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Abstract: Predicting Local Area Network (LAN) equipment failure is of utmost importance to en-
sure the uninterrupted operation of modern communication networks. This study explores the use
of machine learning algorithms to enhance the accuracy of equipment failure prediction in LAN
environments. Using these algorithms to enhance LAN failure predictions involves collecting and
analyzing network data, such as packet loss rates and latency, to identify patterns and anomalies.
These algorithms can then predict potential LAN failures by recognizing early warning signs and
deviations from normal network behavior. By leveraging machine learning, network administra-
tors can proactively address issues, reduce downtime, and improve overall network reliability. In
our study, two powerful machine learning algorithms—decision tree and support vector machine
(SVM)—are used. To evaluate the effectiveness of the proposed models, a comprehensive dataset
comprising various LAN equipment parameters and corresponding failure instances is utilized. The
dataset is pre-processed to handle missing values and normalize features, ensuring the algorithms’
optimal performance. Performance metrics, such as accuracy, precision, recall, and F1-score, are
employed to assess the predictive capabilities of the models. The excremental results of our study
lead to more reliable and stable network operations by allowing early detection of potential issues
and preventive maintenance. This leads to reduced downtime, improved network performance, and
enhanced overall user satisfaction. They demonstrate the efficacy of both decision tree and SVM
algorithms in accurately predicting LAN equipment failure.

Keywords: machine learning methods; random forest; decision tree; SVM; SVC; LAN; failure prediction;
Cisco switches

1. Introduction

Local area networks (LANs) serve as the backbone of modern organizations, facili-
tating seamless communication, data sharing, and resource access. Their reliability and
uninterrupted operation are critical for sustaining daily business operations, and any un-
expected LAN failure can lead to significant disruptions, financial losses, and diminished
productivity. In this context, the ability to predict and preemptively address LAN failures is
a paramount concern for network administrators and IT professionals. Studies conducted
by Positive Technologies, as cited in references [1,2], indicate an 11% rise in incidents
(encompassing attacks and network equipment failures) in the first half of 2019 compared
to the same period in 2018 [3]. This suggests that the information systems of organizations
from 2019 did not witness a reduction in their susceptibility to failures.
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Traditional LAN management approaches have largely relied on reactive strategies,
responding to issues as they occur. However, the increasing complexity of LAN infrastruc-
tures, coupled with the growth in data traffic and the emergence of diverse networked
devices, necessitates a more proactive and intelligent approach. This paradigm shift has
given rise to the field of LAN failure prediction, leveraging advanced technologies, such
as machine learning, data analytics, and network monitoring to anticipate and prevent
network disruptions before they occur.

The current market for monitoring systems is highly saturated, with various companies
offering a range of solutions, including Network Olympus, Observium, Nagios, PRTG
network monitor, Kismet, NeDi, and Zabbix [4–8]. While most of these systems are
proprietary and require payment, there are also open-source solutions available with open-
source code. It is noteworthy that most of the listed systems employ the simple network
management protocol (SNMP) to acquire real-time information on the status of L2 network
equipment, including the temperature of switch processors, the level of processing of
requests between devices, incoming and outgoing traffic, power supply status, and other
network device components. Access to this information enables the optimization of L2
network device performance through the application of machine learning algorithms for
predictive analytics regarding possible future malfunctions [9,10].

The motivation behind LAN failure prediction is two-fold. Firstly, it seeks to miti-
gate the costs associated with downtime, which can range from the loss of revenue and
productivity to damage to an organization’s reputation. Secondly, it aims to enhance net-
work performance, ensuring that LANs operate at optimal levels, meeting the demands
of modern data-driven businesses. Achieving these goals requires the development of
sophisticated prediction models, the identification of critical failure indicators, and the
integration of real-time monitoring and alerting systems.

The utilization of machine learning algorithms, specifically decision trees and sup-
port vector machines (SVMs), for predicting LAN failures represents a groundbreaking
approach in network management. Unlike traditional rule-based systems, these algorithms
offer a novel, data-driven approach that harnesses the power of pattern recognition and
classification. Decision trees, for instance, can automatically identify crucial network fea-
tures and decision points, creating a dynamic model that adapts to changing network
conditions. SVM, on the other hand, excels at finding complex relationships within LAN
data that might not be apparent to human operators.

The significance of employing these machine learning algorithms cannot be overstated.
LAN failures can result in severe disruptions, impacting productivity and potentially
causing financial losses for organizations. By leveraging decision trees and SVM, network
administrators can proactively anticipate and prevent failures by identifying subtle warning
signs and deviations from normal network behavior. This not only reduces downtime and
maintenance costs but also enhances network reliability and user satisfaction. Furthermore,
as LANs continue to evolve and expand in complexity, the ability of these algorithms
to adapt and learn from new data sources becomes increasingly crucial, making them
indispensable tools in the ever-demanding field of network management.

The rest of the paper is as follows: Section 2 presents related work about the context of
our study. Section 3 details the procedure of our study aimed at enhancing a LAN network
through failure detection. Section 4 presents the results and their discussion.

