there are some new interesting works
(see [27–30]). However, these results only investigate the case pi equal one for considered
systems (1). For a high-order time delay nonlinear system (1), the output tracking problem
becomes more complicated and difficult to solve. However, to the best of our knowledge,
the global practical output problem of nonlinear systems with partial unmeasured states
and time delay via output feedback have not yet been considered to date, which motivates
this research.

This paper mainly studies the output tracking control problem for a class of high-order
nonlinear systems with time delay by using the output feedback domination approach.

The main contributions of this work can be summarized as follows: (i) it should be
noticed that the output feedback tracking control problem for high-order nonlinear systems
has been mainly studied in [2–11]. However, by the introduction of time delay factors, the
output feedback tracking control problem for the high-order nonlinear system is first stud-
ied in this paper by using a homogeneous domination method [31–33]; (ii) by comparison
with the case pi = 1 in [27–30], how to construct an appropriate Lyapunov–Krasovskii
functional for high-order nonlinear system (1) is a non-trivial work. A new Lyapunov–
Krasovskii functional for solving the practical output tracking problem is constructed.

Works [34,35] investigated a finite-time output feedback stabilization problem for
stochastic high-order nonlinear systems, and work [36] studied a global finite-time con-
trol problem for a class of switched nonlinear systems with different powers via output
feedback. However, these results do not consider effect of time delay.

This paper addresses the output feedback tracking problem of a class of high-order
nonlinear time delay systems. However, if a general nonlinear system or a nonlinear
symmetric system can be transformed into the considered system in this article, then the
method proposed in this article can also be used.

Throughout the paper, we adopt such notations: R denotes the set of all real numbers,
R+ denotes the set of positive real numbers, and Ri represents the i-dimensional Euclidean
space. ||x|| denotes the Euclidean norm of vector x(t). For any vector x(t) ∈ Rn, denote
xi(t) := (x1(t), . . . , xi(t))

T ∈ Ri, i = 1, . . . , n.

2. Mathematical Preliminaries

Several lemmas are used throughout this paper. We first give the definition of homo-
geneous function related to the following two lemmas.

Definition 1 ([31]). For a set of coordinates x = (x1, . . . , xn) ∈ Rn and a n-tuple of positive real
numbers r = (r1, . . . , rn).

(i) The dilation ∆r
s(x) is defined by ∆r

s(x) = (sr1 x1, · · · , srn xn), ∀s > 0, with ri being called
as the weights of the coordinate. For simplicity, we define dilation weight ∆ = (r1, . . . , rn).

(ii) A function V : Rn → R is said to be homogeneous of degree m (m ∈ R) if V(∆m
s (x)) =

smV(x1, · · · , xn), ∀s > 0, ∀x ∈ Rn/{0}.
(iii) A vector field f = ( f1, . . . , fn)

T : Rn → Rn is said to be homogeneous of degree k if the
component fi is homogeneous of degree k + ri for each i, that is, fi(sr1 x1, · · · , srn xn) =
sk+ri fi(x1, · · · , xn), ∀s > 0, ∀x ∈ Rn/{0}, i = 1, . . . , n.

(iv) ‖x‖∆,p = (∑n
i=1|xi|p/ri )

1/p
, ∀ x ∈ Rn, p ≥ 1 denote a homogeneous p-norm. For

simplicity, write ‖x‖∆ for ‖x‖∆,2.



Symmetry 2021, 13, 675 3 of 13

Lemma 1 ([31]) . Denote ∆ as dilation weight, and suppose V1(x) and V2(x) are homogeneous
functions with degree m1 and m2, respectively. Then, V1(x)V2(x) is still a homogeneous function
with degree of m1 + m2 with respect to the same dilation weight.

Lemma 2 ([31]) . Suppose V : Rn → R is a homogeneous function of degree m with respect to
the dilation weight ∆. Then, the following statements hold:

(i) ∂V/∂xi is homogeneous of degree m− ri with ri being the homogeneous weight of xi.
(ii) There is a constant σ > 0 such that V(x) ≤ σ‖x‖m

∆ . Moreover, if V(x) is positive definite,
there is a constant σ > 0 such that σ‖x‖m

∆ ≤ V(x).

