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Abstract A flat Friedmann–Lematre–Robertson–Walker
(FLRW) spacetime metric was used to investigate some exact
cosmological models in metric-affine F(R, T ) gravity in
this paper. The considered modified Lagrangian function is
F(R, T ) = R + λT , where R is the Ricci curvature scalar,
T is the torsion scalar for the non-special connection, and λ

is a model parameter. We also wrote R = R(LC) + u and
T = T (W ) + v, where R(LC) is the Ricci scalar curvature
with respect to the Levi–Civita connection and T (W ) is the
torsion scalar with respect to the Weitzenbock connection,
and u and v are the functions of scale factor a(t), connec-
tion and its derivatives. For the scale factor a(t), we have
obtained two exact solutions of modified field equations in
two different situations of u and v. Using this scale factor,
we have obtained various geometrical parameters to investi-
gate the universe’s cosmological properties. We used Markov
chain Monte Carlo (MCMC) simulation to analyze two types
of latest datasets: cosmic chronometer (CC) data (Hubble
data) points and Pantheon SNe Ia samples, and found the
model parameters that fit the observations best at 1 − σ , and
2 − σ regions. We have performed a comparative and rel-
ativistic study of geometrical and cosmological parameters.
In model-I, we have found that the effective equation of state
(EoS) parameter ωe f f varies in the range −1 ≤ ωe f f ≤ 0,
while in model-II, it varies as −1.0345 ≤ ωe f f ≤ 0. We
found that both models are transit phase (moving from slow-
ing down to speeding up) universes with a transition redshift
zt = 0.5874+0.2130

−0.0197 and zt = 0.6865+0.1719
−0.0303.
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1 Introduction

Recent cosmological studies [1–7] suggest that the Universe
evolves with two accelerating phases of expansion, one at
early times and one at late times. Although the latter can be
explained by the presence of a cosmological constant �, the
inclusion of some modification was necessary due to the asso-
ciated theoretical issue, the potential for dynamical behav-
ior, and particularly the cosmological constant’s incapacity to
explain the early accelerated phase. One possible approach is
to stick with general relativity as the basic theory and change
the universe’s matter content by adding new fields, like the
dark energy sector at later times [8,9] and/or the inflaton at
earlier times [10,11]. A second option involves altering the
gravitational sector itself, creating a theory that, although
having general relativity as a specific limit, generally shows
more degrees of freedom [12,13].

A variety of methods construct gravitational modifica-
tions, each moderating a different aspect of general rela-
tivity. The braneworld theories [14] comes from changing
the dimensionality; the F(R) gravity [15,16], F(G) gravity
[17,18], Lovelock theories [19,20], etc. come from changing
the Einstein-Hilbert Lagrangian; and the Horndeski/Galileon
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theories [21–23] come from adding a scalar field coupled in
different ways with curvature. It is also possible to make
changes using torsional invariants. This can be done in F(T )

gravity [24,25], F(T, TG) gravity [26], or scalar-torsion the-
ories [27,28], starting with the similar teleparallel formula-
tion of gravity [29,30]. Furthermore, we can create a large
group of metric-affine theories, each with its own generic lin-
ear connection structure [31–33]. On the other hand, nonlin-
ear connections can be added, as seen in Finsler and Finsler-
like theories [34–39].

These affinely connected metric theories, and more specif-
ically the Riemann–Cartan subclass of these theories [40],
could be used to make a theory with a certain but not unique
connection. This would result in both non-zero curvature and
non-zero torsion at the same time, providing the additional
degrees of freedom usually required in any gravitational mod-
ification [41]. As a result, metric-affine gravity can produce
a good phenomenology that can explain both the early and
late universe evolution [42–46]. A new paper, [42], looks at
the cosmology that comes from using this kind of frame-
work and figures out how things that can be seen change
over time, like the density parameters and the effective dark
energy equation-of-state parameter. Using the mini-super-
space technique, they have studied cosmological behavior,
focusing on the effect of the connection and expressing the
theory as a deformation from both general relativity and its
teleparallel counterpart. Reference [47] has investigated the
observational restrictions on metric-affine F(R, T )-gravity.
In [48–54], several metric-affine gravity theories and their
applications are covered.

Recently, [55] has investigated observational constraints
on some metric-affine gravity models using a wide range
of observational datasets. In [56–58], we have investigated
some exact solutions in metric-affine gravity theories with
observational constraints. Recently, we have investigated
some exact cosmological models in different scenarios in var-
ious modified gravity theories [59–65]. Recently, [66] have
constructed a cosmological model in non-metricity f (Q)

gravity using a special connection and statistically analyzed
using information criterion AIC, BIC, and DIC to compare
its compatibility with �CDM model. Recently, using dif-
ferent special affine connections, [67] investigated f (Q,C)

gravity cosmology, including non-metricity with boundary
terms. Motivated by the above discussions, in this paper, we
find some new exact cosmological models in metric-affine
gravity.

This paper is organized as follows: Sect. 1 is introductory.
Section 2 provides a brief introduction to metric-affine grav-
ity. Section 3 provides field equations and their exact solu-
tions. In Sect. 4, we perform some observational constraints
on different parameters using the latest datasets. Section 5
presents a discussion of the results. Section 6 provides the
final conclusions.

2 Metric-affine F(R, T ) gravity

In the present section, we organize a brief review of metric-
affine gravity, also called F(R, T ) gravity, with R as cur-
vature and T known as torsion [41,42]. In this gravity, the
choice of a non-special connection is the key factor. Specif-
ically, it is established that enforcing a generic connection
ωα

βγ one defines the torsion tensor and the curvature as [26]

Rα
βi j = ωα

β j,i − ωα
βi, j + ωα

γ iω
γ

β j − ωα
γ jω

γ
βi (1)

T α
i j = eα

j,i − eα
i, j + ωα

βi e
β
j − ωα

β j e
β
i (2)

where eα
i∂i is the tetrad field associated with the metric

through gi j = ηαβeα
i eβ

j , whereηαβ = diag(1,−1,−1,−1),
where the The Latin and Greek indices represent the coordi-
nate and tangent space, respectively, and the comma indicates
differentiation.

