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Abstract In this paper, we propose a new parametrization
of dark energy based on the Om(z) diagnostic tool behav-
ior. For this purpose, we investigate a functional form of
the Om(z) that predicts the popular dark energy dynamical
models, namely phantom and quintessence. We also found
the famous cosmological constant for specified values of the
model’s parameters. We employed the Markov Chain Monte
Carlo approach to constrain the cosmological model using
Hubble, Pantheon samples, and BAO datasets. Finally, we
used observational constraints to investigate the character-
istics of dark energy evolution and compare our findings to
cosmological predictions.

1 Introduction

The general theory of relativity (GR) by Albert Einstein is a
magnificent achievement that has been validated by many
years of experimental testing [1]. Despite the efficacy of
GR in characterizing the Universe and the solar system, it is
widely agreed that GR, along with the cosmological constant
(�), is just an exceptionally excellent estimate valid within
the current range of experimental observations. Lately, mod-
ified gravity theories (MGT) have received a lot of attention
in the hopes of finding observationally compatible alterna-
tives to GR. This is owing to new observational findings such
as Type Ia supernovae (SNeIa) [2,3], baryon acoustic oscil-
lations (BAO) [4,5], cosmic microwave background (CMB)
[6,7], large scale structure (LSS) [8,9], and the Planck col-
laborations [10], indicating the existence of two unexplained
components that may influence the evolution of the Universe.
In this regard, measurements have resulted in the addition of
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new exotic fluids such as dark energy (DE) of large negative
pressure, which leads to the accelerated expansion of the Uni-
verse, and dark matter, which is the cause of the formation
of galaxies clusters, inside the standard model of cosmology.
On the other hand, the unclear nature of these constituents
can also be regarded as the possibility of GR collapse on
an enormous scale. The �CDM (lambda cold dark matter)
model is probably the most simple cosmological model that
includes these two dark constituents. A cosmological con-
stant is added to the standard Einstein–Hilbert action in this
scenario with the equation of state (EoS) ω� = −1. So, if
one assigns the cosmological constant to vacuum energy, it
suffers from a “fine-tuning” problem, which relates to the
difference between the observed and theoretically expected
values of the � [11,12]. This issue has fueled impulses to
look for alternate DE models outside the �CDM model.

There are two major ways to work with such issues: one
involves different components inside the GR action and then
studies the possible impacts that may develop, such as scalar
fields, vector fields, or other matter field types [13–18]. In
addition, altering the background theory and analyzing sub-
sequent equations of motion is another option for discovering
novel characteristics that may not be consistent with astro-
nomical data, such as f (R) gravity, f (T ) gravity, and f (Q)

gravity [19–33]. Recently, several studies have been done
in different modified theories of gravity in different aspects
[34–39].

However, several studies have attempted to investigate the
evolution of the Universe without relying on any certain cos-
mological model. Such approaches are sometimes referred
to as model-independent ways study of cosmological mod-
els or cosmological parametrization [40,41]. To find the exact
solutions of Einstein field equations, this approach is gener-
ally based on the assumption of parametrization of geomet-
rical parameters (such as the Hubble parameter H , deceler-
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ation parameter q, jerk parameter j , and so on) or physical
parameters (such as the energy density ρ, pressure p, EoS
parameter ω, and so on). The approach has no effect on the
background theory and clearly provides solutions to the Ein-
stein field equations. It also has the benefit of reconstructing
the cosmic evolution of the Universe and explaining some
of its features. Furthermore, this approach gives the easi-
est way to theoretically overcome several of the standard
model’s issues, including the initial singularity problem, the
cosmological constant problem, and the late-time accelera-
tion scenario. In the literature, there are numerous ways of
DE parameterization, such as: see [42–45] for the Hubble
parameter, see [46–51] for the deceleration parameter, see
[52–54] for the jerk parameter, and see [55–62] for the EoS
parameter. Reference [63] summarizes a large number of dif-
ferent parameterization methods.