Lemma 3 ([33]) . Let x, y ∈ R and p ≥ 1 be an integer. Then:

|x + y|p ≤ 2p−1|xp + yp|, (|x|+ |y|)1/p ≤ |x|1/p + |y|1/p≤ 2(p−1)/p(|x|+ |y|)1/p

If p is an odd positive integer, then,

|x− y|p ≤ 2p−1|xp − yp|,
∣∣∣x1/p − y1/p

∣∣∣ ≤ 2(p−1)/p|x− y|1/p.

Lemma 4 ([33]) . For any positive real numbers, c, d, and any real-valued function γ(x, y) > 0 ,
the following holds

|x|c|y|d ≤ c
c + d

γ(x, y)|x|c+d +
d

c + d
γ−c/d(x, y)|y|c+d

3. Problem Formulation and Key Assumptions

In this paper, our objective is to provide a solution to global practical output tracking
of a system (1) via using the output feedback controller of the following form

.
ζ = α(ζ, y), ζ ∈ Rm

u(t) = g(ζ, y),
(2)

such that, for any ε > 0 and every x(0) ∈ Rn, there exists a finite time T(ε, x(0)) > 0
rendering the tracking error of the closed-loop system (1) and (2), thus it satisfies

|y(t)| = |x1(t)− yr(t)| < ε, ∀ t ≥ T > 0 (3)

and all states of the closed-loop system (1) and (2) are well defined and globally bounded
on [0, ∞).

To make this possible, the following assumptions are imposed on system (1) and
reference signal yr(t).

Assumption 1. There exist positive constants C1, C2 , and τ ≥ 0 such that:

|ϕi(t, x(t), x(t− d), u(t))| ≤ C1

(
|x1(t)|(ri+τ)/r1 + |x2(t)|(ri+τ)/r2 + · · ·+ |xi(t)|(ri+τ)/ri

+ |x1(t− d)|(ri+τ)/r1 + |x2(t− d)|(ri+τ)/r2 + · · ·+ |xi(t− d)|(ri+τ)/ri
)
+ C2

(4)

where ri (i = 1, . . . , n) are defined so as to satisfy:

r1 = 1, ri pi−1 = τ + ri−1 (5)

Remark 1. Unlike the conditions in [6–9], Assumption 1 contains time delay terms. Further, when
pi equals one, the assumption becomes an important hypothesis in literature [27].
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Assumption 2. For the reference function yr(t) and its derivative, there exists a constant D > 0
such that:

max
{
|yr(t)|,

∣∣ .
yr(t)

∣∣} ≤ D, ∀t > 0

Remark 2. Assumption 2 indicates condition for the reference signal yr(t). It is a standard
condition for solving the practical output tracking problem of nonlinear systems in [2–13,23,25,26].

Next, we construct an output feedback controller for system (1) under Assumptions 1
and 2. To achieve this goal, we first construct an output feedback controller for the nominal
system of system (1) by setting φi(t, x, u) = 0, i = 1, . . . , n, i.e., the following nominal
system:

.
zi(t) = zpi

i+1(t), i = 1, . . . , n− 1,
.
zn(t) = v(t), y(t) = z1(t) (6)

where pi ∈ R≥1
odd for i = 1, . . . , n− 1.

Our control objective is to find a controller of the form:

.
η = α(η, y), η ∈ Rn−1

v(t) = g(η, y),
(7)

with continuous functions α : Rn → Rn−1 and v : Rn → R satisfying α(0, 0) = 0,
g(0, 0) = 0 such that the closed-loop system (6) and (7) is globally asymptotically stable.

Using a similar approach as in [7,32], we construct an output feedback controller for
system (6), which can be described in the following proposition.

Proposition 1 ([7,32]). For the system (6), suppose there exists an output controller based on observer.

v(ẑ) = −βn[ẑ
µ/rn
n + βn−1{ẑ

µ/rn−1
n−1 + · · ·+ β2(ẑ

µ/r2
2 + β1zµ/r1

1 ) . . .}]
(rn+τ)/µ

(8)

.
η2 = −L1ẑp1

2 , ẑ2 = [η2 + L1z1]
r2/r1

.
ηk = −Lk−1ẑpk−1

k , ẑk = [ηk + Lk−1ẑk−1]
rk/rk−1 , k = 3, . . . , n

(9)

with a positive definite, C1, and radially unbounded Lyapunov function,

V = V1 + V2,

V1 =
n
∑

i=1

∫ zi
z∗i

(
sµ/ri − z∗µ/ri

i

)(2µ−τ−ri)/µ
ds,

V2 =
n
∑

i=1

∫ z
(2µ−τ−ri−1)/ri
i

(ηi+Li−1zi−1)
(2µ−τ−ri−1)/ri−1

(
sri−1/(2µ−τ−ri−1) − (ηi + Li−1zi−1)

)
ds

(10)

such that:
.