There are numerous possibilities for connections. The
only connection that provides vanishing torsion is the Levi–
Civita �αβγ . Henceforth, we will refer to the curvature (Rie-
mann) tensor as R(LC)α

βi j = �α
β j,i −�α

βi, j +�α
γ i�

γ
β j −

�α
γ j�

γ
βi . The Weitzenböck connection, on the other hand,

can be used to obtain the following: T (W )k
i j = Wk

ji −Wk
i j .

This connection is curvatureless and produces only torsion.
Quantities corresponding to Wk

i j are denoted by the label
“W”. The previous information suggests that the associated
Ricci scalar for the Levi-Civita connection is

R(LC) = ηαβeα
i eβ

j

[
�k

i j,k − �k
ik, j + �l

i j�
k
kl − �l

ik�
k
jl

]
(3)

while the torsion scalar corresponding to the Weitzenböck
connection is

T (W ) = 1

4

(
Wikj − Wi jk

) (
Wikj − Wi jk

)

+1

2

(
Wikj − Wi jk

) (
Wki j − Wkji

)

−
(
Wj

i j − Wj
ji
) (

Wk
ik − Wk

ki

)
(4)

The first is utilized in the Lagrangian of general relativity
and in all curvature-based modified gravities, such as in F(R)

gravity [15], whereas the second is utilized in the Lagrangian
of the teleparallel equivalent of general relativity and in all
torsion-modified gravities, such as in F(T ) gravity [13].

metric-affine gravity uses a non-special connection with
simultaneous non-zero curvature and torsion [42]. Since gen-
eral relativity and its teleparallel counterpart, which both
have two degrees of freedom that correspond to the mass-
less graviton, don’t have any extra degrees of freedom, the
theory that comes out of them will usually have them, even
if the Lagrangian that is used is simple. Here, we consider
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the action as

I =
∫

d4x e

[
1

2κ2 F(R, T ) + Lm

]
(5)

where the gravitational constant is κ2 = 8πG, the matter
Lagrangian Lm has also been introduced for completeness,
and e = det(eα

i ) = √−g. Take note that the arbitrary func-
tion F(R, T ) has two variables, R and T , which represent
the curvature and torsion scalars, respectively, corresponding
to the non-special connection employed [26].

T = 1

4
T i jkTi jk + 1

2
T i jkTk ji − Tj

ji T k
ki , (6)

R = R(LC) + T − 2Tj
ji

;i (7)

where the covariant differentiation with regard to the Levi-
Civita connection is indicated by the symbol (;). So, while
R depends on the tetrad and its first derivative as well as
the connection and its first derivative, it also depends on the
second tetrad derivative because of the final term in (7). In
contrast, T depends on the tetrad field, its first derivative,
and the connection. Therefore, we can finally write using
Eqs. (4), (6), and (7).

R = R(LC) + u, (8)

T = T (W ) + v. (9)

The scalar u is contingent upon the tetrad, its first and second
derivatives, the connection, and its first derivative, whereas
the scalar v is contingent upon the tetrad, its first derivative,
and the connection.

The numbers u and v quantify the effect of the specific but
non-special imposed connection. If this link turns into the
Levi–Civita connection, then u = 0 and v = −T (W ). This
makes the above theory the standard F(R) gravity, which,
under F(R) = R, coincides with general relativity. Con-
versely, if the connection is the Weitzenböck one, then v = 0
and u = −R(LC), and so the theory corresponds with F(T )

gravity. For F(T ) = T , this gravity thus becomes the telepar-
allel counterpart of general relativity.

3 Field equations and solutions

We put all of this into a cosmological framework and derive
the corresponding field equations that govern the evolution
of the universe [42]. We consider the FLRW flat Friedmann
homogeneous and isotropic geometry spacetime metric.

ds2 = dt2 − a2(t)δμνdx
μdxν, (10)

which is equivalent to the tetrad eα
i = diag[1, a(t), a(t),

a(t)], in which the scale factor is denoted by a(t). In this situ-

ation, the torsion and curvature scalars T (W ) = −6
( ȧ
a

)2
and

R(LC) = 6
(
ä
a + ( ȧ

a

)2
)

are easily found, respectively. We

further consider the conventional substitution Lm = −ρm(a)

[68–70]. Ultimately, in light of the previous conversation
regarding the interdependence of u and v, we consistently
enforce that u = u(a, ȧ, ä) and v = v(a, ȧ).

In this work, we aim to investigate the cosmic behav-
ior resulting just from the non-special connection in metric-
affine gravity. Since the coupling coefficient of R can be
absorbed into κ2, we remove it. Instead, we concentrate on
the simplest case, where the involved arbitrary function is
trivial, which is F(R, T ) = R + λT . Be aware that the
Lagrangian does not explicitly take into account a cosmo-
logical constant term. The spacetime metric (10) is added to
the action (5), and we get I = ∫

Ldt for this Lagrangian
selection [55] as

L = 3

κ2 [λ + 1]aȧ2 − a3

2κ2 [u(a, ȧ, ä)

+λv(a, ȧ)] + a3ρm(a). (11)

Taking the Hamiltonian constraint H = ȧ
[

∂L
∂ ȧ − ∂

∂t
∂L
∂ ä

] +
ä ∂L

∂ ä − L = 0 and extracting the equations of motion for
a(t), we have the Friedmann equations as [55]

3(1 + λ)H2 − 1

2
[Ha(uȧ + λvȧ) − (u + λv)

+auä(Ḣ − 2H2)] = κ2ρm (12)

(1 + λ)(2Ḣ + 3H2) − 1

6
[3Ha(uȧ + λvȧ) − 3(u + λv)

−a(ua + λva − u̇ȧ − λv̇ȧ)

−3a(Ḣ + 3H2)uä − 6Hau̇ä − aüä
]

= −κ2 pm (13)

ρ̇m + 3H(ρm + pm) + 1

2κ2

× [ȧ(ua + λva) − (u̇ + λv̇) + ä(uȧ + λvȧ)

+(3ȧ Ḣ + ȧH2 + aḦ)uä

+(6ȧH + aḢ − 2aH2)u̇ä + ȧüä
]

= 0 (14)

where H is the Hubble parameter defined by H = ȧ
a , pm

denotes the matter pressure, and the subscripts a, ȧ, ä indi-
cate the partial derivatives with respect to these arguments.