Following the approach, Sahni et al. [64] introduced a suc-
cessful diagnostic called Om(z), which is responsive to the
EoS of DE and so offers a null test of the �CDM model
and has been intensively researched in numerous publica-
tions [65–67]. When the value of this diagnostic tool remains
constant for all redshift values, DE takes the form of a �,
but varying Om(z) corresponds to various dynamical DE
scenarios. However, the slope of Om(z) can differentiate
between two types of DE models: a positive slope suggests
phantom phase (ωDE < −1), whereas a negative slope
shows quintessence (ωDE > −1) [64]. Several previous
studies have used reconstructed Om(z) with the combina-
tion of Gaussian processes and observations such as Hub-
ble datasets, SNeIa datasets, and BAO datasets to under-
take compatibility tests of the �CDM model [68,69]. So,
it is important to employ some parametrization to analyze
the Om(z) diagnostic in a cosmological model-independent
context. This method has both benefits and drawbacks. One
advantage is that it is not affected by the Universe’s matter
and energy content. One shortcoming of this formulation is
that it does not describe the source of the accelerated expan-
sion [70].

In this paper, we investigate a new parametrization of the
Om(z) diagnostic and discuss the cosmic evolution in the
framework of GR. The Om(z) diagnostic functional form is
constructed such that it predicts the popular DE dynamical
models, namely phantom and quintessence. The behavior of
the Om(z) diagnostic is determined by the model parameters
that were constrained by the observational data. Here, we
consider 31 data points of the Hubble expansion observations
performed using the differential age approach [73] and BAO
data that include six points [74]. Scolnic et al. [75] published
recently Pantheon, a huge SNe Ia datasets with 1048 points
across the redshift range 0.01 < z < 2.26. The Hubble,
Pantheon samples, and BAO datasets with the Markov Chain
Monte Carlo (MCMC) approach are used in our study to
constrain the cosmological model.

The following is how this work is organized: In Sect. 2,
we describe briefly the newly suggested Om(z) diagnostic
parametrization, then apply it to a homogeneous and isotropic
Universe in the framework of GR theory. In Sect. 3, we use
the MCMC approach to constrain the model parameters using
Hubble datasets, Pantheon datasets, BAO datasets, and com-
binations such as Hubble + Pantheon datasets and Hubble
+ Pantheon + BAO datasets. Sect. 4 starts with a review of
observational constraints and a discussion of findings. Lastly,
Sect. 5 concludes with some final remarks.

2 Cosmological model

In this section, we present the essential cosmological sce-
nario equations for our model. The Friedmann–Lemaître–
Robertson–Walker (FLRW) model is the fundamental mathe-
matical framework of cosmology, describing a homogeneous
and isotropic Universe in which everything is the same in all
directions and at all points. The metric for a spatially flat
Universe is expressed as,

ds2 = dt2 − a2(t)[dr2 + r2(dθ2 + sin2θdφ2)], (1)

where, r , θ , and φ are the spatial coordinates, t is the time
coordinate, and a(t) is the scale factor that represents the
expansion of the Universe. For the purpose of simplicity,
we have fixed the scale factor to 1 currently. However, it is
important to note that the scale factor itself is not observable.
What is observable is the ratio of the scale factor at any given
time to its value at some reference time, often taken to be
the present time. For convenience, we have chosen to set
the value of the scale factor at the present time a0 to 1. This
choice is equivalent to referring to the ratio of the scale factor
at any given time to its value at the present time a/a0.

In addition, the energy–momentum tensor of a perfect
fluid (with no viscosity) defines the fluid’s energy density
and pressure. It is presented by

Tμν = (p + ρ) uμuν − pgμν, (2)

where ρ is the energy density, p is the isotropic pressure of
the Universe, uμ is the fluid’s 4-velocity, and gμν is the metric
tensor. The indices μ and ν vary between 0 and 3. If the fluid

is at repose uμ =
{

1,
−→
0

}
, then T00 = ρ and Ti j = −pgi j .

The Einstein field equations for GR are given by

Rμν − 1

2
gμν R = κTμν, (3)

where κ = 8πG = 1, Rμν is the Ricci curvature tensor, and
R is the scalar curvature.

Using Eqs. (1)–(3), the Einstein field equations for a spa-
tially flat FLRW Universe can be expressed as,

3H2 = ρ (4)
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2Ḣ + 3H2 = −p (5)

where H = ȧ
a is the Hubble parameter which is a measure of

the Universe’s current rate of expansion, and a dot denotes
differentiation with respect to cosmic time t . In the previous
equation, ρ and p indicate the energy density and pressure of
the Universe, respectively. Also, Eqs. (4) and (5) are known as
Friedmann equations. The first Friedmann equation connects
the Universe’s expansion rate (H ) to its energy density, and
the second Friedmann equation connects the acceleration of
the expansion rate to the pressure.