2. Related Work

Many researchers have explored the use of anomaly detection algorithms like isolation
forests, k-nearest neighbor (k-NN), and one-class SVM for LAN failure prediction. These
methods aim to identify unusual patterns or behaviors in network traffic that could signify
an impending failure. In addition, deep neural networks, including convolutional neural
networks (CNNs) and recurrent neural networks (RNNs), have been applied to LAN failure
prediction tasks. These models excel at capturing intricate relationships in time-series
network data, making them suitable for predicting subtle anomalies. Furthermore, some
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studies have combined multiple machine learning algorithms or models into ensembles
to improve the accuracy and robustness of LAN failure predictions. Random forests and
gradient boosting are commonly used ensemble techniques in this context. Moreover,
with the advent of big data technologies and cloud computing, researchers have explored
the scalability and efficiency of LAN failure prediction models. Cloud-based solutions
allow for the real-time analysis of large volumes of network data. Finally, LAN failure
prediction research is crucial for ensuring the stability and reliability of modern networks.
The application of machine learning techniques, combined with advances in data collection
and processing, continues to drive innovation in this field, with the ultimate goal of
minimizing network downtime and enhancing overall performance. In this section, some
works that have a relationship with our study will be presented.

In [11], the authors suggested using advanced forecasting algorithms, such as ARIMA
and neural networks, for predicting future outcomes. The authors discussed the impor-
tance of model evaluation and selection, which involves comparing the performance of
different forecasting models using metrics such as MAE and RMSE. They proposed using a
remote monitoring and control system, which can enable real-time monitoring and control
of the textile production process. They discussed using sensors and other monitoring
devices to collect data, which can be transmitted to a central control system for analysis
and decision-making.

In [12], the authors’ methodology involves various technical terms and concepts,
such as time series analysis, predictive modeling, and machine learning algorithms. Time
series analysis is used to identify patterns and trends in historical data, which can then
be used to develop predictive models. These models can be based on statistical methods,
such as regression analysis, or machine learning algorithms, such as neural networks or
decision trees. The authors also discussed the importance of data pre-processing and
feature engineering in developing accurate forecasting models. This involves cleaning and
transforming raw data into a format that is suitable for analysis, as well as selecting relevant
features or variables that are likely to have a significant impact on the outcome. In addition,
the study discussed the use of various performance metrics, such as mean-squared error
(MSE) and mean absolute error (MAE), to evaluate the accuracy of forecasting models.
These metrics are used to quantify the difference between predicted and actual values,
and to assess the overall performance of the model.

The methodology proposed in [13] includes several steps for predicting the remaining
useful life of hydraulic components. These steps include data pre-processing, feature
selection, model training, and performance evaluation. Furthermore, data pre-processing
involves cleaning and transforming the raw data to make it suitable for analysis. Several
techniques have been used in this study such as data normalization, outlier removal,
and missing value imputation for data pre-processing.

Feature selection is the process of selecting the most important features that contribute
to the predictive model’s accuracy. This step can be very important and improve the
accuracy of the model’s results. Some studies used several feature selection techniques,
such as correlation-based feature selection and recursive feature elimination to select the
most relevant features [12,13].

Model training [14] involves selecting an appropriate machine learning algorithm
and training it on the pre-processed data. Decision trees, in essence, can solve both
classification and regression issues. A decision tree is constructed by breaking it down
into distinct subsets, known as leaf nodes. These branches represent different possibilities
based on the dataset and offer a well-defined goal, while the root node signifies the optimal
choice. Several algorithms have been used in [14], such as linear regression, decision
trees, and random forests for model training. Performance evaluation involves assessing
the accuracy of the trained models. The authors used several metrics, such as mean
absolute error, root mean-squared error, and the coefficient of determination to evaluate
the model’s performance. They also used a k-fold cross-validation technique to evaluate
the model’s generalizability.
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Overall, the methodology proposed in [13,15–17] is well-explained and includes sev-
eral technical terms related to machine learning and predictive maintenance. In addition,
several techniques and algorithms have been used for data pre-processing, feature selection,
model training, and performance evaluation. This methodology made the proposed system
more reliable.

On the other hand, the Bayes modeling method is also beneficial for predictive failure
analysis. As proposed in [18], this method employs possibilistic Bayes models. By using
these models, a system is designed to aid the monitoring and control staff in detecting po-
tential failures. It also aids in the planning of optimal programs for predictive maintenance.

Simultaneously, the logistic regression method is featured prominently in studies [18–20]
for failure prediction. This approach is utilized to dissect the elements that contribute to
communication failure and anticipate failures in the grid metering automation system.
In this study, a model predicated on the logistic regression algorithm is introduced with the
aim of predicting impending failure, thereby minimizing the electric power consumption
within the metering automation system. This enables the operator to analyze the data pat-
terns and timely address the failure. The study concludes that logistic algorithm modeling
is a trustworthy model that can be directly employed for failure prediction.

3. Materials and Methods

In this study, we used decision trees and SVM algorithms [21–24] to predict LAN
failures. These two algorithms were chosen for many reasons. Decision trees are highly
interpretable, making it easier for network administrators to understand why certain
LAN failures are predicted. This transparency can aid in troubleshooting and decision-
making. On the other hand, SVM with kernel functions can effectively capture non-linear
relationships in LAN failure prediction data. This flexibility allows it to model complex
network behaviors. Both decision trees and SVM can handle noisy data and are robust
against outliers, which are essential in real-world network monitoring where data can be
imperfect. Finally, many studies have shown that decision trees and SVM outperform
other machine learning methods in different classification problems. In the following a
description of the decision-making process of these algorithms will be given:

The decision tree algorithm [21,22] has the following steps:

1. Feature selection: The decision tree algorithm begins by selecting the most relevant
features (network parameters) from the dataset. These features are chosen based on
their ability to discriminate between LAN failure instances and non-failure instances.