We now find the solution to the above field equations for
two different choices of u and v, which we investigate in the
next two sub-sections. As per definitions of u and v, in the
first model, we choose u = k1H − k2, v = k3aH − k4, and
in the second model, we consider u = k1(Ḣ + H2) − k2,
v = k3aH − k4 with ki ’s i = 1, 2, 3, 4 constants.

3.1 Model-I

In this model, we choose u = k1H − k2 and v = k3aH − k4

with ki ’s i = 1, 2, 3, 4 constants and H = ȧ
a , then the above

123



625 Page 4 of 17 Eur. Phys. J. C (2024) 84 :625

field Eqs. (12) and (13) become

3(1 + λ)H2 − 1

2
(k2 + λk4) = κ2ρm (15)

(1 + λ)(2Ḣ + 3H2) − 1

2
(k2 + λk4) = −κ2 pm (16)

ρ̇m + 3H(ρm + pm) = 0 (17)

Taking the non-relativistic matter pressure pm ≈ 0 in (16)
and rewriting the Eq. (16) as

2
ä

a
+

(
ȧ

a

)2

− k2 + λk4

2(1 + λ)
= 0, λ �= −1. (18)

Solving Eq. (18) for the scale factor a(t), we get

a(t) =
⎡
⎣3

√
3c2e

√
3n1
2 t − √

3c1e−
√

3n1
2 t

6
√
n1

⎤
⎦

2
3

, n1 > 0, (19)

where c1, c2 are arbitrary constants and n1 = k2+λk4
2(1+λ)

, λ �=
−1. Without loss of generality, we choose c1 = k

√
3, c2 =

k√
3

so that we can put the scale factor in the following sim-
plified form (hyperbolic expansion law cosmology).

a(t) =
[

k√
n1

sinh

(√
3n1

2
t

)] 2
3

, n1 > 0 (20)

Alternatively, if we choose c1 = 0, then we find the exponen-

tial expansion law cosmology as a(t) =
√

3c2
2
√
n1
e

√
n1
3 t which

gives a constant deceleration parameter q that reveals either
a decelerating or accelerating expanding universe, but we
seek a transit phase (decelerating-accelerating) expanding

universe model. To investigate the model, we consider the
first choice of c1, c2. Using the scale factor from (20), we
found the Hubble parameter (H = ȧ

a ) and the deceleration
parameter (q = − aä

ȧ2 ), which are

H(t) =
√
n1

3
coth

(√
3n1

2
t

)
, (21)

q(t) = −1 + 3

2
sech2

(√
3n1

2
t

)
. (22)

Now we use the relationship a(t) = a0(1 + z)−1 [8], in (21),
(22), with the present value of scale factor a0 = 1 in standard
convention and z as the redshift, whose positive values show
the early evolution of the universe while the negative values
of z reveal the future predictions, and z = 0 represents the

present stage of the universe, we obtain the Hubble parameter
H(z) and deceleration parameter q(z) as

H(z) = 1√
3

√
k2(1 + z)3 + k2 + λk4

2(1 + λ)
(23)

q(z) = −1 + 3

2

k2(1 + z)3

k2(1 + z)3 + k2+λk4
2(1+λ)

. (24)

Now we’ll talk about two more geometrical parameters,
which were suggested in [71]. They are called statefinder
parameters r and s, and they show how the universe’s geom-
etry has changed over time and the different stages of dark
energy models [71–73]. We define these parameters in terms
of a scale factor.

r =
...
a

aH3 , s = r − 1

3(q − 1
2 )

(25)

Using the scale factor (20) in (25), we obtain the statefinder
diagnostic parameters r(t) and s(t) as below.

r(t) = 1 − 3 sech2
(√

3n1

2
t

)
(26)

s(t) =
2 sech2

(√
3n1
2 t

)

3
[
1 − sech2

(√
3n1
2 t

)] (27)

Now we define the effective equation of state (EoS) parameter
ωe f f by comparing the Eqs. (15) and (16) to the standard
Friedmann equations in a flat spacetime universe, as

ωe f f = pef f
ρe f f

(28)

or

ωe f f = −1 + 2n1(κ
2ρm0 − λk2)

2n1(κ2ρm0 − λk2) + (k2 + λk4 − 2n1λ)k2 sinh2
(√

3n1
2 t

) . (29)

Also, from Eq. (15), we can derive the total energy density
parameter as

�m + �F = 1, (30)

where

�m = κ2ρm

3H2 , �F = k2 + λk4

6H2 − λ. (31)

The matter energy density parameter �m and the dark energy
density parameter �F are named respectively due to the grav-
ity function F(R, T ).

In the field Eqs. (15) and (16), for λ = 0, one can obtain
Einstein’s field equations in GR with cosmological constant
as � = k2

2 . And in this case, �F = k2
6H2 = �

3H2 = ��.
Also, for λ �= 0, we can obtain varying �-term as a function
of Hubble parameter H , as �(H) = 1

2 (k2 − 6λH2).
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3.2 Model-II

In this model, we choose u = k1(Ḣ + H2) − k2 and v =
k3aH − k4 with ki ’s i = 1, 2, 3, 4 constants, and Ḣ + H2 =
ä
a . In Eqs. (12) and (13), we obtain the following simplified
field equations:

3

2
(2 + 2λ + k1)H

2 − 1

2
(k2 + λk4) = κ2ρm (32)

1

3
(3 + k1 + 3λ)(2Ḣ + 3H2) − 1

2
(k2 + λk4) = −κ2 pm

(33)

Taking the non-relativistic matter pressure pm ≈ 0 in
Eq. (33), we rewrite it as

2
ä

a
+

(
ȧ

a

)2

− 3(k2 + λk4)

2(3 + k1 + 3λ)
= 0 (34)

Solving Eq. (34) for scale factor a(t), we get

a(t) =
⎡
⎣3

√
3c4e

√
3n2
2 t − √

3c3e−
√

3n2
2 t

6
√
n2

⎤
⎦

2
3

, n2 > 0 (35)

where c3, c4 are arbitrary constants and n2 = 3(k2+λk4)
2(3+k1+3λ)

.