Now, to characterize the cosmic history and the possible
transition to an accelerated period, we use the total equation
of state (EoS) parameter ω, given as,

ω = p

ρ
. (6)

Using Eqs. (4) and (5), the EoS parameter is expressed as,

ω = −2Ḣ + 3H2

3H2 = −1 − 2Ḣ

3H2 . (7)

The Om(z) diagnostic, an intriguing null test of DE, was
proposed in [64]. The beauty of this concept comes in its the-
oretical structure, which is formed from the Hubble param-
eter H(z), a quantity that can be estimated from observa-
tions of various astronomical phenomena, such as SNeIa and
BAO. This approach distinguishes between the cosmologi-
cal constant and dynamical models of DE. If the value of
Om(z) remains constant at any redshift, DE takes the form
of a cosmological constant, but varying Om(z) corresponds
to various dynamical DE scenarios. Nevertheless, the slope
of Om(z) can differentiate between two sorts of DE mod-
els: a positive slope suggests phantom phase (ωDE < −1 ),
whereas a negative slope shows quintessence (ωDE > −1).
Several previous research has undertaken consistency checks
of the �CDM model utilizing reconstructed Om(z) based on
the preceding conclusions [68,69,71,72]. Motivated by the
physical evidence of the Om(z) slope and the above discus-
sion, we propose a parametrization of Om(z) written in terms
of redshift z as,

Om (z) = α (1 + z)n . (8)

Here, α and n are the two parameters of the model. The
above formula clearly shows that �CDM is entirely recov-
ered when α = �0

m and n = 0. The behavior of Om (z) can
be divided into three periods based on the value of param-
eter n: quintessence (negative slope) for n < 0, phantom
(positive slope) for n > 0, and lastly the cosmological con-
stant (constant slope) for n = 0 (please see Table 1). Also,
one of the advantages of the Om(z) parametrization is that
it exhibits a finite value at z = 0 (present). The introduction
of the parameter n in the above parametrization provides a
novel cosmological-model-independent method of discrim-

Table 1 Aspects of the Om(z) diagnostic with relation to the value of
n

n Om(z) slope ωDE Model

n = 0 Constant ωDE = −1 Flat �CDM

n < 0 Negative ωDE > −1 Quintessence

n > 0 Positive ωDE < −1 Phantom

inating between a greater range of cosmological solutions
with varying EoS (ωDE < −1, ωDE > −1 and ωDE = −1).

The dimensionless Hubble parameter can be expressed in
terms of the Om(z) diagnostic as,

E2 (z) = Om (z)
[
(1 + z)3 − 1

]
+ 1, (9)

where E (z) = H(z)
H0

, and H0 is the present value of the Hub-
ble parameter.

Now, by using Eqs. (8) and (9) we have,

E2 (z) = α
[
(1 + z)3 − 1

]
(1 + z)n + 1. (10)

The redshift z is connected to the scale factor a (t) by
a (t) = (1 + z)−1. Since z is connected to the scale fac-
tor a (t), it is necessary to quantify cosmological parameters
such as the energy density, pressure, EoS in terms of z to
investigate the history of the Universe in more detail. Thus,
the derivative of the Hubble parameter with respect to cosmic
time is expressed as,

.

H = dH

dt
= − (1 + z) H (z)

dH (z)

dz
. (11)

From (9), Eq. (11) becomes,

.

H = −αH2
0

2
[3 + (3 + n)z(3 + z (3 + z))] (1 + z)n . (12)

Using Eqs. (4), (5), (10) and (11), the energy density ρ

and pressure p can be expressed in terms of redshift as,

ρ (z) = 3H2
0

{
α

[
(1 + z)3 − 1

]
(1 + z)n + 1

}
, (13)

and

p (z) = H2
0

{−3 + α [3 + nz (3 + z (3 + z))] (1 + z)n
}
.

(14)

The EoS parameter in terms of redshift z for the physical
model is derived as,

ω (z) = −3 + α [3 + nz (3 + z (3 + z))] (1 + z)n

3 + 3α
[
(1 + z)3 − 1

]
(1 + z)n

. (15)

Moreover, the deceleration parameter q, a significant cos-
mological quantity, is written as,

q = −1 −
.

H

H2 = 1

2
(1 + 3ω) , (16)
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can be derived from Eq. (15) as,

q (z) = −1 + α [(3 + (3 + n) z (3 + z (3 + z)))] (1 + z)n

2 + 2α [3 + z (3 + z)] z (1 + z)n
.