2. Splitting criteria: The algorithm then decides on a splitting criterion for each node in
the tree. It chooses the feature and threshold that best separates the data into distinct
groups. Common splitting criteria include Gini impurity, entropy, or mean-squared
error, depending on the type of problem (classification or regression).

3. Recursive splitting: The decision tree recursively splits the dataset at each node based
on the selected splitting criterion. It continues this process until certain stopping
conditions are met, such as reaching a maximum tree depth or having too few samples
in a node.

4. Leaf node assignment: Once the tree is built, each leaf node represents a prediction.
For LAN failure prediction, leaf nodes are labeled as either “Failure” or “Non-failure”
based on the majority class of instances within the node.

5. Predictions: To make predictions, the algorithm follows the tree’s decision path
from the root node to a leaf node based on the input features of a LAN instance.
The prediction is the class label associated with the reached leaf node.

The decision-making process of SVM [23,24] is as follows:

1. Feature selection and transformation: SVM begins by selecting relevant features and
potentially transforming them into a higher-dimensional space using kernel functions
(e.g., RBF kernel). This transformation helps make complex decision boundaries
more linear.
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2. Hyperplane selection: SVM aims to find a hyperplane that best separates LAN failure
instances from non-failure instances. It selects the hyperplane that maximizes the
margin, which is the distance between the hyperplane and the nearest data points
from both classes (support vectors).

3. Margin maximization: SVM strives to maximize the margin while minimizing clas-
sification errors. Instances that fall within the margin or on the wrong side of the
hyperplane are penalized. This creates a robust decision boundary.

4. Kernel trick: If a kernel function is used, SVM applies it to map the data into a
higher-dimensional space, where a linear hyperplane can effectively separate the
classes. The choice of the kernel function can influence the model’s capacity to capture
complex patterns.

5. Predictions: To make predictions, SVM evaluates the input LAN instance in the
transformed space and determines which side of the hyperplane it falls on. Depending
on the side, the instance is classified as “Failure” or “Non-failure”.

In previous research [25], the focus was on the significance of data volume for the
performance of machine learning methods. The authors discovered that random forest and
the decision tree model method can process a substantially larger data array per unit of
time compared to the DES-SVM method, resulting in more accurate failure predictions. The
results showed an intriguing correlation between the data array size and forecast accuracy,
where the performance was improved as the data size increased to a certain point. This
finding supports the proposition that larger, more varied data inputs decrease the chances
of false predictions, which is a valuable insight for the field.

To apply the decision tree model for LAN failure prediction, the following steps were
taken:

• A dataset was collected featuring attributes such as CPU load, memory usage, temper-
ature, network traffic, and a binary label indicating device failure (1 for failure, 0 for
normal operation).

• The data were pre-processed, which involved cleaning, normalizing, and encoding
categorical variables if necessary.

– The data preprocessing process began by identifying missing values in the dataset.
Network monitoring data can sometimes have missing entries due to network
interruptions or data collection issues. Several strategies can be employed to
handle missing values. In our case, for numeric features, missing values were
replaced by the mean or median of the available data in the same feature. How-
ever, for categorical features, missing values were replaced by the mode (the most
frequent category) of that feature.

– For nominal categorical variables (where there is no inherent order), one-hot
encoding was typically used. Each category was transformed into a binary
column (0 or 1) representing its presence or absence. This ensured that the model
did not assume any ordinal relationships among categories.

• The dataset was divided into training and testing sets (50% for each one).
• A decision tree classifier was trained on the training dataset using a machine learning

library, such as scikit-learn in Python.
• The model’s performance was evaluated; adjustments were made by tweaking param-

eters and pruning the tree to optimize performance.
• The trained model was used to predict future LAN failures based on the collected data.

3.1. Input Data

In the presented study, a LAN was constructed, composed of multiple networking
devices and a level 2 (L2) networking device failure prediction system utilizing data from
the PRTG network monitoring system (see Figure 1). The data volume displayed within
the monitoring system interface was substantial, with each indicator classified by color.
Due to the large number of color-coded and numerical indicators, it was challenging for
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operators to analyze data in real time and make decisions to prevent potential incidents.
The motivation for this research article stems from the lack of predictive analytics in all
available monitoring systems on the market.

Figure 1. Example of the PRTG network monitoring system information panel.

For high-quality data analysis, the dataset was collected over one year of operating
160 LAN devices. Notably, 99% of the active LAN equipment consisted of various models
supplied by Cisco, including WS-C2960-48P, WS-C3750-48PS, WS-C3560-48PS-S, Catalyst
6509-E, and other advanced models. Over 110 network devices were situated in stan-
dardized cross-connect and server rooms. Connections between switches were made via
fiber-optic lines (FOL), utilizing a star topology where Catalyst 6509-E switches served
as the network core (see Figure 2). At least half (50%) of the switches were equipped
with uninterruptible power supplies (UPSs), but only 30% had cooling and ventilation
systems in place. Moreover, the data transmission network employed multi-layered, next-
generation certified security measures that eliminated up to 95% of failures arising from
potential internet attacks or malicious software activities. The organization also integrated
an active equipment monitoring system, the PRTG network monitor, which tracked the
real-time status of network switches and other devices via the SNMP protocol and intricate
internal sensor systems. Despite these precautions, sporadic failures of individual devices
or switches occurred from time to time for unspecified reasons. This particular case was
selected for investigation, and a solution was subsequently proposed in the form of a failure
prediction system utilizing machine learning techniques. In the following, some pieces of
information about the process of data collection will be presented.