Without loss of generality, we choose c3 = k
√

3, c4 = k√
3

so
that we can write the scale factor as the hyperbolic expansion
law.

a(t) =
[

k√
n2

sinh

(√
3n2

2
t

)] 2
3

(36)

Using this scale factor as in Eq. (36), we derive the Hubble
parameter H(t) and deceleration parameter q(t) as given
below:

H(t) =
√
n2

3
coth

(√
3n2

2
t

)
(37)

q(t) = −1 + 3

2
sech2

(√
3n2

2
t

)
(38)

Again, we can express these in terms of redshift z as

H(z) = 1√
3

√
k2(1 + z)3 + 3(k2 + λk4)

2(3 + k1 + 3λ)
(39)

q(z) = −1 + 3

2

k2(1 + z)3

k2(1 + z)3 + 3(k2+λk4)
2(3+k1+3λ)

(40)

In model II, we derive the statefinder diagnostic parameters
r(t) and s(t).

r(t) = 1 − 3 sech2
(√

3n2

2
t

)
(41)

s(t) =
2 sech2

(√
3n2
2 t

)

3
[
1 − sech2

(√
3n2
2 t

)] (42)

For model II, we derive the effective EoS parameter as

ωe f f = −1 +
3n2(2κ2ρm0 − k1k2 − 2λk2) − n2k1k2 sinh2

(√
3n2
2 t

)

3n2(2κ2ρm0 − k1k2 − 2λk2) − 3k2(2n2λ + n2k1 − k2 − k4λ) sinh2
(√

3n2
2 t

) (43)

Also, from Eq. (32), we can derive the total energy density
parameter for model II, as

�m + �F = 1, (44)

where

�m = κ2ρm

3H2 , �F = k2 + λk4

6H2 − λ − 1

2
k1. (45)

Now, we can find the original Einstein’s field equations with
cosmological constant �-term in GR by substituting λ =
0, k1 = 0, with � = k2

2 otherwise �(H) = 1
2 [k2 − (3k1 +

6λ)H2].

4 Observational constraints

In this section, we make observational constraints on the
model parameters with observational datasets in our derived
model. For this, we use the freely available emcee program
at [74] to perform an MCMC (Monte Carlo Markov Chain)
analysis so that we can compare our derived model with
observational datasets. To limit the cosmological and model
parameters, the MCMC sampler changes the parameter val-
ues in a likely range of priors and looks at the parameter space
posteriors. In this section, we evaluate the compatibility of
the solution in the model with the cosmic chronometer (CC)
data and the Pantheon datasets. These datasets pertain to the
observed cosmos during a recent period.

4.1 Hubble datasets H(z)

For both theoretical and observational cosmologists, the
Hubble parameter is one of the most important cosmolog-
ical parameters for studying the evolution of the universe. It
is possible to find observed values for Hubble datasets H(z)
with redshift z. In order to find the best values for model
parameters with error bars in the redshift range 0.07 ≤ z ≤
1.965, we first use the Monte Carlo Markov Chain (MCMC)
simulation to compare our derived Hubble function from the
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field equations with the observed values of the 31 cosmic
chronometer data points (Hubble data) [75,76]. These val-
ues were found using the differential ages (DA) of galaxies
method. We can get a rough idea of the model parameters
H0, �m0, and λ by minimizing the χ2 function, which is
the same thing as maximizing the likelihood function and is
written as

χ2
CC (φ) =

i=N∑
i=1

[Hob(zi ) − Hth(φ, zi )]2

σ 2
H(zi )

,

where N denotes the total amount of data, Hob, Hth , respec-
tively, the observed and hypothesized datasets of H(z) and
standard deviations are displayed by σH(zi ). Here φ =
(H0,�m0, λ).

In order to calibrate the CC datasets, we utilize Bayesian
statistical analysis for Markov chain Monte Carlo (MCMC)
simulation. To accomplish this, we utilize the emcee package
developed by Foreman-Mackey et al. [74]. We have min-
imized the chi-squared statistic, χ2

CC (φ), to determine the
optimal values for the model’s parameters. Table 1 presents
these values.

As we can see in Figs. 1 and 2, the contour plots of
Model-I and Model-II show how the model parameters
compare to Hubble datasets (H(z)) using MCMC anal-

ysis. We got the best fit values for the model param-
eters H0,�m0, λ by using different parameter values in
the range (40, 100), (0, 1), and (0, 0.7), with confidence
levels of 1 − σ and 2 − σ , respectively. Table 1 lists
the best fit values for each model separately. We have
estimated the best fit values of model parameter λ =
0.14+0.49

−0.25, 0.38+0.26
−0.16 with �m0 = 0.38 ± 0.15, 0.459+0.096

−0.12
for Model-I and Model-II, respectively. Recently, [55] esti-
mated the value of λ as λ = 0.491+0.387

−0.533, 0.537+0.403
−0.550 with

�m0 = 0.425+0.107
−0.146, 0.339+0.093

−0.122, respectively, in two differ-
ent models. We have estimated the value of the Hubble con-
stant as H0 = 67.4±3.1, 67.8±2.9 Km/s/Mpc, respectively,
for two models, Model-I and Model-II, along CC datasets.
Recently, the value of the Hubble constant was measured as
H0 = 69.8 ± 1.3 Km s−1 Mpc−1 in [77], and in [78], it was
measured as H0 = 69.7 ± 1.2 Km s−1 Mpc−1. Recently,
we measured the value of H0 as H0 = 68.3721 ± 1.7205
Km/s/Mpc in [61], H0 = 68.3721 ± 1.65678 Km/s/Mpc in
[59] and H0 = 71.66123 ± 0.33061 in [60].