(17)
In next section, the possibility of a transition of the Uni-

verse’s expansion from a decelerated to an accelerated state is
examined. Also, Eq. (17) shows that theq (z) is highly depen-
dent on the values of the model parameters, especially α and
n. In general, one can arbitrarily choose these parameters and
investigate the behavior of q(z) to compare them to obser-
vational datasets. However, in this study, we first constrain
the model parameters α and n using multiple observational
datasets such as the Hubble, Pantheon, and BAO, and then
we use the best-fit values to solve the problem.

3 Observational data

This section discusses the observational datasets and the sta-
tistical analysis approach which will be employed to con-
strain the different parameters of the model that were pre-
viously mentioned, followed by a discussion of the results
produced from this study. In our work, we employed cur-
rent observational datasets from Hubble, Pantheon Type Ia
supernovae (SNe Ia) samples include a number of SNe Ia data
points, and baryon acoustic oscillation (BAO) observations.
To evaluate the datasets, we employ Bayesian statistical anal-
ysis and the emcee package in Python language to perform a
Markov chain Monte Carlo (MCMC) simulation [76].

To begin, we will look at the priors on parameters, which
are shown in Table 4. In addition, to find out the findings of
our MCMC study, we employed 100 walkers and 1000 steps
for all datasets. The next subsections go into further depth
on the datasets and statistical analyses.

3.1 Hubble datasets

The well-known cosmological principle assumes that our
Universe is homogenous and isotropic on a large scale. This is
the fundamental concept of contemporary cosmology and is
the basis of the aforementioned FLRW metric. This idea has
been tested multiple times in the previous several decades and
is validated by numerous cosmological observations. In the
investigation of observational cosmology, the Hubble param-
eter, H = .

a
a , is used to directly analyze the Universe’s expan-

sion scenario, where
.
a denotes the derivative of the cosmic

scale factor a with respect to cosmic time t . As a function of
redshift, the Hubble parameter H(z) can be represented as,

H(z) = − 1

1 + z

dz

dt
. (18)

Here, dz is obtained from spectroscopic surveys, and
hence dt provides the model-independent value of the Hub-

ble parameter. In principle, there really are two well-known
techniques for determining the value of the Hubble parameter
values H(z) at a given redshift z. The first is H(z) extraction
from line-of-sight BAO data, while the second is the differ-
ential age (DA) approach. In this paper, we have taken 31
points from the DA approach in the redshift range reported
as 0.07 < z < 2.42 [73] and tabulated in Table 2 with refer-
ences.

Further, we used the chi-square function to obtain the best-
fit values of the model parameters α, n, and H0 (which is
equal to the maximum likelihood analysis),

χ2
Hubble =

31∑
i=1

[Hth
i (α, n, H0, zi ) − Hobs

i (zi )]2

σ 2
Hubble(zi )

, (19)

where Hth
i is the theoretical value of the Hubble parameter,

Hobs
i denotes the observed value, and σ 2

Hubble denotes the
standard error in the observed value of H (z). By using the
aforementioned datasets, we computed the best-fit values of
the model parameters, α, n and H0 as shown in Fig. 1 with
the 1 − σ and 2 − σ confidence level (CL) contour, and the
numerical findings for the Hubble are shown in Table 4. In
addition, we have given the error bar plot for the mentioned
Hubble datasets in Fig. 2 along with our resulting model
compared to the �CDM model (with �0

m = 0.3, �0
� = 0.7

and H0 = 69 km s−1 Mpc−1) [10]. The graph illustrates that
our model fits the observational Hubble datasets well.

3.2 Pantheon datasets

Observational research on SNe from the golden sample of 50
points of Type Ia revealed that our Universe is expanding at
a faster rate. As a result, investigations on larger and larger
samples of SNe datasets have risen during the last 2 decades.
The most recent sample of SNe Ia datasets, consisting of
1048 data points, was just released. In this work, we used the
Pantheon datasets [83], which contain 1048 samples of spec-
troscopically validated SNe Ia spanning the redshift range
0.01 < z < 2.26 [75], which combines the SNe Legacy Sur-
vey (SNLS), the Sloan Digital Sky Survey (SDSS), the Hub-
ble Space Telescope (HST) survey, the Panoramic Survey
Telescope, and the Rapid Response System (Pan-STARRS1).
These data points provide an estimate of the distance modu-
lus μobs

i in the redshift range 0 < zi ≤ 1.41. In this paper, we
compare the theoretical value μth with the measured value
μobs
i of the distance modulus to estimate our model param-

eters of the produced model.
The theoretical distance modulusμth is defined as follows:

μth = μth (DL) = m − M = 5 log (DL) , (20)

where m and M indicates apparent and absolute magnitudes
of a standard candle respectively.
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Table 2 Hubble datasets with 31 data points

z H(z) σH References z H(z) σH References

0.070 69 19.6 [77] 0.4783 80 99 [81]

0.90 69 12 [78] 0.480 97 62 [77]

0.120 68.6 26.2 [77] 0.593 104 13 [79]

0.170 83 8 [78] 0.6797 92 8 [79]

0.1791 75 4 [79] 0.7812 105 12 [79]

0.1993 75 5 [79] 0.8754 125 17 [79]

0.200 72.9 29.6 [80] 0.880 90 40 [77]

0.270 77 14 [78] 0.900 117 23 [78]

0.280 88.8 36.6 [80] 1.037 154 20 [79]

0.3519 83 14 [79] 1.300 168 17 [78]

0.3802 83 13.5 [81] 1.363 160 33.6 [83]

0.400 95 17 [78] 1.430 177 18 [78]

0.4004 77 10.2 [81] 1.530 140 14 [78]

0.4247 87.1 11.2 [81] 1.750 202 40 [78]

0.4497 92.8 12.9 [81] 1.965 186.5 50.4 [83]

0.470 89 34 [82]

Fig. 1 The confidence curves
at 1 − σ and 2 − σ and posterior
distributions for the model
parameters using Hubble
datasets. The dark pink shaded
areas represent the 1 − σ

confidence level (CL), while the
light pink shaded areas represent
the 2 − σ CL. The parameter
constraint values are also
presented at the 1 − σ CL
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Fig. 2 The variation of H(z) vs. z. The blue dots represent error bars, the red line represents our model’s curve, and the black dashed line represents
the �CDM model

The luminosity distance DL(z) given by,

DL(z) = c(1 + z)
∫ z

0

dz
′

H(z′
)
. (21)

Thus, the chi-square function for the Pantheon datasets is
defined as,

χ2
Pan =

1048∑
i, j=1

�μi

(
C−1

Pan

)
i j

�μ j . (22)

Here CPan is the covariance matrix [75], and �μi =
μth(zi , α, n, H0) − μobs

i is the difference between the
observed distance modulus value obtained from cosmic data
and its theoretical values created from the model using the
parameter space α, n, and H0. By minimizing χ2

Hubble +
χ2
Pan , the constraints of the model parameters, α, n and H0

from the combination Hubble + Pantheon datasets are shown
in Fig. 4 and numerical findings presented in Table 4. In
addition, we have given the error bar plot for the mentioned
Pantheon datasets in Fig. 3 along with our resulting model
compared to the �CDM model (with �0

m = 0.3, �0
� = 0.7

and H0 = 69 km s−1 Mpc−1). The graph illustrates that our
model fits the observational Pantheon datasets well.

3.3 Baryon acoustic oscillations (BAO) datasets

BAO are fluctuations in the density of the observable bary-
onic matter of the Universe induced by acoustic density
waves in the early Universe’s primordial plasma. As shown
in Table 3, the BAO distance datasets, which include the
6dFGS, SDSS, and WiggleZ surveys, contain BAO values at
six unique redshifts. Also, the characteristic scale of BAO

is governed by the sound horizon rs at the epoch of photon
decoupling z∗, which is determined by the following relation:

rs(z∗) = c√
3

∫ 1
1+z∗

0

da

a2H(a)
√

1 + (3�b0/4�γ 0)a
, (23)

where, �b0 and �γ 0 are the current density of baryons and
photons, respectively.

The BAO sound horizon scale is used to calculate the
angular diameter distance dA and the Hubble expansion rate
H (z) as a function of redshift z. If the observed angular sep-
aration value of the BAO feature is represented by �θ in
the two-point correlation function of the galaxy distribution
on the sky, and the observed redshift separation value of the
BAO feature is represented by �z in the same two-point cor-
relation function along the line of sight, we have the relation,

�θ = rs
dA(z)

, (24)

where

dA(z) = c
∫ z

0

dz
′

H(z′
)
, (25)

and

�z = H(z)rs . (26)