1. The data are gathered from various sources such as logs, alarms, and other informa-
tional channels. The monitoring system plays a vital role in this process, cataloging
defect occurrences and offering comprehensive data about these flaws. The collected
data are then stored in a database system, paving the way for the crucial step of data
analytics. This step encompasses advanced data analytics, data mining, machine
learning, and cloud computing technologies. Data collection from network devices
using a network monitoring program was carried out through the SNMP protocol.

2. SNMP configuration on network devices: SNMP (simple network management proto-
col) is a standard network management protocol that allows network administrators
to monitor and manage devices within a network. To collect data from network de-
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vices, SNMP was configured on each device. This involved setting SNMP parameters,
such as the device address, the port used for SNMP, and the SNMP protocol version.

3. Network monitoring program installation: After the configuration of SNMP on de-
vices, a network monitoring program, which is PRTG network monitor in our case,
was installed. It used the SNMP protocol to collect data from devices. The pro-
gram can be installed on a computer or server located within the same network as
network devices.

4. Monitoring rule creation: Setting up monitoring rules allows determining which data
need to be collected from each device within the network. In other words, the final
training dataset consisted of feature matrix indicators collected by the monitoring
system: CPU load, memory usage, temperature of network equipment components,
network traffic, number of alarms, packet loss, and equipment availability. A binary
vector of acceptable responses was created with a breakdown classification equal to 1
for normal equipment operation and equal to 0 otherwise.

5. Monitoring initiation: After creating rules and starting the monitoring process, the
PRTG network monitor collected and recorded data. Finally, data were saved in the
program’s database.

6. Data analysis: After data collection, analysis can be conducted using the monitoring
program. The program can provide charts and diagrams that help analyze metric
changes over time. Additionally, the program can alert potential network issues based
on established metric threshold values. In our case, we limited ourselves to exporting
data in “.csv” format for each individual network device.

Figure 2. Example of LAN devices interconnected in a star topology.

3.2. Dataset

The observed network is a subset consisting of eight Layer 2 (L2) switches from a
single vendor, which are part of a substantially larger deployed network. The dataset
encompasses all TRAP messages generated by these devices from 12 December 2019 to 10
December 2020—a total of 363 days. These messages are aggregated into final log files in
Comma Separated Values (CSV) format. After amalgamating the twelve-month logs from
all eight switches, the resulting dataset contained 2923 entries, averaging 8 messages per
day from each switch. Although this may be considered a modest data stream, it aligns
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with the expectations for a failure dataset, given that failures are inherently sporadic events.
Each log adheres to a uniform format containing fourteen manually selected variables
deemed relevant for the current research. These variables are:

1. Date: The date on which the equipment status message was recorded. The date format
used was “DD.MM.YYYY”, for example, “10.12.2020”. This column was subsequently
removed as it did not offer any informative value.

2. Uptime: The number of days the equipment functioned without any failures. The
recorded format is numerical; for example, “95.00” indicates the switch operated for
95 consecutive days without interruptions or failures.

3. Downtime: A metric denoting the period during which a specific switch or device
in the network is either inaccessible or not functioning properly. This could occur
due to various reasons, such as hardware failures, software bugs, or connectivity
issues. The recorded format is percentage-based; for example, 0% indicates 24 h of
uninterrupted operation, whereas 0.1% indicates a downtime of approximately 1–0.2%
of a 24 h period, which equates to around 2 min.

4. CPU load: The CPU load or utilization of the switch, recorded in a numerical format.
For example, “8.12” signifies a CPU load of 81.2% of its full 100% capacity.

5. CPU 1: In Catalyst 6500/6000 switches, there are two CPUs. One is the network
management processor (NMP) or switch processor (SP), and the other is the multi-
layer switch feature card (MSFC) or routing processor (RP). This entry captures the
load on the Switch Processor (SP), which performs the following functions:

• Participates in the learning and aging of MAC addresses. Note: MAC address
learning is also known as path setup.

• Initiates protocols and processes for network management, such as the spanning
tree protocol (STP), Cisco discovery protocol (CDP), VLAN trunking protocol
(VTP), dynamic trunking protocol (DTP), and port aggregation protocol (PAgP).

• Handles network management traffic directed to the switch’s CPU, such as Telnet,
HTTP, and SNMP traffic. The recorded format is numerical, for example, “8.76”.

6. Available memory for Processor 1: This refers to the numerical value representing the
available memory for Processor 1 at the time of measurement. The data are recorded in
a numerical format, with the unit of measurement being megabytes (MB). For instance,
a value of “52.00” signifies that 52 MB of memory is available for Processor 1.