We have considered the Hubble function for the �CDM
model as H(z) = H0

√
�m0(1 + z)3 + �� with �� =

1 − �m0 to compare our derived models I and II. That’s
Fig. 3, which shows the contour plots of H0 and �m0 at
1 − σ and 2 − σ confidence levels in MCMC analysis of
H(z) datasets for �CDM. We have found the best fit values

Fig. 1 The contour plots of
H0, �m0, λ at 1 − σ and 2 − σ

confidence level in MCMC
analysis of H(z) datasets for
Model-I
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Fig. 2 The contour plots of
H0, �m0, λ at 1 − σ and 2 − σ

confidence level in MCMC
analysis of H(z) datasets for
Model-II

Table 1 The MCMC results in H(z) datasets analysis

Parameter Prior Model-I Model-II �CDM

H0 (40, 100) 67.4 ± 3.1 67.8 ± 2.9 67.7 ± 3.1

�m0 (0, 1) 0.38 ± 0.15 0.459+0.096
−0.12 0.333+0.05

−0.07

λ (0, 0.7) 0.14+0.49
−0.25 0.38+0.26

−0.16 –

χ2 – 14.4936 14.4936 14.4936

χ2
red – 0.5176 0.5176 0.4998

of the Hubble constant H0 = 67.7 ± 3.1 Km/s/Mpc and the
total matter energy density parameter �m0 = 0.333+0.05

−0.07,
which are mentioned in Table 1. The Hubble error bar plots
of 31 datasets with a best fit shape of H(z) are shown in
Fig. 4. These shapes were found in Models I, II, and �CDM,
in that order.

4.2 Apparent magnitude m(z)

The relationship between luminosity distance and redshift is
one of the main observational techniques used to track the
universe’s evolution. The expansion of the cosmos and the
redshift of the light from distant brilliant objects are taken
into consideration when calculating the luminosity distance

(DL ) in terms of the cosmic redshift (z). It is provided as

DL = a0r(1 + z), (46)

where the radial coordinate of the source r , is established by

r =
∫ r

0
dr =

∫ t

0

cdt

a(t)
= 1

a0

∫ z

0

cdz′

H(z′)
, (47)

where we have used dt = dz/ż, ż = −H(1 + z).
Consequently, the following formula determines the lumi-

nosity distance:

DL = c(1 + z)
∫ z

0

dz′

H(z′)
. (48)

Researchers widely use supernovae (SNe) as standard can-
dles to study the cosmic expansion rate with observed appar-
ent magnitude (mo). The supernovae surveys that found dif-
ferent types of supernovae at different sizes led to the Pan-
theon sample SNe data set, which has 1048 data points in the
range 0.01 ≤ z ≤ 2.26. The theoretical apparent magnitude
(m) of these standard candles is defined as [79]

m(z) = M + 5 log10

(
DL

Mpc

)
+ 25. (49)

where M is the absolute magnitude. The luminosity distance
is measured in terms of length. Based on DL , the Hubble-
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Fig. 3 The contour plot of H0 and �m0 at 1 −σ and 2 −σ confidence
level in MCMC analysis of H(z) datasets for �CDM

Fig. 4 The Hubble error bar plots of H(z) datasets (CC datasets) over
z, respectively for Model-I, Model-II and �CDM

free luminosity distance (dL ) may be written as dL ≡ H0
c DL ,

which is a dimensionless quantity. Thus, we can simplify
m(z) as given below

m(z) = M + 5 log10 dL + 5 log10

(
c/H0

Mpc

)
+ 25. (50)

The degeneracy between M and H0 may be observed using
the equation above, and it is constant in the �CDM back-
ground [79,80]. Redefinition allows us to merge these degen-
erate parameters.

M ≡ M + 5 log10

(
c/H0

Mpc

)
+ 25. (51)

The dimensionless parameter M can be expressed as M =
M − 5 log10(h) + 42.39, where H0 = h × 100 Km/s/Mpc.
In the Markov Chain Monte Carlo (MCMC) analysis, we
employ this parameter along with the corresponding χ2 value
for the Pantheon data, as given in [80].

χ2
P = V i

PC
−1
i j V j

P

The expression V i
P is defined as the difference between

mo(zi ) and m(z). The matrix Ci j is the inverse of the covari-
ance matrix, and the value of m(z) is determined by Eq. (14).

Figures 5 and 6 show the contour plots of model param-
eters for Model-I and Model-II, respectively. The Pantheon
SNe Ia datasets, analyzed using MCMC, display the appar-
ent magnitude m(z). We found the best values for the model
parameters M,�m0, λ by using values in the range (23, 24)

for M, (0, 1) for �m0, and (0, 0.7) for λ, with confidence
levels of 1 − σ and 2 − σ . Table 2 lists the best fit values
for various model parameters in each of the two models. We
have estimated the best fit values of model parameter λ =
0.47+0.26

−0.22, 0.47+0.22
−0.20 for Model-I and Model-II, respectively,

at a fixed value of k1 = 0.2. Recently, [55] estimated the value
of λ = 0.491+0.387

−0.533, 0.537+0.403
−0.550, respectively, in two differ-

ent models. For two different models, we estimated the value
of parameter M = 23.807+0.011

−0.013, 23.811 ± 0.010, while for
�CDM, it is found as M = 23.810 ± 0.011. Recently, [81]
estimated the value of M = 23.809 ± 0.013. We found that
�m0 fits best with the Pantheon SNe Ia datasets for �CDM.
In the MCMC analysis of the Pantheon SNe Ia datasets for
Lambda CDM, the best fit value for the total matter energy
density parameter is currently �m0 = 0.300±0.021 at 1−σ

and 2−σ confidence levels (Fig. 7). Figure 8 shows the appar-
ent magnitude error bar plots with the best fit shape of m(z)
derived for the models I, II, and �CDM.

5 Result and discussion

We can relate our fitted parameters with derived dimension-

less model parameters for model-I as k2 = 3�m0H2
0

1+λ
and

k2 + λk4 = 6(1 + λ − �m0)H2
0 and for model-II as k2 =

3H2
0

[
3�m0− 1

2 k1
3+k1+3λ

]
and k2 +λk4 = 6(1+λ+ 1

2k1 −�m0)H2
0 .