V ≤ −1
4

n

∑
j=1

ξ2
j −

1
4

n

∑
j=2

ζ2
j (11)

where ẑ = [ẑ1, ẑ2, . . . , ẑn]
T ∈ Rn, ẑ1 = z1 = y and ri (i = 2, . . . , n + 1) are defined by (5) and

Li > 0 (i = 1, . . . , n− 1) are the gains to be selected later, and:

ξi = zµ/ri
i − z∗µ/ri

i , z∗i = −β
ri/µ
i−1 ξ

ri/µ
i−1 , z∗1 = 0, ζi =

(
zpi−1

i − ẑpi−1
i

)µ/piri−1
,

µ ≥ max1≤i≤n{τ + ri} and βi > 0, i = 1, . . . , n are constants. Then, the closed-loop system (6),
(8), and (9) is globally asymptotically stable.

Since the proof of the proposition is exactly the same [11,33], it is omitted here.
Note that, from (10), it is easy to verify that V > 0 and is radially unbounded with

respect to:
Z := [z1, . . . , zn, η2, . . . , ηn]

T (12)
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Denoting the dilation weight:

∆ = [r1, r2, . . . , rn︸ ︷︷ ︸
for z1,...,zn

, r1, r2, . . . , rn−1]︸ ︷︷ ︸
for η2,...,ηn

(13)

the closed-loop system (6) with the output controller (8) and (9) can be rewritten in a
compact form as:

.
Z = F(Z) =

[
zp1

2 , . . . , zpn−1
n , v(z1, η2, . . . , ηn), fn+1, . . . , f2n−1

]T
(14)

where fn+1 :=
.
η2, fn+2 :=

.
η3, . . . , f2n−1 :=

.
ηn.

By Definition 1, we can prove that F(Z) is homogeneous of degree τ and V(Z) is
homogeneous of degree 2µ − τ with respect to dilation weight ∆. By Lemma 4, the
following holds:

∂V(Z)
∂Zi

≤ γ1‖Z‖
2µ−τ−ri
∆ , γ1 > 0, for i = 1, . . . , n (15)

In addition, by Proposition 1, closed-loop system (8), (14) and (9) is globally asymptot-
ically stable. Therefore, the following holds:

.
V(Z)

∣∣∣(14) =
∂V(Z)

∂Z
F(Z) ≤ −γ2‖Z‖

2µ
∆ (16)

where γ2 > 0 is a constant and ‖Z‖∆ =
√

∑2n−1
i=1 |Zi|2/ri .

4. Output Tracking Control via Output Feedback Design

In this section, we state and prove our result.

Theorem 1. Consider system (1) under Assumptions 1 and 2. For any given delay constant d, the
global practical output tracking problem stated above is solvable by an output feedback of the form
(7), and a design method for such a control is explicitly given.

Proof. First, we define a change of coordinates:

z1(t) := y(t), Mκi zi(t) := xi(t), i = 2, . . . , n, Mκn+1v(t) := u(t) (17)

where κ1 = 0, κi = (κi−1 + 1)/pi−1, i = 2, . . . , n and constant gain M ≥ 1 are determined
later. Under (17), system (1) can be rewritten in variables zi as:

.
zi(t) = Mzpi

i+1(t) + ψi(t, z(t), z(t− d), v(t)), i = 1, . . . , n− 1,
.
zn(t) = Mv(t) + ψn(t, z(t), z(t− d), v(t)),
y(t) = z1(t)

(18)

where:
ψ1(t, z(t), z(t− d), v(t)) := ϕ1(t, x(t), x(t− d), u(t))− .

yr(t)

ψi(t, z(t), z(t− d), v(t)) := ϕi(t,x(t),x(t−d),u(t))
Mκi , i = 2, . . . , n.