7. Percentage of available memory for Processor 1: This metric quantifies the availability
of memory for Processor 1 as a percentage of the total 100%. The data are recorded in
a percentage format, for example, “37%”, which indicates that 37% of the processor’s
memory is available for computational tasks. During data preprocessing, the per-
centage symbol was removed because the predictive model was unable to interpret
this character.

8. Available memory for Processor 2: This metric presents data on the available memory
for the second processor, recognizing that not all switches have dual processors.
The routing processor (RP) performs several tasks:

• Constructs and updates Layer 3 routing tables and the address resolution proto-
col (ARP).

• Generates the forwarding information base (FIB) for Cisco express forwarding
(CEF) and adjacency tables and loads them onto the policy feature card (PFC).

• Manages network control traffic directed toward the RP, such as Telnet, HTTP,
and SNMP traffic. The data are recorded in a numerical format, with the unit
of measurement being megabytes (MB). For instance, a value of “1.73” signifies
that 1.73 MB of memory is available for processing tasks.

9. Percentage of available memory for Processor 2: This variable indicates the percentage
of available memory for Processor 2 as a fraction of 100%. The data are recorded in a
percentage format. For example, a value of “43%” signifies that 43% of the processor’s
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memory is available for task execution. During the data cleansing phase, the percent-
age symbol was removed due to incompatibilities with the predictive model.

10. Overall available memory: This parameter measures the overall memory availability
in percentage terms. For instance, a reading of “100%” implies that all of the memory
or RAM capacity is available for utilization. The percentage symbol was removed
during data preprocessing due to model limitations. Subsequently, the numerical
value was simplified from 100 to 1 to facilitate data handling.

11. Response time index (RTI): This is a metric employed to measure the response time of
a network device or application. It serves as a vital indicator of the quality of service
(QoS) within a network, particularly in scenarios where latency is a critical factor, such
as voice or video conferencing. Response time is the duration between the sending of
a request and the receipt of a corresponding response. This time encompasses network
transmission delays, device processing delays, and other contributing factors. The RTI
can be utilized for monitoring and analyzing network performance; a high RTI value
may signal network issues that warrant investigation. The measurement format is
numerical, recorded in milliseconds (ms). This metric captures the time required for a
packet to travel from the sender to the receiver and back, and may include various
types of delays such as transmission and processing delays. For example, a value of
“70” would imply a 70-ms response time.

• Optimal RTI: An RTI value of 20 ms is generally considered excellent for the
majority of applications.

• Average RTI: An RTI of 100 ms may be acceptable for certain types of traffic but
could result in noticeable real-time delays for voice and video applications.

• High RTI: If the RTI reaches 300 ms or more, this is likely indicative of signif-
icant network latency issues that could adversely impact the performance of
network applications.

12. CPU load index: This metric provides information reflecting the current load on the
central processing unit (CPU). It is a quantitative assessment of the extent to which
CPU time is being utilized and serves as an important indicator of overall device
performance and health. In Cisco switches, the CPU load index is generally measured
as a percentage ranging from 1% to 100%, where

• 1–30%: This range is usually considered a normal load, indicating that the device
is operating healthily.

• 31–70%: This is a moderate load that may necessitate additional monitoring. It could
be related to a temporary increase in traffic or a task consuming more resources.

• 71–100%: This signifies a high or critical load, potentially indicating a problem.
This could be due to misconfiguration, an attack, hardware defects, or other
issues that could have a negative impact on the overall network operation.

13. Traffic index: This metric is used for the quantitative assessment of the volume of
traffic flowing through a switch over a specified period of time.

14. Bandwidth analysis: This entails determining the data transfer rate through a specific
port or interface of the switch. For instance, the traffic index might reveal that a certain
port is being utilized at 70% of its maximum bandwidth capacity. In our context, data
were recorded from TRUNK ports, which are channel ports connecting the switch to
other network switches. The recording format is numerical. For example, a value of
“9.32” means that the channel port operated at an average speed of 9.32 MB/s.

15. Alarms: These are records from an alerting system designed to notify network ad-
ministrators about various events, problems, or anomalous states that may require
attention or intervention. The recording format is numerical. For example, “1” means
that there was one alarm from the system, and “3” means there were three alarms
from the system.

16. Temperature: Most Cisco switches are equipped with built-in temperature sensors
that continuously measure the temperature at various points within the device. In our
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case, the measurement format was numerical and in degrees Celsius, e.g., a reading
of “42.0” signified that at the time of measurement, the equipment’s temperature
was around 42 ◦C. During data cleaning, the “◦C” symbol was removed because the
forecasting model could not interpret that symbol.

The raw monitoring data obtained during the export process requires processing to
be used as a training dataset. The problem was that the data were exported in multiple
CSV files and contained duplicate features with incorrect linguistic labels (see Figure 3).
After processing the data, a feature matrix with dimensions [2] was obtained.

Figure 3. Training dataset after transformation.

The resulting graph (see Figure 4) illustrates that not all criteria were important for
predicting an event. The most important criteria were identified as “Alarms”, “CPU load”,
“CPU1”, “Temperature”, “Traffic index”, “Response time index”, and “Available memory2”
as the most significant factors affecting the final prediction outcome.

Figure 4. Key features of the model and their corresponding weight in the forecasting system.