In this paper, we solved the modified field equations for two
different cases of u and v in the dust fluid source and found
two exact solutions in the form of scale factor a(t), called
model-I and model-II. We have found a hyperbolic solution
in each case (see (20) and (36)). The scale factor a(t) is
the most useful parameter to explore the various properties
of an expanding universe, and it is a dimensionless param-
eter. For the estimated values of model parameters along
CC datasets, we have plotted the variation of scale factor
over the cosmic time t (measured in ×978 Gyrs), which is
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shown in Fig. 9a for models I, II, and �CDM model. It can
be observed that a(t) is an increasing function of cosmic
time t , and as t → t0 (present time), then a(t) → 1 (i.e.,
a(t0)). Using this technique, we can estimate the present age
of the universe as 0 ≤ t ≤ t0 from Fig. 9a by estimat-
ing the cosmic time t0 at which a(t0) = 1. Therefore, we
have found the present age of the universe for both derived
universe models, respectively, as t0 = 13.58+1.70

−0.51 Gyrs for

model-I and t0 = 13.98+1.51
−0.72 Gyrs for model-II, while for

�CDM model, it is found as t0 = 13.52 ± 1.61 Gyrs. In
general, the present age of the universe can be expressed as

t0 = 978 ×
√

8(1+λ)
3(k2+λk4)

× sinh−1
(
k
√

k2+λk4
2k2(1+λ)

)
Gyrs. More-

over, one can find from the derived scale factor a(t) that as
t → ∞, then a(t) → ∞ in the future universe.

A dimensionless parameter q(t), which is called the decel-
eration parameter, changes over time. This parameter can be
found by figuring out the scale factor a(t). This is because the
deceleration parameter is defined as q(t) = − aä

ȧ2 . Equation
(22) or (24) denotes the deceleration parameter (DP) for the
model-I, and Eq. (38) or (40) denotes DP for the model-II.
The geometrical evolution of the DP q(z) for both models
with �CDM model is depicted in Fig. 9b. From Fig. 9b, one
can observe that q(z) is an increasing function of redshift
z and through the evolution, it shows a signature-flipping

(decelerating to accelerating) point for both models. The
present value of DP is measured at t = t0 or at z = 0 as
q0 = −0.50+0.0122

−0.1123 for the model-I andq0 = −0.5586+0.0171
−0.0851

for model II, while for �CDM model, it is found as q0 =
−0.5005+0.1750

−0.1050, which indicates our derived models are in
the accelerating phase of expansion at present (at z = 0).
This picture (Fig. 9b) also shows that as z → −1, q → −1
(late-time acceleration) and as z → ∞, q → 0.5 (early
decelerating phase of an expanding universe) are both taken
into account. These models are unable to explain the early
accelerating (inflation) scenario of the universe’s evolution.
The redshift at which the deceleration parameter q(z) van-
ishes is called the transition redshift, and it is denoted by zt .
The transition redshift is estimated as zt = 0.5874+0.2130

−0.0197 for

the model-I and zt = 0.6865+0.1719
−0.0303 for the model-II, while

for the �CDM, it is found as zt = 0.5882±0.1881. The red-
shift z is dimensionless quantity. In general, one can derive
the zt from the expression of the deceleration parameter q(z)
for models I and II, as

zt =
[
k2 + λk4

k2(1 + λ)

] 1
3 − 1, and

zt =
[

3(k2 + λk4)

k2(3 + k1 + 3λ)

] 1
3 − 1. λ �= −1. (52)

Fig. 5 The contour plot of H0,
�m0 and λ at 1 − σ and 2 − σ

confidence level in MCMC
analysis of Pantheon SNe Ia
datasets for Model-I
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Fig. 6 The contour plot of H0,
�m0 and λ at 1 − σ and 2 − σ

confidence level in MCMC
analysis of Pantheon SNe Ia
datasets for Model-II

Table 2 The MCMC results in Pantheon SNe Ia datasets analysis

Parameter Prior Model-I Model-II �CDM

M (23, 24) 23.807+0.011
−0.013 23.811 ± 0.010 23.810 ± 0.011

�m0 (0, 1) 0.438 ± 0.072 0.495 ± 0.065 0.300 ± 0.021

λ (0, 0.7) 0.47+0.26
−0.22 0.47+0.22

−0.20 –

χ2 – 1026.6706 1026.6706 1026.6706

χ2
red – 0.9825 0.9825 0.9815

For the �CDM model, the general value of the transition
redshift is found as zt = (2��0/�m0)

1/3 − 1 ≈ 0.6. This
transition value shows that the universe model is in a decel-
erating phase of expansion for z > zt and the model is in
an accelerating phase of expansion for z < zt . Recently, this
transition redshift zt = 0.74 ± 0.05 was obtained in [82],
and in [83] it was measured as zt = 0.74 ± 0.04. In [84],
this transition redshift is obtained as zt = 0.72 ± 0.05, and
in 2018, [85] has suggested that the transition redshift varies
over 0.33 < zt < 1.0. Recently, we have found this transi-
tion redshift zt ≈ 0.7 in [86,87]. Thus, the transition redshift
zt = 0.5874+0.2130

−0.0197, 0.6865+0.1719
−0.0303 obtained in our derived

model is in good agreement with recent observed values in
[82–87].

Fig. 7 The contour plot of H0 and �m0 at 1 −σ and 2 −σ confidence
level in MCMC analysis of Pantheon SNe Ia datasets for �CDM

The dimensionless, energy density parameters �m and
�F are derived in Eqs. (30) and (31) for the model-I, and
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Fig. 8 The apparent magnitude error bar plots with best fit curve of
m(z) in the analysis of Pantheon SNe Ia datasets for the Model-I, II and
�CDM

it is defined in Eqs. (44) and (45) for the model-II. For the
flat spacetime universe, �m0 + �F0 = 1 right now. Taking
this into account, we plotted the changes in �m and �F

versus redshift z for both models with �CDM, which can be
seen in Fig. 10a, b. From Fig. 10a, b, it can be observed that
�m has a decreasing nature from past to the present, while
�F has an increasing nature from the past to the present,
which explores the past matter dominated and late-time dark
energy-dominated universe scenarios. Using recent Hubble
data points and Pantheon SNe Ia m(z) datasets, we did a
statistical analysis of the model and found that the matter
energy density parameter is �m0 = 0.38 ± 0.15, 0.438 ±
0.072 for model-I and �m0 = 0.459+0.096

−0.120, 0.495 ± 0.065

for model-II. For the �CDM, it is �m0 = 0.333+0.050
−0.070, 0.3±

0.021, based on two datasets, with 1−σ and 2−σ confidence
level of bounds. From Fig. 10a, b, one can see that �m → 0
and �F → 1 as z → −1 (at late-time), which reveals that
our model tends to �CDM model at the late-time universe,
and in the early universe, �m → 1 and �F → −λ as z → ∞
that shows the matter-dominated early universe.