In this study, we employed BAO datasets of 6 points for
dA(z∗)/DV (zBAO), which collected from the Refs. [74,84–
88] and presented in Table 3, where z∗ ≈ 1091 is the redshift
at the epoch of photon decoupling and dA(z) is the co-moving
angular diameter distance combined with the dilation scale
DV (z) = [

dA(z)2cz/H(z)
]1/3

. In addition, it must be noted
that the sound horizon and the redshift of decoupling depend
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Fig. 3 The confidence curves at 1−σ and 2−σ and posterior distribu-
tions for the model parameters using Pantheon datasets. The dark pink
shaded areas represent the 1 − σ confidence level (CL), while the light

pink shaded areas represent the 2 − σ CL. The parameter constraint
values are also presented at the 1 − σ CL

Fig. 4 The confidence curves
at 1 − σ and 2 − σ and posterior
distributions for the model
parameters using
Hubble+Pantheon datasets. The
dark pink shaded areas represent
the 1 − σ confidence level (CL),
while the light pink shaded areas
represent the 2 − σ CL. The
parameter constraint values are
also presented at the 1 − σ CL
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Table 3 Values of dA(z∗)/DV (zBAO ) for distinct values of zBAO

zBAO 0.106 0.2 0.35 0.44 0.6 0.73

dA(z∗)
DV (zBAO )

30.95 ± 1.46 17.55 ± 0.60 10.11 ± 0.37 8.44 ± 0.67 6.69 ± 0.33 5.45 ± 0.31

on the baryon and radiation densities, which are not explicitly
included in our parametrization. However, we assume that
fixing the redshift of decoupling at z∗ ≈ 1091 is a reasonable
model-independent approximation, as it is consistent with
previous measurements and theoretical expectations.

The chi-square function for the BAO datasets is defined
as,

χ2
BAO = XTC−1

BAO X, (27)

where

X =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

dA(z�)
DV (0.106)

− 30.95
dA(z�)
DV (0.2)

− 17.55
dA(z�)

DV (0.35)
− 10.11

dA(z�)
DV (0.44)

− 8.44
dA(z�)
DV (0.6)

− 6.69
dA(z�)

DV (0.73)
− 5.45

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and the inverse covariance matrix C−1
BAO is represented in

[88] as,

C−1
BAO =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.48435 −0.101383 −0.164945 −0.0305703 −0.097874 −0.106738
−0.101383 3.2882 −2.45497 −0.0787898 −0.252254 −0.2751
−0.164945 −2.454987 9.55916 −0.128187 −0.410404 −0.447574
−0.0305703 −0.0787898 −0.128187 2.78728 −2.75632 1.16437
−0.097874 −0.252254 −0.410404 −2.75632 14.9245 −7.32441
−0.106738 −0.2751 −0.447574 1.16437 −7.32441 14.5022

⎞
⎟⎟⎟⎟⎟⎟⎠

.

By minimizing χ2
Hubble + χ2

Pan + χ2
BAO , the constraints

from the combination Hubble+Pantheon+BAO datasets are
shown in Fig. 5 and numerical findings presented in Table 4.

4 Discussion of the findings

In this section, we will discuss the findings of the statistical
analysis and their application to the previous cosmological
parameters. The investigation of cosmological parameters is
an essential technique to describe many characteristics of the
Universe. The parameterizations of various functions, plus
some simple constants, are utilized to explain the characteris-
tics of cosmological parameters. These parameters, including
the expansion rate and curvature, describe the global dynam-
ics of the Universe. Here, we investigated several of the fun-
damental parameters of our current Om(z) parameterization

in FLRW Universe, such as the deceleration parameter, the
density parameter, the pressure, and the EoS parameter.

Initially, we examined various data samples and estimated
the constraint values for the model parameters α, n and H0.
We also constructed two-dimensional likelihood contours
with 1 − σ and 2 − σ errors and 68% and 95% CL for
Hubble, Hubble + Pantheon, and Hubble + Pantheon + BAO
datasets (Figs. 1, 4, 5 show this). The likelihood functions
for all datasets are extremely well fitted to a Gaussian dis-
tribution function, as shown in Figs. 1, 4, and 5. At first, we
examined the Hubble datasets, which contain 31 data points.
Thus, we got the value: 0.38+0.12

−0.12 for the model parameter

α, and the constraint value is −0.25+0.28
−0.25 for the parameter

n, which differentiates between different DE models. The
value of the parameter n from the Hubble datasets shows
that Om(z) has a negative slope indicating the quintessence
epoch. For combined Hubble + Pantheon datasets, we obtain
the values, α = 0.356+0.10