(19)

By Assumption 1, Lemma 3, and M ≥ 1, it is not difficult to get the following to hold:

|ψ1(z1(t), z1(t− d))| ≤ C1

(
|z1(t) + yr(t)|(r1+τ)/r1 + |z1(t− d) + yr(t− d)|(r1+τ)/r1

)
+ C2 +

∣∣ .
yr
∣∣

|ψi(zi(t), z1(t− d), . . . , zi(t− d)| =
∣∣∣ ϕi(xi(t), x1(t−d),..., xi(t−d))

Mκi

∣∣∣
≤ C1

Mκi

([
|z1(t) + yr(t)|(ri+τ)/r1 + |Mκ2 z2(t)|(ri+τ)/r2 + · · ·+ |Mκi zi(t)|(ri+τ)/ri

]
+
[
|z1(t− d) + yr(t− d)|(ri+τ)/r1 + |Mκ2 z2(t− d)|(ri+τ)/r2 + · · ·+ |Mκi zi(t− d)|(ri+τ)/ri

])
+ C2

Mκi
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Further, by Assumption 2, we can easily calculate:

|ψ1(z1(t), z1(t− d))| ≤ C1

(
|z1(t)|(r1+τ)/r1 + |z1(t− d)|(r1+τ)/r1

)
+ C2

|ψi(zi(t), z1(t− d), . . . , zi(t− d)|

≤ C1M1−vi
i

∑
j=1

(∣∣zj(t)
∣∣(ri+τ)/rj +

∣∣zj(t− d)
∣∣(ri+τ)/rj

)
+ C2

Mκi , i = 2, . . . , n
(20)

where C1 > 0, C2 > 0 only dependent on constants C1, C2, τ , κi and M and νi =
min

{
1− κj(ri + τ)/rj + κi, 2 ≤ j ≤ i, 1 ≤ i ≤ n

}
> 0 are some constants.

By the definition of rj = τκj + 1/(p1 . . . pj−1),

κj
ri+1 pi

rj
− κi =

τκj+κj/p1 ...pi−1−κi/p1 ...pj−1
τκj+1/p1 ...pj−1

≤ τκj
τκj+1/p1 ...pj−1

< 1,

j = 2, . . . , i, i = 1, . . . , n.
(21)

Notice that the two systems (1) and (18) are equivalent to each other, and, hence, we
can work on system (18) instead of system (1) whenever it is more convenient. Now, by
Proposition 1, we can construct an output controller for system (18) in the form:

v(ẑ) = −βn[ẑ
µ/rn
n + βn−1{ẑ

µ/rn−1
n−1 + · · ·+ β2(ẑ

µ/r2
2 + β1zµ/r1

1 ) · · · }]
(rn+τ)/µ

(22)

.
η2 = −ML1ẑp1

2 , ẑ2 = (η2 + L1z1)
r2/r1

.
ηk = −MLk−1ẑpk−1

k , ẑk = (ηk + Lk−1ẑk−1)
rk/rk−1 , k = 3, . . . , n

(23)

Using (12) and (14), the closed-loop system (18), (22), and (23) can be written in the
following form:

.
Z = MF(Z) + [ψ1(·), ψ2(·), ψ3(·) , . . . , ψn(·), 0, . . . , 0]T (24)

Hence, adopting the same Lyapunov function (10), i.e., V(Z), the time derivative of
V(Z) along the trajectory of (24) satisfies:

.
V(Z) = M ∂V(Z)

∂Z F(Z)

+ ∂V(Z)
∂Z [ψ1(·), ψ2(·), ψ3(·) , . . . , ψn(·), 0, . . . , 0]T

≤ −Mγ‖Z‖2µ
∆ +

n
∑

i=1

∂V(Z)
∂Zi

ψi(·).
(25)

Further, using (20), one obtains:
.

V(Z) ≤−Mγ‖Z‖2µ
∆

+C1

n

∑
i=1

M1−νi

∣∣∣∣∂V(Z)
∂Zi

∣∣∣∣[(|z1(t)|(ri+τ)/r1 + |z2(t)|(ri+τ)/r2 + · · ·+ |zi|(ri+τ)/ri
)

+
(
|z1(t− d)|(ri+τ)/r1 + |z2(t− d)|(ri+τ)/r2 + · · ·+ |zi(t− d)|(ri+τ)/ri

)]
+ C2

n

∑
i=1

1
Mκi

∣∣∣∣∂V(Z)
∂Zi

∣∣∣∣. (26)