Equations (29) and (43) represent the mathematical
expressions for the dimensionless effective EoS parameter
for models I and II, respectively. Figure 11a shows how ωe f f

changes over time for both models with �CDM, and Fig. 11b
shows how it changes over time for the matter energy density
parameter ωm . For model-I, it can be observed from Fig. 11a
that ωe f f → −1 as z → −1 (at late-time) and ωe f f → 0
as z → ∞ (at early universe time) support early matter
dominated universes and late-time dark energy-dominated
universes, while for model-II, it crosses the cosmological
constant value −1 with ωe f f → −1.0345 as z → −1
that reveals that our model of universe evolves from matter
dominated to quintessence, cosmological constant, and then
reached the phantom dark energy-dominated phase of the
expanding universe. In Fig. 11a, we can see that at the tran-
sition line z = zt , the effective EoS parameter ωe f f ≈ − 1

3

shows how the expanding models of the universe are mov-
ing faster. The estimated present value of the effective EoS
parameter is obtained as ωe f f = −0.6667+0.0082

−0.0749 for model-I

and ωe f f = −0.7058+0.0114
−0.0567 for model-II, while for �CDM

model, it is estimated as ωe f f = −0.667+0.05
−0.07. The change in

ωe f f over �m is shown in Fig. 11b. Using math, we can fig-
ure out the relationship between ωe f f and �m for model-I as
(A−B)k2�mωe f f +Bρm0κ

2ωe f f −Bk2�m+Bρm0κ
2 = 0,

where A = 2n1(κ
2ρm0−λk2) and B = (k2+λk4−2n1λ)k2.

It can also be expressed as:

ωe f f = Bk2�m − Bρm0κ
2

(A − B)k2�m + Bρm0κ2 . (53)

From Eq. (53) and Fig. 11b, it is clear that the EoS
parameter ωe f f → −1 for �m → 0 and ωe f f → 0

for �m → ρm0κ
2

k2 . From the above relationship, one can

obtain the radiation-dominated universe for �m >
ρm0κ

2

k2 .
For model II, this relationship of ωe f f -�m is obtained as
(A+ B)k2�mωe f f − Bρm0κ

2ωe f f + (B − n2k1k2)k2�m −
Bρm0κ

2 + n2ρm0k1k2κ2 = 0 where A = 3n2(2κ2ρm0 −
k1k2 − 2λk2) and B = 3k2(2n2λ + n2k1 − k2 − k4λ). It can
also be expressed as

ωe f f = Bρm0κ
2 − n2ρm0k1k2κ2 − (B − n2k1k2)k2�m

(A + B)k2�m − Bρm0κ2

(54)

From Eq. (54), we can obtain for �m → 0, ωe f f → −1 −
k1

6−k1
, k1 < 6 that gives cosmological constant value. ωe f f =

−1 for k1 = 0, phantom and super-phantom values for k1 <

6.

Statefinder analysis:

Now, we discuss two more geometrical dimensionless
parameters derived from the scale factora(t) as the statefinder
diagnostic parameters r(t) and s(t), which are defined by the
Eq. (25). For the model-I, we have derived these parameters
r(t) and s(t) as in Eqs. (26) and (27), respectively, while
for the model-II, in Eqs. (41) and (42), respectively. We can
find the relation between r and s from these equations as
3rs + 6s + 2r − 2 = 0 for the models I and II. It can be
expressed as s = 2(1−r)

3(2+r) , which shows that s → ∞ for
r → −2 (singular point) and s → 0 for r → 1. From
Eqs. (22) and (26), we can find the relationship between r &
q as r + 2q + 1 = 0 for the models. Also, we can rewrite
it as q = − 1+r

2 , which gives q > 0 for r < −1 and q < 0
for r > −1, and the model undergoes a transition point at
r = −1.
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Fig. 9 Variation of scale factor over cosmic time t , and deceleration parameter q(z) over z, respectively

Fig. 10 The plot of total energy density parameters �m and �F over redshift z, respectively

Statistical analysis

In this section, we analyze different cosmological mod-
els using the Akaike information criterion (AIC) and the
Bayesian information criterion (BIC). In addition, we derive
the reduced chi-squared value using the formula (χ2

red =
χ2
min/dof ), where “dof” represents the degrees of freedom.

Typically, degrees of freedom are calculated as the differ-
ence between the number of data points used and the number
of fitted parameters. But we should only use χ2

min/dof to
explain things, since the degrees of freedom might not be
clear for models that aren’t linear with respect to the free
parameters [88]. The AIC criterion, derived from informa-
tion theory, serves as an asymptotically unbiased estimator

of Kullback–Leibler information. Assuming Gaussian errors,
the AIC criteria can be estimated using the formula men-
tioned in [89,90].

AIC = −2 ln(Lmax ) + 2n + 2n(n + 1)

N − n − 1
, (55)

where Lmax represents the maximum likelihood of the
dataset(s) being considered, N depicts the total number of
data points used in analysis, and n is the number of fitted
parameters. Maximizing the likelihood function is equiva-
lent to minimizing the χ2 value. For a large value of N , it is
evident that this expression yields the original version of AIC,
which may be approximated as AIC � −2 ln(Lmax ) + 2n.
According to the discussion in [91], it is widely accepted
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Fig. 11 The plot of effective EoS parameter ωe f f versus z and �m , respectively

as the most effective approach to utilizing the modified AIC
criterion. The BIC criteria is a Bayesian evidence estimator,
and it is referenced by [89–91].

