ҚАЗАҚСТАН РЕСПУБЛИКАСЫ ҒЫЛЫМ ЖӘНЕ ЖОҒАРЫ БІЛІМ МИНИСТРЛІГІ

«Л.Н. ГУМИЛЕВ АТЫНДАҒЫ ЕУРАЗИЯ ҰЛТТЫҚ УНИВЕРСИТЕТІ» КЕАҚ

Студенттер мен жас ғалымдардың «GYLYM JÁNE BILIM - 2024» XIX Халықаралық ғылыми конференциясының БАЯНДАМАЛАР ЖИНАҒЫ

СБОРНИК МАТЕРИАЛОВ XIX Международной научной конференции студентов и молодых ученых «GYLYM JÁNE BILIM - 2024»

PROCEEDINGS of the XIX International Scientific Conference for students and young scholars «GYLYM JÁNE BILIM - 2024»

> 2024 Астана

УДК 001 ББК 72 G99

> «ĠYLYM JÁNE BILIM – 2024» студенттер мен жас ғалымдардың XIX Халықаралық ғылыми конференциясы = XIX Международная научная конференция студентов и молодых ученых «ĠYLYM JÁNE BILIM – 2024» = The XIX International Scientific Conference for students and young scholars «ĠYLYM JÁNE BILIM – 2024». – Астана: – 7478 б. - қазақша, орысша, ағылшынша.

ISBN 978-601-7697-07-5

Жинаққа студенттердің, магистранттардың, докторанттардың және жас ғалымдардың жаратылыстану-техникалық және гуманитарлық ғылымдардың өзекті мәселелері бойынша баяндамалары енгізілген.

The proceedings are the papers of students, undergraduates, doctoral students and young researchers on topical issues of natural and technical sciences and humanities.

В сборник вошли доклады студентов, магистрантов, докторантов имолодых ученых по актуальным вопросам естественно-технических и гуманитарных наук.

УДК 001 ББК 72 G99

ISBN 978-601-7697-07-5

©Л.Н. Гумилев атындағы Еуразия ұлттық университеті, 2024

УДК 538.915 ИССЛЕДОВАНИЕ ЭЛЕКТРИЧЕСКИХ СВОЙСТВ СУЛЬФАТА НАТРИЯ МЕТОДОМ КВАНТОВО-ХИМИЧЕСКОГО МОДЕЛИРОВАНИЯ

Ахмедов Абзал Сабырович

Магистрант кафедры «Ядерной физики, новых материалов и технологий» Физикотехнического факультета ЕНУ им. Л.Н.Гумилева, Астана, Казахстан Научный руководитель –. Абуова Ф.У.

Сульфат натрия (Na₂SO₄) – неорганическое соединение, представляющее собой бесцветные кристаллы, хорошо растворимые в воде. Он широко используется в различных областях промышленности, таких как химическая, текстильная, целлюлозно-бумажная, а также в медицине. Na₂SO₄ существует в нескольких кристаллических модификациях:

Безводный Na₂SO₄ (тенардит) имеет ромбическую сингонию, пространственная группа Pnma.

Декагидрат Na₂SO₄·10H₂O (мирабилит, глауберова соль) имеет моноклинную сингонию, пространственная группа P21/с.

Гептагидрат Na₂SO₄·7H₂O имеет триклинную сингонию, пространственная группа P1.

В этой работе был исследован безводный сульфат натрия, известный как редкий минерал тенардит, используемый в качестве осушителя в органическом синтезе.

Безводный Na₂SO₄ имеет более простую кристаллическую структуру, в которой ионы Na⁺ и SO4²⁻ упакованы в шахматном порядке. Впервые он был описан в 1825 году в соляных копях Эспартинас, Сьемпосуэлос, Мадрид, Испания, и был назван в честь французского химика Луи Жака Тенара.

Изучение электрических свойств тенардита необходимо для понимания его физикохимических свойств, разработки новых материалов (новые электроды, катализаторы), улучшения существующих технологий (очистка воды путем использования тенардита как мембраны для электродиализа).

Кристаллическая структура сульфата натрия (Na₂SO₄)

У сульфата натрия (тенардита) ромбическая кристаллическая решетка. Структура минерала островная, представлена каркасом из полиэдров натрия, соединённых между собой SO4-тетраэдрами.

Рис.1. Геометрическая структура сульфата натрия (Na₂SO₄).