Since, by Lemma 2 and (15), ∂V(Z)
∂Zi

is homogeneous of degree 2µ− τ − ri, the terms:∣∣∣∣∂V(Z)
∂Zi

∣∣∣∣(|z1|(ri+τ)/r1 + |z2|(ri+τ)/r2 + · · ·+ |zi|(ri+τ)/ri
)

and: ∣∣∣∣∂V(Z)
∂Zi

∣∣∣∣(|z1(t− d)|(ri+τ)/r1 + |z2(t− d)|(ri+τ)/r2 + · · ·+ |zi(t− d)|(ri+τ)/ri
)
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are homogeneous of degree 2µ, and, hence, it follows from Lemmas 1 and 2 that, for each

i = 1, . . . , n, there exists constants
_
λ i,

^
λ i > 0 such that:∣∣∣ ∂V(Z)

∂Zi

∣∣∣[(|z1|(ri+τ)/r1 + |z2|(ri+τ)/r2 + · · ·+ |zi|(ri+τ)/ri
)

+
(
|z1(t− d)|(ri+τ)/r1 + |z2(t− d)|(ri+τ)/r2 + · · ·+ |zi(t− d)|(ri+τ)/ri

)]
≤

_
λ i‖Z(t)‖

2µ
∆ +

^
λ i‖Z(t− d)‖2µ

∆

Furthermore, it follows from Lemmas 2 and 4 that there are positive constants a1, a2, ã2
such that:

C2

∣∣∣ ∂V(Z)
∂Z1

∣∣∣ ≤ a1‖Z‖
2µ−τ−r1
∆

= a1

(
M1/2µ‖Z‖∆

)2µ−τ−r1
(

M−(2µ−τ−r1)/(2µ(τ+r1))
)τ+r1

≤ γ
2 M‖Z‖2µ

∆ + a2M−(2µ−τ−r1)/(τ+r1),

C2

∣∣∣ ∂V(Z)
∂Zi

∣∣∣ ≤ a1Mκi‖Z‖2µ−τ−ri
∆

(
M−κi/(τ+ri)

)τ+ri

≤ Mκi‖Z‖2µ
∆ + ã2M−2µκi/(τ+ri), i = 2, . . . , n

(27)

Now, substituting (27) and the above into (26) leads to:

.
V(Z) ≤−Mγ‖Z‖2µ

∆

+C1

n

∑
i=1

M1−νi

(
_
λ i‖Z(t)‖

2µ
∆ +

^
λ i‖Z(t− d)‖2µ

∆

)
+

γ

2
M‖Z‖2µ

∆ + a2M−(2µ−τ−r1)/(τ+r1),

+
n

∑
i=2

1
Mκi

(
Mκi‖Z‖2µ

∆ + ã2M−2µκi/(τ+ri)
)

.
V(Z(t)) ≤ −Mγ‖Z(t)‖2µ

∆

+C1
n
∑

i=1
M1−νi

(
_
λ i‖Z(t)‖

2µ
∆ +

^
λ i‖Z(t− d)‖2µ

∆

)
+ γ

2 M‖Z(t)‖2µ
∆ + a2M−(2µ−τ−r1)/(τ+r1)

+
n
∑

i=2

(
‖Z(t)‖2µ

∆ + ã2M−2µκi/(τ+ri)−κi
)

= −M
[(

γ
2 − (n− 1)M−1 − C1

n
∑

i=1
M−νi

_
λ i

)
‖Z(t)‖2µ

∆ −
(

C1
n
∑

i=1
M−νi

^
λ i

)
‖Z(t− d)‖2µ

∆

]
+a2M−(2µ−τ−r1)/(τ+r1) +

n
∑

i=2
ã2M−(2µ+τ+ri)κi/(τ+ri)

= −M
[( γ

2 − G1(M)
)
‖Z(t)‖2µ

∆ −
(

C1
n
∑

i=1
M−νi

^
λ i

)
‖Z(t− d)‖2µ

∆

]
+ a2G2(M)

(28)

where:

G1(M) = (n− 1)M−1 + C1
n
∑

i=1
M−νi

_
λ i

G2(M) = a2

(
M−(2µ−τ−r1)/(τ+r1) +

n
∑

i=2
M−(2µ+τ+ri)κi/(τ+ri)

)
, a2 = max(a2, ã2)