A split criterion was used in this study. The first step in building a decision tree is to
determine the best attribute to split the data. This is typically done by using a measure of
impurity like the Gini index [26,27] or information gain [27,28]. For example, information
gain can be calculated as follows:

IG(S, A) = H(S)− ∑
[Sv]

S
× H(Sv) (1)

where

1. IG(S, A) is the information gain for attribute A on dataset T.
2. H(S) is the entropy of dataset T.



Electronics 2023, 12, 3950 11 of 19

3. [Sv]is the number of samples in the subset Sv, created by splitting S on attribute A.
4. H(Sv) is the entropy of the subset Sv.

Then a stopping criteria has been established to prevent the decision tree from growing
indefinitely. Some common stopping criteria include [29,30]:

1. Maximum depth: The tree limit was 3 and 4;
2. Minimum samples per node;
3. Minimum information gain.

3.3. Pre-Modeling

In the initial stages of the research activity, an analysis of the input data was conducted
utilizing the software suite RapidMiner Studio (version 10.0). The preliminary step involved
the visualization of the input data. By uploading a pre-structured dataframe, it became
possible to isolate the parameter requiring forecasting (see Figure 5). In our specific case,
the criterion to be forecasted was the “breakage” of the switch (breaking).

Figure 5. Visualization of data loaded into the model.

Subsequently, the quick prototyping function was employed: Like many other data
analysis tools, RapidMiner generates and tests various prototypes using all available
machine learning algorithms in the library, based on the uploaded dataframe. In our case,
nine different algorithms were tested in the “quick prototyping” mode:

• Logistic regression.
• Random forest.
• Gradient boosted trees.
• SVM (support vector machine).
• Naïve Bayes.
• kNN (k-nearest neighbor).
• Linear regression.
• Gradient boosted regression.
• Neural network.

As a result of the prototyping, an algorithm was identified that demonstrated the
highest applicability in relation to the input data. The most positive preliminary results were
produced by decision tree algorithms, random forest, SVM, and kNN. These algorithms
exhibited over 60% accuracy in preliminary failure prediction and had shorter training
times compared to other types of algorithms.

The algorithms in question come with specific hyperparameters that require tuning,
usually essential for empirical adjustment. Since they all belong to the same environment,
various evaluations concerning training time or memory usage can be carried out. Addi-
tionally, there is the flexibility to employ a unified dataset format for all algorithms. Based
on the prototyping results, it was decided to conduct a more thorough test of the random
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forest algorithm and the decision tree algorithm with cross-validation, using the same
RapidMiner Studio software.

Initially, a model was constructed where an input dataset consisting of approximately
1800 records was loaded. Subsequently, attributes were selected, roles were assigned,
and cross-validation was performed. The ratio of test to training blocks was 40 to 60;
i.e., the model was trained on 60% of the data and made forecasts on the remaining 40%.
To ensure a reliable model evaluation, a 5-fold cross-validation was used, although this
could be increased to 15–20 folds. However, some events have a reduced number of positive
samples, which might result in some folds having few or no positive samples, making it
impossible to calculate some metrics. The model’s workflow is illustrated in Figure 6.

Figure 6. Prediction model built in the RapidMiner software.

The outcome of this model verification showed an accuracy of 99.84%, but the recall
rate was 72.73%. Such a high percentage of predictive accuracy indicated that the chosen
strategy was correct, but required some fine-tuning as the system predicted three false
negatives (see Figure 7), which is unacceptable in our scenario.

Figure 7. Model results.

In light of the above, we implemented the following changes to the model to improve
output metrics: we added data from three additional switches, increasing the total number
of input records to 2900, and raised the number of cross-validation folds from 5 to 20 while
maintaining the 60/40 training-to-test block ratio. As a result of these changes, there was a
qualitative improvement in the final forecasts, as shown in Figures 7 and 8. The accuracy
metric increased to 99.97%, and the recall for failure prediction rose to 99%, as indicated in
Figure 8 Nonetheless, the time for training and prediction increased proportionally, from an
average of 4 s to around 11–12 s (see Figure 8).
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Figure 8. Results of the improved model.

3.4. Proposed Model

Decision trees are used in our study. Figure 9 illustrates its use in order to predict
network equipment failures.

Figure 9. Decision tree for network equipment failure prediction.

Decision trees are prone to overfitting, which means they can grow indefinitely if
not constrained. To prevent decision trees from growing too complex and overfitting the
training data, various criteria and techniques are used to determine when to stop or prune
the tree. Here are the main criteria used to prevent decision trees from growing indefinitely:

1. Maximum depth (max depth): Setting a maximum depth for the decision tree restricts
how many levels it can grow. If a tree reaches this depth during construction, it stops
splitting and becomes a leaf node. This helps prevent overfitting by limiting the
tree’s complexity.

2. Minimum samples per leaf: This criterion specifies the minimum number of samples
required in a leaf node. If a node has fewer samples than this threshold after a split,
the split is not allowed. It prevents the creation of very small leaf nodes, which can
capture noise in the data.

3. Minimum samples per split: Similar to the minimum samples per leaf, this criterion
specifies a minimum number of samples required to perform a split at a node. If there
are fewer samples than this threshold, the split is not considered, preventing further
growth of the tree on small subsets of data.

4. Maximum features: This parameter limits the number of features considered for each
split. It can be set to a fixed number or a percentage of total features. Limiting the fea-
tures considered at each node helps control tree complexity and prevents overfitting.

