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In this paper we prove new inequalities describing the relationship between the 
“size” of a function on a compact homogeneous manifold and the “size” of its 
Fourier coefficients. These inequalities can be viewed as noncommutative versions 
of the Hardy-Littlewood inequalities obtained by Hardy and Littlewood [17] on 
the circle. For the example case of the group SU(2) we show that the obtained 
Hardy-Littlewood inequalities are sharp, yielding a criterion for a function to be in 
Lp(SU(2)) in terms of its Fourier coefficients. We also establish Paley and Hausdorff-
Young-Paley inequalities on general compact homogeneous manifolds. The latter is 
applied to obtain conditions for the Lp-Lq boundedness of Fourier multipliers for 
1 < p ≤ 2 ≤ q < ∞ on compact homogeneous manifolds as well as the Lp-Lq

boundedness of general (non-invariant) operators on compact Lie groups. We also 
record an abstract version of the Marcinkiewicz interpolation theorem on totally 
ordered discrete sets, to be used in the proofs with different Plancherel measures on 
the unitary duals.
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1. Main results

A fundamental problem in Fourier analysis is that of investigating the relationship between the “size” of 
a function and the “size” of its Fourier transform.

The aim of this paper is to give necessary conditions and sufficient conditions for the Lp-integrability of 
a function on an arbitrary compact homogeneous space G/K by means of its Fourier coefficients.
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In particular, in this paper we establish the following results, that we now summarise and briefly discuss:

• Hardy-Littlewood inequality: We obtain our analogue of Hardy-Littlewood inequality on compact homo-
geneous manifolds G/K of dimension n = dimG/K in the form In particular, we can also rewrite it 
as

∑
π∈Ĝ0

dπkπ〈π〉n(p−2)

(
‖f̂(π)‖HS√

kπ

)p

≤ C‖f‖pLp(G/K), 1 < p ≤ 2, (1)

interpreting

μ(Q) =
∑
π∈Q

dπkπ (2)

as the Plancherel measure on the set Ĝ0, the ‘unitary dual’ of the homogeneous manifold G/K, and kπ
the maximal rank of Fourier coefficients matrices f̂(π), so that e.g. ‖δ̂(π)‖HS =

√
kπ for the delta-function 

δ on G/K and π ∈ Ĝ0.
Using the Hilbert-Schmidt norms of Fourier coefficients in (1) rather than Schatten norms (leading to a 
different version of �p-spaces on the unitary dual) leads to the sharper estimate – this is shown in (27)
and (28).

• Differential/Sobolev space interpretations: The exact form (1) is justified in Section 1.1 by comparing 
the differential interpretations (8) of the classical Hardy-Littlewood inequality (5). In fact, it is exactly 
from these differential interpretations is how we arrive at the desired expression in (1). Roughly, both 
are saying that for 1 < p ≤ 2,

g ∈ Lp

2n( 1
p− 1

2 )(G/K) =⇒ ĝ ∈ �p(Ĝ0) (3)

with the corresponding norm estimate ‖ĝ‖�p(Ĝ0) ≤ C‖g‖Lp

2n( 1
p
− 1

2 )
(G/K), where Lp

2n( 1
p− 1

2 ) is the Sobolev 

space over Lp of order 2n( 1
p − 1

2 ), and �p(Ĝ0) is an appropriately defined Lebesgue space �p on the 

unitary dual Ĝ0 of representations relevant to G/K, with respect to the corresponding Plancherel 
measure. In particular, as a special case we have the original Hardy-Littlewood inequality (1), which 
can be reformulated as

g ∈ Lp

2( 1
p− 1

2 )(T ) =⇒ ĝ ∈ �p(Z), 1 < p ≤ 2,

see (8), since �p(T̂0) 	 �p(Z), and the Plancherel measure is the counting measure on Z in this case.
• Duality: By duality, the inequality (1) remains true (with the reversed inequality) also for 2 ≤ p < ∞.
• Sharpness: The inequality (1) is sharp in the following sense: if the Fourier coefficients are positive 

and monotone (in a suitable sense), and a certain non-oscillation condition holds, the inequality in (1)
becomes an equivalence. In the case of the circle G = T , this was shown by Hardy and Littlewood 
(see Theorem 1.6) – here, positivity and monotonicity are understood classically, and the oscillation 
condition is automatically satisfied (see Remark 1.11). While we conjecture this equivalence to be 
true for general compact homogeneous manifolds, we make this precise in the example of the group 
G = SU(2).