−0.091 and n = −0.20+0.24
−0.21, which

indicates the same behavior as the Hubble datasets. Finally,
we get these values from the combined Hubble + Pantheon +
BAO datasets: α = 0.281+0.050

−0.046 and n = 0.010+0.10
−0.094, which

approximately corresponds to the constant slope i.e. the cos-
mological constant. The best-fit curves of Om(z) diagnostic
with various values of model parameters constrained from
the Hubble, Hubble + Pantheon, and Hubble + Pantheon +
BAO datasets is shown in Fig. 6 with further details. It is
important to note that Fig. 6 shows only the best-fit model
for each dataset, and that it does not necessarily represent
the full range of allowed variations in Om(z). Indeed, as
shown in Table 4, all datasets are compatible with a constant
Om(z), corresponding to the standard �CDM model, within
the uncertainties.

In addition, to compare our Om(z) parameterization to
the �CDM model, we examined the Hubble parameter H(z)
curve and distance modulus μ (z) curve with the constraint
values of model parameters α and n for Hubble and Pantheon
samples datasets, as shown in Figs. 2 and 3. The red line in
the graphics indicates the theoretical curve for the best-fit
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Fig. 5 The confidence curves
at 1 − σ and 2 − σ and posterior
distributions for the model
parameters using Hubble +
Pantheon + BAO datasets. The
dark pink shaded areas represent
the 1 − σ confidence level (CL),
while the light pink shaded areas
represent the 2 − σ CL. The
parameter constraint values are
also presented at the 1 − σ CL

Table 4 A summary of the MCMC findings obtained from several datasets

Datasets H0 (km/s/Mpc) α n ω0 q0 ztr

Priors (60, 80) (0, 1) (−10, 10) – – –

Hubble 67.8+1.7
−1.7 0.38+0.12

−0.12 −0.25+0.28
−0.25 −0.62+0.12

−0.12 −0.43+0.18
−0.18 0.710 ± 0.18

Hubble + Pantheon 67.8+1.5
−1.4 0.356+0.10

−0.091 −0.20+0.24
−0.21 −0.644+0.1

−0.091 −0.466+0.15
−0.1365 0.732+0.31

−0.17

Hubble + Pantheon + BAO 68.4+1.3
−1.3 0.281+0.050

−0.046 0.010+0.10
−0.094 −0.719+0.05

−0.046 −0.5785+0.075
−0.069 0.701+0.23

−0.15

values obtained by the Hubble and Pantheon datasets. It is
noticed that our Om(z) parameterization matches the obser-
vational results well in both cases. Furthermore, it can be
shown that our parameterization is pretty similar to the curve
of the �CDM model (the black dashed line). Here, we esti-
mated the current Hubble parameter values (z = 0) to be:
H0 = 67.8+1.7

−1.7 km/s/Mpc, H0 = 67.8+1.5
−1.4 km/s/Mpc, and

H0 = 68.4+1.3
−1.3 km/s/Mpc for the Hubble, Hubble + Pan-

theon, and Hubble + Pantheon + BAO datasets, respectively,
which are very consistent with recent Planck’s measurements
[10] and other studies in a similar context [89–92].

Figure 7 depicts the best-fit curve of q(z) for each datasets
to show the differences in the behavior of q(z) for each
dataset. Using our Om(z) parameterization, the current value

Fig. 6 The behavior of the Om(z) diagnostic vs. redshift z
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Fig. 7 The behavior of the deceleration parameter q vs. redshift z

Fig. 8 The behavior of the density parameter ρ vs. redshift z

Fig. 9 The behavior of the pressure p vs. redshift z

of the deceleration parameter (i.e. z = 0) is approximated
as q0 = −0.43 ± 0.18, q0 = −0.466+0.15

−0.1365, and q0 =
−0.5785+0.075

−0.069 for the Hubble, Hubble + Pantheon, and Hub-
ble + Pantheon + BAO datasets, respectively. It is important
to note that the values of q0 constrained in this study are com-
patible with the value obtained in Refs. [92–94]. As a con-
sequence, the suggested model’s results are consistent with
current data [10]. Furthermore, we can see that the early Uni-

Fig. 10 The behavior of the EoS parameter ω vs. redshift z

verse was in a decelerated period (q > 0) of expansion while
the present Universe accelerated (q < 0). Thus, the Uni-
verse with our Om(z) parameterization reflects a transition
(i.e. q = 0) with signature flipping at ztr = 0.710 ± 0.18,
ztr = 0.732+0.31

−0.17, and ztr = 0.701+0.23
−0.15 for the Hubble,

Hubble + Pantheon, and Hubble + Pantheon + BAO datasets,
respectively. These transition redshift estimates are consis-
tent with the previously constrained value of [95], ztr = 0.72.
The transition from deceleration to acceleration in the Om(z)
parameterization process occurs at a redshift of ztr = 0.701
in the combined Hubble + Pantheon + BAO datasets, which
is consistent with the results of [95–97] As a result, we see
that our model supports the most current scientific findings
in all three scenarios.