5. Impurity threshold (minimum impurity decrease): Nodes are split only if the impurity
decrease (e.g., Gini impurity or entropy) resulting from the split exceeds a certain
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threshold. If the decrease in impurity is below this threshold, the split is not performed,
which helps avoid splitting into noisy or irrelevant features.

6. Pruning techniques: After growing a full tree, pruning techniques can be applied to
remove branches that do not contribute significantly to improving predictive accuracy.
Pruning involves evaluating the impact of removing subtrees and keeping only those
that improve the tree’s generalization performance on validation data.

7. Cross-validation: Cross-validation techniques, such as k-fold cross-validation, can
be used to estimate the optimal tree depth and other hyperparameters by assessing
a tree’s performance on different validation subsets of the data. This helps find the
right trade-off between model complexity and predictive accuracy.

These criteria and techniques are essential for preventing decision trees from growing
indefinitely and, instead, ensuring that they generalize well to unseen data. The goal is to
strike a balance between capturing useful patterns in the data and avoiding the inclusion
of noise or overfitting, which can lead to poor model performance on new data. In our
study, we used the mentioned criteria in our scripts in order to prevent decision trees from
growing too complex and overfitting.

In the next step, SVM is used to predict the LAN switches failures. In order to use SVM
to predict LAN switch failures, some scripts are written. These scripts take the following
points into consideration:

1. The script starts by importing several important Python libraries used for data manip-
ulation, visualization, and machine learning (Python libraries, such as numpy, pandas,
sklearn, and matplotlib).

2. Data loading: The authors take some of the collected data from the monitoring systems
and prepare them for further manipulation. The next step is “data preprocessing”:

(a) The authors add comments within triple quotes to avoid overlapping his-
tograms for each specified feature. This allows for a comparison of distribu-
tions in cases where ’Breaking’ is ’Yes’ or ’No’.

(b) Conversion to binary: The ’Breaking’ column is the target variable, and it is
converted from ’Yes’/’No’ to a binary format (1/0) using a dictionary mapping.

(c) Feature selection: Some columns are dropped from the DataFrame “ds” (as
specified in cat_ feet), and the modified DataFrame only contains numeri-
cal features.

3. Train–test split: The dataset is split into a training set (X_ train, Y_ train) and a test set
(X_ test, Y_ test). The test set size is set to 50% of the total data. The random_ state=0
ensures that the splits are reproducible.

4. Modeling. A pipeline is created with two steps:

(a) “StandardScaler()”: Standardization of a dataset is a common requirement for
many machine learning estimators. It standardizes features by removing the
mean and scaling to unit variance.

(b) “SVC(gamma=’auto’, probability=True)”: SVC stands for support vector clas-
sification, which is a type of SVM. By setting “gamma=’auto’”, the gamma
parameter is set to 1/n_ features. Setting “probability=True” enables the clas-
sifier to provide probability estimates. After all, the pipeline is fitted on the
training data.

5. Prediction: Predictions (“clf_ pred”) are made on the test data. Probabilities (“clf_
pred_ proba”) are also calculated for each prediction. This is possible because “proba-
bility=True” is set in the SVC classifier.

6. Model evaluation: Several metrics are printed out for evaluating the model:

(a) Accuracy: This is the percentage of correct predictions. It is calculated using
“accuracy_ score(clf_ pred, Y_ test)”, comparing the predicted values against
the actual values from the test set.

(b) Cross-validation score: This is another way to measure the effectiveness of
the trained model, which works by dividing the dataset into “k” groups or
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folds, repeatedly training the model on k-1 folds while evaluating it on the
held-out fold.

(c) Classification report: This report displays the precision, recall, F1-score, and sup-
port for the model.

7. Alerts: Finally, the script prints “Alarm!” for every instance in the test set that is
predicted as class 1 (“Breaking” = Yes). This could be interpreted as an alert system
where an alarm is raised if the model predicts a system failure.

These steps were used for LAN switch failure prediction with SVM. The specific
implementation details and library choice may vary, depending on the programming
language and tools.

3.5. Results and Discussion

In this dataset, a machine learning algorithm was applied, specifically the random
forest method, which successfully classified the impending network equipment failure
with an accuracy of 98.3%. The SVC method also successfully classified the impending
network equipment failure with an accuracy of 94.28% (see Figure 10).

Figure 10. SVC, RF, and DT model accuracy results.

When comparing two prediction methods (Figures 10–12), a significant influence of
the input parameters on the success of the prediction was revealed, such as “Alarms”,
“CPU load”, “Traffic index”, “Temperature”, and a negligible influence of all other input
parameters. This is a clear indication that out of 14 parameters, only 5–6 are important for
the prediction system. In turn, this implies a more optimal methodology for collecting data
from monitoring systems. It should also be emphasized that the SVC model was trained
and tested on significantly fewer data compared to the random forest model: 116 rows of
records versus 2503.

It can be observed that there were no major differences in prediction outcomes when
comparing the methods using a histogram (as shown in Figure 11). However, there is a
notable disparity in the processing time: The SVC method requires 10–25% more time to
analyze the same volume of data. This difference in the processing time may seem minimal,
but it is significant when applied to larger, industrial-scale data networks that necessitate
real-time data analysis. In scenarios where networks may have up to 200 switches, even
marginal increases in processing time can translate into considerable inefficiencies.