• Paley inequality: We propose⎛⎝∑
̂ dπk

p( 1
p− 1

2 )
π ‖f̂(π)‖pHS ϕ(π)2−p

⎞⎠ 1
p

� M
2−p
p

ϕ ‖f‖Lp(G/K), 1 < p ≤ 2, (4)

π∈G0
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as a Paley-type inequality that holds on general compact homogeneous manifolds. Here ϕ(π) is a positive 
sequence over Ĝ0 such that

Mϕ := sup
t>0

t
∑
π∈Ĝ0
ϕ(π)≥t

dπkπ < ∞.

On one hand, our inequality (4) extends Hörmander’s Paley inequality on Rn. On the other hand, 
combined with the Weyl asymptotic formula for the eigenvalue counting function of elliptic differential 
operators on the compact manifold G/K, it implies the Hardy-Littlewood inequality (1) as a special 
case (and this is how we prove it too).

• Hausdorff-Young-Paley inequality: The Paley inequality (4) and the Hausdorff-Young inequalities on 
G/K in a suitable scale of spaces �p(Ĝ0) on the unitary dual of G/K imply the Hausdorff-Young-Paley 
inequality. This is given in Theorem 1.5.

• Lp-Lq Fourier multipliers. The established Hausdorff-Young-Paley inequality becomes instrumental in 
obtaining Lp-Lq Fourier multiplier theorems on G/K for indices 1 < p ≤ 2 ≤ q < 2. In Section 2 we give 
such results for Fourier multipliers on G/K: for a Fourier multiplier A acting by Âf(π) = σA(π)f̂(π)
and 1 < p ≤ 2 ≤ q < 2 we have

‖A‖Lp(G/K)→Lq(G/K) � sup
s>0

{
sμ(π ∈ Ĝ0 : ‖σA(π)‖op > s)

1
p− 1

q

}
,

where μ is the Plancherel measure as in (2), see Theorem 2.1. Consequently, in Theorem 2.3 we also 
give a general Lp(G)-Lq(G) boundedness result for general (not necessarily invariant) operators A on a 
compact Lie group G in terms of their matrix symbols σA(x, ξ).

The paper is organised as follows. In Section 1 we fix the notation for the representation theory of 
compact Lie groups and formulate estimates relating functions to the behaviour of their Fourier coefficients: 
the version of the Hardy–Littlewood inequalities on arbitrary compact homogeneous manifold G/K and 
further extensions. In Section 1.3 we give a criterion for the pth power integrability of a function on SU(2)
in terms of its Fourier coefficients. In Section 2 we obtain Lp-Lq Fourier multiplier theorem on G/K and 
the Lp-Lq boundedness theorem for general operators on G. In Section 3 we complete the proofs of the 
results presented in previous sections. In Section 3.4 we give an interesting estimate for the Dirichlet kernel 
on SU(2) which is instrumental in the proof of the inverse to the Hardy-Littlewood inequality on the case 
of the group being SU(2). In Appendix A we briefly review the topic of polyhedral sums for Fourier series. 
In Appendix B we discuss a matrix-valued version of the Marcinkiewicz interpolation theorem that will be 
instrumental for our proofs.

Main inequalities in this paper are established on general compact homogeneous manifolds of the form 
G/K, where G is a compact Lie group and K is a compact subgroup. Important examples are compact Lie 
groups themselves when we take the trivial subgroup K = {e} in which case kπ = dπ, or spaces like spheres 
Sn = SO(n + 1)/SO(n) or complex spheres (projective spaces) CSn = SU(n + 1)/SU(n) in which cases the 
subgroups are massive and so kπ = 1 for all π ∈ Ĝ0. We briefly describe such spaces and their representation 
theory in Section 1.1. When we want to show the sharpness of the obtained inequalities, we may restrict to 
the case of semisimple Lie groups G. As another special case, we consider the group SU(2), in which case 
in Theorem 1.10 we obtain an analogue of the Hardy-Littlewood criterion for integrability of functions in 
Lp(SU(2)) in terms of their Fourier coefficients. This provides the converse to Hardy-Littlewood inequalities 
on SU(2) previously obtained by the authors in [1].

We shall use the symbol C to denote various positive constants, and Cp,q for constants which may depend 
only on indices p and q. We shall write x � y for the relation |x| ≤ C|y|, and write x ∼= y if x � y and y � x.
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In this section we introduce the necessary notation and formulate main results of the paper. Along the 
exposition, we provide references to the relevant literature.

1.1. Notation and Hardy-Littlewood inequalities

In [17, Theorems 10 and 11], Hardy and Littlewood proved the following generalisation of the Plancherel’s 
identity on the circle T .

Theorem 1.1 (Hardy–Littlewood [17]). The following holds.