(29)

both of which are positive and monotonically decreasing to zero as M increases indefinitely.
To deal with the time delays, we construct a Lyapunov–Krasovskii functional based

on Lyapunov function (10):

U(Z(t)) = V(Z(t)) + W(Z(t)), W(Z(t)) =

(
C1

n

∑
i=1

M1−νi
^
λ i

)∫ t

t−d
‖Z(s)‖2µ

∆ ds (30)
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By (28) and (30), it yields:

.
U(Z) ≤ −M

γ

2
‖Z‖2µ

∆ + M

(
G1(M) + C1

n

∑
i=1

M−νi
^
λ i

)
‖Z‖2µ

∆ + a2G2(M) (31)

Now, let us define:

Ω =

{
M ≥ 1

∣∣∣∣∣ γ

4
− G1(M)− C1

n

∑
i=1

M−νi
^
λ i > 0

}
(32)

and take an arbitrary M ∈ Ω. Then, the inequality (31) becomes:

.
U(Z) ≤ −Mγ

4
‖Z‖2µ

∆ + a2G2(M) (33)

In (30), V(Z) and W(Z) are homogeneous of degree 2µ− τ and 2µ with respect to ∆,
respectively. Hence, by Lemma 2, the following holds:

λ1‖Z(t)‖
2µ−τ
∆ ≤ V(Z(t)) ≤ λ2‖Z(t)‖

2µ−τ
∆ (34)

and:
v1‖Z(t)‖

2µ
∆ ≤W(Z(t)) ≤ v2‖Z(t)‖

2µ
∆ (35)

where λi > 0, vi > 0, i = 1, 2 are constants.
Moreover, by Lemma 4, we have:

λ2
M
M
‖Z(t)‖2µ−τ

∆ = M

((
λ2

M

)1/τ
)τ

‖Z(t)‖2µ−τ
∆ ≤ 2µ− τ

2µ
M‖Z(t)‖2µ

∆ +
τM(τ−2µ)/τ

2µ
λ

2µ/τ
2 (36)

Then, we have:

v1‖Z(t)‖
2µ
∆ ≤ U(Z(t)) ≤ ρ2M‖Z(t)‖2µ

∆ +
τ

2µM(2µ−τ)/τ
λ

2µ/τ
2 , (37)

or:
v1γ

4ρ2
‖Z(t)‖2µ

∆ ≤
γ

4ρ2
U(Z(t)) ≤ M

γ

4
‖Z(t)‖2µ

∆ +
γτ

8µρ2M(2µ−τ)/τ
λ

2µ/τ
2 , (38)

where: ρ2 =:
(

v2 +
2µ−τ

2µ

)
.

Therefore, it follows from (33) and (38) that:
.

U(Z(t)) ≤ −
(

γM
4
‖Z(t)‖2µ

∆ +
γτ

8µρ2M(2µ−τ)/τ
λ

2µ/τ
2

)
+

γτ

8µρ2M(2µ−τ)/τ
λ

2µ/τ
2 + a2G2(M)

≤ − γ

4ρ2
U(Z(t)) + G2(M),

(39)

where: G2(M) = γτ

8µρ2 M(2µ−τ)/τ λ
2µ/τ
2 + a2G2(M).

In the rest of the proof, we are shown similarly as in [7,29] that the state Z(t) of
closed-loop system (18), (22), and (23) is well-defined on [0, +∞) and is globally bounded.
Since G2(M) is positive and strictly monotonically decreasing to zero as M→ ∞ , it is
easily seen that, for any given ε > 0, one can choose a sufficiently large M ∈ Ω so as to
satisfy:

v1
− 1

2µ

(
4ρ2G2(M)

γ

) 1
2µ

< ε (40)
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Next, introduce a subset by:

Ξ =

{
Z ∈ R2n−1

∣∣∣∣ U(Z) ≥ 8ρ2G2(M)

γ

}
⊂ R2n−1 (41)

and let Z(t) be the trajectory of (24) with an initial state Z(0). Suppose Z(t) ∈ Ξ for some
t ∈ [0, ∞). Then, using (38), it can be deduced that:

.
U(Z(t)) ≤ − γ

4ρ2
U(Z(t)) + G2(M) ≤ −G2(M) < 0 (42)

This means that, if Z(t) ∈ Ξ, U(Z(t)) will decrease strictly with respect to t. Therefore,
in a finite time T, Z(t) must enter R2n−1 − Ξ and stay there forever. Hence, one can obtain
the following relations:

U(Z(t))−U(Z(0)) =
∫ t

0

.
U(Z(t))dt < 0, t ∈ [0, T)

U(Z(t)) <
(

8ρ2G2(M)
γ

) 2µ−τ
2µ , t ∈ [T, ∞)

(43)

which, together with (37), lead to:

|Zi(t)|≤ ‖Z(t)‖
ri
∆ ≤

(
1

v1
U(Z(t))

) ri
2µ

≤ v1
− ri

2µ U(Z(0))
ri
2µ , t ∈ [0, T)

|Zi(t)|≤ ‖Z(t)‖
ri
∆ ≤

(
1

v1
U(Z(t))

) ri
2µ

≤ v1
− ri

2µ

(
8ρ2G2(M)

γ

) ri
2µ

, t ∈ [T,+∞)

(44)

For i = 1, . . . , 2n− 1. This implies that the trajectory Z(t) of system (24) is well defined
and globally bounded on [0, +∞).

Next, we prove that:

|y(t)| = |x1(t)− yr(t)| < ε, ∀t ≥ T > 0 (45)

This can be easily seen from (35), (40), and (43) as follows:

|y(t)|= |x1(t)− yr(t)| = |z1(t)| ≤ ‖Z(t)‖∆

≤
(

1
v1

U(Z(t))
) 1

2µ

≤ v1
− 1

2µ

(
8ρ2G2(M)

γ

) 1
2µ

< ε
(46)

Finally, since the choice of M ∈ Ω depends on ε > 0, the finite time T > 0 depends
on ε > 0. Further, it is obvious that T > 0 is dependent on each trajectory of (24), or
equivalently on each initial state Z(0) of (24). Therefore, the finite time T > 0 satisfying
(46) is dependent on both ε > 0 and Z(0), i.e., T := T(ε, x(0), ζ(0)). �

The process of control design shows that the lower triangular growth condition as
required by Assumption 1 is not necessary for achieving the global practical output tracking
of the system (1). In fact, we can extend Theorem 1 under the following assumption.
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Assumption 3. For i = 1, 2, . . . , n , there are constants C1 > 0, C2 > 0, M > 1, 0 < νi ≤ 1,
and τ ≥ 0 such that:

∣∣∣∣ ϕi(·)
Mκi

∣∣∣∣ ≤ C1M1−νi
n

∑
j=1

∣∣∣∣ xj(t)
Mκj

∣∣∣∣(ri+τ)/rj

+

∣∣∣∣∣ xj
(
t− dj(t)

)
Mκj

∣∣∣∣∣
(ri+τ)/rj

+
C2

Mκi
, (47)

where κ1 = 0, r1 = 1, κi+1 = (κi + 1)/pi, and ri+1 pi = ri + τ > 0, i = 1, . . . , n.

It can be easily concluded that Assumption 1 is a special case of Assumption 3. The
following theorem is a more general result on the global practical tracking of non-triangular
systems.

Theorem 2. Under Assumptions 2 and 3, the problem of global practical tracking via output
feedback controller of the form (22), (23) can be solved for system (1).

Proof . The proof is very similar to that of Theorem 1 and hence is omitted here. �

5. Example and Simulation

The above method is used for the following numerical example considering the
inherently nonlinear time delay system:

.
x1(t) = x5/3

2 (t) + 0.25x2
1(t) sin(x2(t))

.
x2(t) = u(t) + 0.125x5/3

2 (t− 0.2)

y(t) = x1(t)− yr(t)

(48)

For p1 = 5/3, τ = 5/3, r1 = 1, r2 = 1 and µ = 5/3, it is not difficult to prove
that system (48) satisfies the conditions of Assumption 1. Therefore, following the design
procedure above, the output controller can be constructed as:

.
η2 = −M3/5(η2 + L1(x1 − yr))

u = −M8/5β2

(
β1(x1 − yr)

5/3 + (η2 + L1(x1 − yr))
5/3
) (49)

choosing L1 = 0.6, β1 = 1.1, β2 = 2.1 and M = 8. In this simulation, the reference signal is
chosen as yr(t) = sin(t), and the initial condition is x1(0) = −2, x2(0) = 0.1 and η2(0) = 0.
From the following Figures 1–4, the effectiveness of the design procedure is verified.
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