Исследование электрических свойств кристалла проводилось методом квантовохимического моделирования. Для получения более объективных и точных результатов расчеты проводились с использованием разных методов (функционалов) расчета данных. В таблице ниже (Таблица 1) представлены некоторые свойства сульфата натрия (Na₂SO₄) и их изменения в зависимости от используемого функционала.

таолица т.

				reemerpr		1 onempi		Done i Du.
Функционал	B3LYP	PWGGA	PBE	PBEsol	LDA	B3PW	HSE06	SCAN
a, Å	7.8438	7.8438	7.8438	7.8438	7.8438	7.8438	7.8438	7.8438
b, Å	5.6852	5.6852	5.6852	5.6852	5.6852	5.6852	5.6852	5.6852
c, Å	6.8056	6.8056	6.8056	6.8056	6.8056	6.8056	6.8056	6.8056
V, Å ³	175.24	175.24	175.24	175.24	175.24	175.24	175.24	175.24
ρ , г/см ³	2.69	2.69	2.69	2.69	2.69	2.69	2.69	2.69
Etot, (AU)	-	-2042.12	-	-	-2027.39	-2047.48	-2046.64	-2047.86
	2047.47		2046.56	2043.32				
Е _g , эВ	7.56	5.47	5.45	7.89	4.94	7.72	7.3	6.08

Геометрических и электрические свойства.

В таблице 1 можно заметить, что метод расчета данных (функционал) влияет не на геометрические свойства кристалла, а на электрические свойства сульфата натрия. При использовании тех или иных функционалов меняются значения полной энергии системы и энергия ширины запрещенной зоны. Последнее имеет ключевое значение при исследовании электропроводности материала.

В таблице ниже (Таблица 2) продемонстрировано изменение как геометрических, так и электрических свойств при оптимизации. Во время процесса оптимизации программа ищет такие положения атомов, при которых система имеет наименьшую энергия, то есть наиболее равновесное состояние.

		100	merph-teel	мих и элек	прически	C CBONCIB	а при опті	тынзации.
Функционал	B3LYP	PWGGA	PBE	PBEsol	LDA	B3PW	HSE06	SCAN
a, Å	7.9826	8.366	8.0391	7.8512	7.9043	7.9927	7.9394	7.8523
b, Å	5.7996	6.0671	5.814	5.6884	5.7083	5.8025	5.7552	5.6778
c, Å	6.917	7.2379	6.9847	6.823	6.874	6.9305	6.8918	6.8283
V, Å ³	185.09	211.45	188.4	176.27	178.92	185.79	181.98	175.85
ρ, г/см ³	2.547	2.229	2.502	2.674	2.634	2.537	2.590	2.680
Etot, (AU)	-2.047.49	-2042.21	-2046.6	-2043.33	-2027.43	-2047.5	-2046.66	-2047.88
Eg, $\overline{\mathbf{B}}$	6.93	3.96	4.63	7.78	4.32	7.14	6.86	5.69

Геометрических и электрические свойства при оптимизации.

В таблице 1 и 2 были указаны примитивной ячейки кристалла сульфата натрия. Далее были исследованы свойства кристаллографической ячейки сульфата натрия и проведены сравнения с экспериментальными данными. В таблице ниже (Таблица 3) показаны электрические свойства и их изменение в зависимости от используемого функционала.

Таблица 3.

Таблица 2.

1		1	1	-	1	1 15
Параметры		Получе	нные дан	ные	Экспериментальные	
		Функци	юналы		данные [1, 2, 3]	
		B3PW	B3LYP	HSEsol	HSE06	
Параметры ячейки	a, Å	5.97	5.96	5.88	5.93	5.85
	b, Å	12.51	12.48	12.32	12.44	12.29
	c, Å	9.95	9.95	9.75	9.86	9.75

Сравнение геометрических и электронных свойств при различных функционалах.

Энергия запр	ещенной	7.14	6.93	6.94	6.86	
зоны, эВ						
Эффективные	Na	0.929	0.917	0.923	0.923	
заряды Q(e)	S	0.995	1.006	1.016	1.009	
атомов	0	-0.713	-0.71	-0.715	-0.714	

Помимо геометрических и электрических свойств кристалла были исследованы упругие свойства. Так в таблице ниже (Таблица 4) продемонстрированы значения объемного модуля упругости при использовании гибридного функционала HSE06.

Таблица 4.

Значения объемного модуля при уравнениях состояния.