BIC = −2 ln(Lmax ) + n ln(N ). (56)

Our task is to arrange the models based on their ability
to accurately match the available data, given a collection of
scenarios that depict the same type of event. We use the two
information criteria (IC) listed above to find the relative dif-
ference in the IC value for the given set of models. This is
shown as �ICmodel = ICmodel − ICmin , where ICmin is
the model with the lowest IC value. To evaluate the suitabil-
ity of each model, we utilize the Jeffreys scale [92]. More
precisely, when �IC ≤ 2, it indicates that the data strongly
supports the most favored model. When 2 < �IC < 6, it
suggests a moderate level of disagreement between the two
models. Lastly, when �IC ≥ 10, it indicates a significant
level of tension between the models [47].

In our analysis, we use two types of datasets: the cosmic
chronometer (Hubble data) points and the Pantheon SNe Ia
datasets. By minimizing the χ2 value, we have fitted the
model parameters for our derived models, and the obtained
values of χ2

min and χ2
red are shown in Tables 1 and 2. For

models I and II, we have used χ2
min = 14.4936, N = 31, and

n = 3 along CC datasets to obtain the AIC and BIC values,
which are mentioned in the below Table 3 with the difference
from the best-fitted model �ICmodel = ICmodel − ICmin .

We used χ2
min = 1026.6706, N = 1048, and n = 3

to get the AIC and BIC values for the Pantheon SNe Ia
datasets. The AIC and BIC values are shown below in Table 4,
along with the difference from the best-fitting model, which
is �ICmodel = ICmodel − ICmin .

From the above Table 3, it is clear that both criterion AIC
and BIC for both models come in the second category 2 <

�IC < 6 that our derived models are less supportive of the
most favored �CDM, while from Table 4, we can observe
that the AIC criteria suggest that our derived models are less
supportive of the �CDM model and the BIC criteria suggest
strongly disagreement with the �CDM most favored model.

6 Conclusions

This study used a flat Friedmann–Lematre–Robertson–
Walker (FLRW) spacetime metric to investigate different
cosmological scenarios within the framework of metric-
affine F(R, T ) gravity. The modified Lagrangian function
being investigated is defined as F(R, T ) = R+λT , where R
represents the Ricci curvature scalar, T represents the torsion
scalar for the non-special connection, and λ is a parameter
specific to the model. R = R(LC) + u and T = T (W ) + v

were used to write the equations. R(LC) is the Ricci scalar
curvature found using the Levi-Civita connection, and T (W )

is the torsion scalar found using the Weitzenbock connec-
tion. u and v are functions that depend on the scale factor
a(t), connection and its derivatives. We derived two precise
solutions to the modified field equations for the scale factor
a(t) under two distinct scenarios of u and v. By employing
this scale factor, we have derived multiple geometric param-
eters to examine the cosmological features of the cosmos. We
used the Markov chain Monte Carlo (MCMC) simulation to
look at two new sets of data: cosmic chronometer (CC) data
points (Hubble data) and Pantheon SNe Ia samples. Through
this analysis, we determined the model parameters that most
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Table 3 The information
criteria AIC and BIC for the
examined cosmological models
along cosmic chronometer
datasets

Model AIC �AIC BIC �BIC

Model-I 21.3825 2.4603 24.7956 3.4340

Model-II 21.3825 2.4603 24.7956 3.4340

�CDM 18.9222 0 21.3616 0

Table 4 The information
criteria AIC and BIC for the
examined cosmological models,
along Pantheon SNe Ia datasets

Model AIC �AIC BIC �BIC

Model-I 1032.6936 2.0115 1047.5345 6.9546

Model-II 1032.6936 2.0115 1047.5345 6.9546

�CDM 1030.6821 0 1040.5799 0

accurately matched the observed data within the 1 − σ and
2 − σ sectors.

We conducted a comprehensive analysis of geometric and
cosmological parameters, taking into account both compara-
tive and relativistic aspects. In model I, we have determined
that the effective equation of state (EoS) parameter ωe f f

ranges from −1 to 0, but in model II, it ranges from −1.0345
to 0. The behavior of ωe f f in both models reveals compat-
ibility with the �CDM universe. Model-II progresses from
the matter-dominated stage to the quintessence and cosmo-
logical constant stages, followed by the phantom and super-
phantom stages of the expanding universe. Model-I, on the
other hand, moves from the matter-dominated stage to the
quintessence stage, getting closer to a cosmological constant
value. We have found the values of the Hubble constants
H0 = 67.4±3.1, 67.8±2.9 Km/s/Mpc, respectively, for the
two models, while for �CDM H0 = 67.7 ± 3.1 Km/s/Mpc.
We have determined that both models represent universes in
a transitional phase, where they are transitioning from slow-
ing down to speeding up. For these universes, the transition
redshifts are zt = 0.5874+0.2130

−0.0197 and zt = 0.6865+0.1719
−0.0303,

respectively. Both models show expanding universes in the
transit phase, with transition redshifts between 0.3 and 1.0.
We have found the present value of DP as q0 = −0.50+0.0122

−0.1123

for model I and q0 = −0.5586+0.0171
−0.0851 for model II, while for

�CDM model, it is found as q0 = −0.5005+0.1750
−0.1050, which

indicates our derived models are in the accelerating phase
of expansion at present (at z = 0). The current values of
q(z) range from −0.6 to −0.5, which is in good agreement
with recent observations [1–7]. Both models can explain the
late-time accelerating and early decelerating scenarios of the
universe, but they cannot explain the early-time accelerating
(inflation) scenario of the universe. This fits well with recent
measurements [82,87]. Additionally, the present age of these
universes is t0 = 13.58+1.70

−0.51 Gyrs and t0 = 13.98+1.51
−0.72 Gyrs,

respectively. These findings align with our current under-
standing of recent universes. Furthermore, we have con-
ducted an analysis of cosmological models obtained using
the AIC and BIC information criteria. This analysis aims

to assess the compatibility of our derived models with the
findings of the most favored model, namely �CDM. Finally,
from the information criterion AIC and BIC analyses of the
models, we have found that our derived models are very close
to �CDM.

Also, we have found that the dimensionless constants
k1, k2, k3, and k4 are not all vanishing together, which con-
firms the need for investigation of such theories in this con-
text. Thus, we can conclude that the choice of non-special
connection (i.e., the choice of u and v) plays an important role
in the universe’s dynamical dark energy evolution history. As
a result, it requires further investigation, which entices cos-
mologists to review it.
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