Finally, one can see a difference in the prediction accuracy (Figure 10). The tree-based
models consistently delivered a prediction accuracy of 99.39%, whereas the SVC model
yielded a slightly lower accuracy of 94.28%. This discrepancy in accuracy, while potentially
minor, could have significant consequences in large-scale industrial applications where
high precision is required.
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Figure 11. Dependencies of input parameters for the failure prediction on SVC.

Figure 12. Comparing both models by temperature data array.

The high accuracy achieved by the decision tree and support vector machine (SVM)
models for LAN failure prediction involves understanding the factors that contribute to
their effectiveness in this specific context. We start by highlighting the importance of
selecting relevant features or network parameters for LAN failure prediction. The chosen
features provide critical information about network health and performance, allowing the
models to identify patterns that are indicative of potential failures. In addition, decision
trees are capable of capturing complex relationships between the selected features. We
emphasize that the tree structure enables the model to divide the feature space into subsets
that represent different LAN states or failure conditions. However, SVM uses kernel
functions. SVMs can effectively map the input features into a higher-dimensional space,
making it easier to separate LAN failure instances from non-failure instances. In the other
side, the decision tree model offers interpretability, making it easier to understand why
certain decisions or splits are made. This can help network administrators gain insights
into the specific network parameters that contribute to failure predictions. Both models
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exhibit strong generalization capabilities. They have learned from historical LAN data,
enabling them to identify similar patterns in unseen data. This generalization is a key
factor in their high accuracy when applied to new LAN scenarios. Furthermore, SVM
is a flexible model that can handle both linear and non-linear relationships in the data.
This adaptability allows it to capture a wide range of LAN failure patterns, making it
suitable for various network configurations. Finally, while the models have demonstrated
high accuracy, there is always room for improvement. Ongoing data collection and model
refinement can further enhance their predictive capabilities.

The point at which an increase in data volume no longer significantly enhances
prediction accuracy, when using decision trees and SVM for LAN failure prediction, can
be described by the concept of diminishing returns. Initially, as the volume of training
data increases, both algorithms benefit from more diverse examples and patterns to learn
from, leading to improved accuracy. However, there comes a point where the marginal
gain in accuracy levels off, and adding more data becomes less impactful. This threshold
depends on factors such as the complexity of the LAN environment, the richness of the
feature set, and the inherent noise in the data. Beyond this point, additional data may
introduce more noise or redundant information, making it more challenging for the models
to extract meaningful insights. Hence, it is essential to carefully monitor and evaluate
model performance in relation to data volume to determine the optimal dataset size that
balances accuracy gains with computational resources and data management constraints.

The study’s findings, which demonstrate the accurate prediction of LAN equipment
failures using machine learning algorithms (decision trees and SVM), have profound
implications for real-world network management and communication network perfor-
mance. By accurately forecasting LAN equipment failures, network administrators and
organizations can realize several tangible benefits. For instance accurate prediction en-
ables proactive maintenance and timely interventions to prevent or mitigate equipment
failures. This, in turn, significantly reduces network downtime and service disruptions.
A well-maintained network experiences fewer outages, leading to enhanced reliability and
minimal impact on end-users or critical business operations. Furthermore, minimizing
network downtime not only improves operational efficiency but also translates into cost
savings. Organizations no longer need to allocate extensive resources for emergency re-
pairs or costly hardware replacements. Predictive maintenance allows for planned and
cost-effective equipment replacements or repairs. In addition, accurate failure prediction
empowers network administrators to proactively manage and optimize network resources.
They can allocate bandwidth, allocate network assets, and fine-tune configurations based
on predicted failures or potential traffic shifts, ensuring that network performance is consis-
tently optimized. On the other hand, a reliable network with minimal downtime results in
a consistently positive user experience. This is especially critical for organizations that rely
on real-time applications, such as video conferencing, VoIP, and cloud services. Accurate
failure prediction ensures that users can access services without interruptions or latency
issues, ultimately improving customer satisfaction and employee productivity. Finally,
knowing when and where equipment failures are likely to occur allows organizations to al-
locate resources more effectively. They can maintain an adequate inventory of replacement
parts or equipment, reducing delays in restoring network functionality.

4. Conclusions

LAN failure prediction could represent a significant advancement in the field of net-
work management and reliability. Decision trees and support vector machines (SVMs)
have been used in our study for LAN failure prediction. Both algorithms have demon-
strated their efficacy in accurately forecasting LAN equipment failures, offering valuable
insights and benefits to organizations and network administrators. It has been found that
LAN equipment failure prediction is instrumental in fostering a more reliable, efficient,
and cost-effective communication network infrastructure. These predictions have a direct
impact on reducing downtime, improving network management practices, enhancing user
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experiences, and optimizing resource allocation, ultimately leading to improved overall
network performance in real-world scenarios.

Future work on the practical implementation of LAN failure prediction using machine
learning will likely focus on refining predictive models with more extensive datasets and
exploring emerging techniques. Additionally, the integration of predictive maintenance
systems into network infrastructure management tools will be a crucial area of development,
allowing organizations to seamlessly incorporate machine learning-driven predictions into
their daily network operations.
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