Функционал	Уравнение состояния	Объем, <i>А</i> ³	Энергия, (AU)	Объемный модуль, ГПа
HSE06	Мурнаган	729.4420	-8186.65014258	43.99
	Берч- Мурнаган	729.4342	-8186.65014173	43.97
	3-й полином	729.3531	-8186.65013553	43.8

Также мы высчитали упругие тензорные константы (Таблица 5) и модули упругости (Таблица 6) для разных функционалов.

Таблица 5.

Упругие тензорные константы

				1	, 1	
Функционал	$\lambda_1, \Gamma \Pi$ а	$λ_2$, ΓΠα	λ ₃ , ΓΠa	$λ_4$, ΓΠα	λ_5 , ГПа	$λ_6$, ΓΠα
HSE06	16.222	21.581	21.972	52.222	72.219	136.91
PBE	15.924	20.822	21.095	56.558	78.732	145.48
B3PW	15.293	20.288	21.168	49.502	65.992	121.71
B3LYP	16.129	22.598	23.082	50.697	69.674	128.65

Таблица 6.

Модули упругости.

Модули	HSE06	PBE	B3PW	B3LYP
упругости				
<i>K_V</i> , 10 ⁹ Па	44.676	46.981	39.714	42.163
<i>K_R</i> , 10 ⁹ Па	43.82	45.789	39.008	41.531
<i>K_H</i> , 10 ⁹ Па	44.248	46.385	39.361	41.847
<i>E_V</i> , 10 ⁹ Па	62.543	64.889	58.162	61.816
<i>E_R</i> , 10 ⁹ Па	58.385	58.92	54.605	58.285
<i>E_H</i> , 10 ⁹ Па	60.471	61.918	56.389	60.056
<i>G_V</i> , 10 ⁹ Па	24.688	25.551	23.155	24.615
<i>G_R</i> , 10 ⁹ Па	22.844	22.917	21.554	23.018
<i>G_H</i> , 10 ⁹ Па	23.766	24.234	22.355	23.816
ν_V	0.26668	0.26981	0.25591	0.25565
ν_R	0.27794	0.28553	0.26669	0.2661
ν_{H}	0.27223	0.27752	0.26123	0.26081

Список использованных источников

 Zachariasen W. H., Ziegler G. E. The crystal structure of anhydrous sodium sulfate Na2SO4 //Zeitschrift für Kristallographie-Crystalline Materials. – 1932. – T. 81. – №. 1-6. – C. 92-101.
Nord A. G. Refinement of the crystal structure of thenardite, Na2SO4 (V) //Acta Chemica Scandinavica. – 1973. – T. 27. – №. 3. – C. 814-822.

3. Zhuravlev Y. N., Zhuravleva L. V., Poplavnoy A. S. Electronic structure of alkali metal sulfates //Russian physics journal. – 2003. – T. 46. – C. 75-80.

УДК 539

ПРИМЕНЕНИЕ УЛЬТРАЗВУКОВОГО РЕЗОНАНСНОГО МЕТОДА ДЛЯ ОПРЕДЕЛЕНИЯ УПРУГИХ И ПЛАСТИЧЕСКИХ ХАРАКТЕРИСТИК СПЛАВОВ TiC-TiNi

Козин Константин Дмитриевич

kozin-kostya@bk.ru

Научный сотрудник Института теоретической математики и научных вычислений ЕНУ им. Л.Н.Гумилева, Нур-Султан, Казахстан Научный руководитель – Абуова Ф.У.

В данной работе исследуются закономерности распространения волн напряжения в упругих телах. Отмечается, что скорость волнового движения постоянна для определенной среды и определяет ее упругие свойства [1]. Свойства твердых композиционных материалов с неоднородной структурой зависят от внешнего воздействия и температуры. Ультразвуковые колебания используются для исследования упругих и неупругих характеристик твердых сплавов. В работе применяется резонансный метод непрерывных колебаний для измерения скорости ультразвукового импульса, который зависит от упругих свойств и плотности твердого сплава. Схема составного вибратора приведена на рис. 1. Эксперименты проводились при комнатной температуре в диапазоне частот 1 ÷ 10 МГц.

Рис. 1. Схема составного вибратора:

1 — частотомер, 2 — генератор высокой частоты, 3 — образец, 4 — широкополосный предусилитель, 5 — широкополосный усилитель, 6 — ламповый вольтметр