Figure 8 depicts the predicted positive behavior of the
density parameter as it decreases with the expansion of the
Universe in the current time. However, we would like to
clarify that the density parameter being referred to in this
figure corresponds to the total matter-energy density of the
Universe, which includes both dark matter and DE. There-
fore, this density parameter should increase with redshift
for any type of DE model, including the cosmological con-
stant, quintessence, or phantom models. Figure 9 displays
the negative behavior of the pressure p, reflecting the Uni-
verse’s late-time cosmic acceleration. It can be shown that
the Hubble, Hubble + Pantheon, and Hubble + Pantheon +
BAO datasets display similar pressure evolutions in the past.
However, the current negative behavior indicates accelera-
tion. Furthermore, it is generally understood that the EoS
parameter also plays an important role in explaining the
many energy-dominated evolution processes of the Universe.
The current state of the Universe may be predicted via the
quintessence phase (−1 < ωDE < − 1

3 ) or the phantom
phase (ωDE < −1). Figure 10 depicts the best-fit curve of
ω(z). So, with the current model, we got ω0 = −0.62±0.12,
ω0 = −0.644+0.1

−0.091, and ω0 = −0.719+0.05
−0.046 for the Hubble,

Hubble + Pantheon, and Hubble + Pantheon + BAO datasets,
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respectively. We note that the quintessence-like behavior of
the EoS parameter for our Om(z) parameterization, as seen
in Fig. 10, is expected due to the dominant pressureless mat-
ter contribution at high redshifts. Our findings on ω(z) are
consistent with the findings of certain observational studies
[98,99]. The current values for various cosmological param-
eters H0, q0, ztr and ω0 are summarized in Table 4.

5 Final remarks and perspectives

The Om(z) diagnostic method holds significant importance
in testing cosmology within the framework of GR as well
as various modified theories of gravity. In essence, this
research paper presents a novel approach to parameterizing
the Om(z) diagnostic and examines its behavior within the
context of GR. This diagnostic is specifically designed to
make predictions for both phantom and quintessence mod-
els of dark energy, and the model parameters are meticu-
lously determined by analyzing observational data, includ-
ing 31 data points from Hubble expansion observations, six
baryon acoustic oscillation (BAO) data points, and an exten-
sive datasets of 1048 SNe Ia from Pantheon. To further refine
the cosmological model, the Markov Chain Monte Carlo
(MCMC) approach has been employed.

Our investigation shows that the new parametrization of
Om(z) stands in good agreement with the Hubble expansion
observations. The best-fit values of the model with Hubble
data are: H0 = 67.8+1.7

−1.7 km/s/Mpc, α = 0.38+0.12
−0.12 and

n = −0.25+0.28
−0.25. In the next phase, we considered both

Hubble+ Pantheon datasets and obtain best-fit values: H0 =
67.8+1.5

−1.4 km/s/Mpc, α = 0.356+0.10
−0.091 and n = −0.20+0.24

−0.21,
which is comparatively well constrained in comparison to
the previous results obtained by us. Further, to enhance the
results, we consider Hubble + Pantheon + BAO and obtain:
α = 0.281+0.050

−0.046, n = 0.010+0.10
−0.094 and H0 = 68.4+1.3

−1.3
km/s/Mpc.

These results provide valuable insights into the evolution
of the cosmos and enhance our understanding of the nature
of Dark Energy. Furthermore, the proposed parameteriza-
tion of the Om(z) diagnostic capable of explaining phantom
and quintessence has the potential to facilitate the testing of
alternative Dark Energy models, thereby leading to a better
understanding of the Universe’s evolution.

This novel parameterization of the Om(z) diagnostic can
be used in different modified theories of gravity, including
f (R) gravity, f (Q) gravity, Rastall gravity etc., to examine
the behavior of Universe’s evolution and other cosmographic
parameters as well. We keep this as a future prospect of the
study.
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