1. Let 1 < p ≤ 2. If f ∈ Lp(T ), then∑
m∈Z

(1 + |m|)p−2|f̂(m)|p ≤ Cp‖f‖pLp(T), (5)

where Cp is a constant which depends only on p.
2. Let 2 ≤ p < ∞. If {f̂(m)}m∈Z is a sequence of complex numbers such that∑

m∈Z
(1 + |m|)p−2|f̂(m)|p < ∞, (6)

then there is a function f ∈ Lp(T ) with Fourier coefficients given by f̂(m), and

‖f‖pLp(T) ≤ C ′
p

∑
m∈Z

(1 + |m|)p−2|f̂(m)|p.

Hewitt and Ross [20] generalised this theorem to the setting of compact abelian groups. We note that if 
Δ = ∂2

x is the Laplacian on T , and FT is the Fourier transform on T , the Hardy-Littlewood inequality (5)
can be reformulated as

‖FT

(
(1 − Δ)

p−2
2p f

)
‖�p(Z) ≤ Cp‖f‖Lp(T). (7)

Denoting (1 − Δ)
p−2
2p f by f again, this becomes also equivalent to the estimate

‖f̂‖�p(Z) ≤ Cp‖(1 − Δ)−
p−2
2p f‖Lp(T) ≡ Cp‖(1 − Δ)

1
p− 1

2 f‖Lp(T), 1 < p ≤ 2. (8)

The first purpose of this section is to argue what could be a noncommutative version of these estimates 
and then to establish an analogue of Theorem 1.1 in the setting of compact homogeneous manifolds. To 
motivate the formulation, we start with a compact Lie group G. Identifying a representation π with its 
equivalence class and choosing some bases in the representation spaces, we can think of π ∈ Ĝ as a unitary 
matrix-valued mapping π : G → Cdπ×dπ . For f ∈ L1(G), we define its Fourier transform at π ∈ Ĝ by

(FGf)(π) ≡ f̂(π) :=
∫
G

f(u)π(u)∗du,

where du is the normalised Haar measure on G. This definition can be extended to distributions f ∈ D′(G), 
and the Fourier series takes the form

f(u) =
∑

dπ Tr
(
π(u)f̂(π)

)
. (9)
π∈Ĝ
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The Plancherel identity on G is given by

‖f‖2
L2(G) =

∑
π∈Ĝ

dπ‖f̂(π)‖2
HS =: ‖f̂‖2

�2(Ĝ), (10)

yielding the Hilbert space �2(Ĝ). Thus, Fourier coefficients of functions and distributions on G take values 
in the space

Σ =
{
σ = (σ(π))π∈Ĝ : σ(π) ∈ Cdπ×dπ

}
. (11)

The �p-spaces on the unitary dual of a compact Lie group can be defined, for example, motivated by the 
Hausdorff–Young inequality in the form⎛⎝∑

π∈Ĝ

dπ‖f̂(π)‖p
′

Sp′

⎞⎠1/p′

≤ ‖f‖Lp(G) for 1 < p ≤ 2, (12)

with an obvious modification for p = 1, with 1
p + 1

p′ = 1, and where Sp′ is the p′-Schatten class on the 
space of matrices Cdπ×dπ . For the inequality (12) see [21]. Thus, for any 1 ≤ p < ∞ we can define the 
(Schatten-based) spaces �psch(Ĝ) ⊂ Σ by the norm

‖σ‖�psch(Ĝ) :=

⎛⎝∑
π∈Ĝ

dπ‖σ(π)‖pSp

⎞⎠1/p

, σ ∈ Σ. (13)

The Hausdorff-Young inequality (12) can be then reformulated as

‖f̂‖
�p

′
sch(Ĝ) ≤ ‖f‖Lp(G) for 1 < p ≤ 2.

We refer to Hewitt and Ross [19, Section 31] or to Edwards [10, Section 2.14] for a thorough analysis of 
these spaces.

At the same time, another scale of �p-spaces on the unitary dual Ĝ has been developed in [25] based on 
fixing the Hilbert-Schmidt norms, and this scale will actually provide sharper results in our problem. In 
view of subsequently established converse estimates using the same expressions, it appears that this scale 
of spaces is the correct one for extending the Hardy-Littlewood inequalities to the noncommutative setting. 
Thus, for 1 ≤ p < ∞, we define the space �p(Ĝ) by the norm

‖σ‖�p(Ĝ) :=

⎛⎝∑
π∈Ĝ

d
p
(

2
p− 1

2

)
π ‖σ(π)‖pHS

⎞⎠1/p

, σ ∈ Σ, 1 ≤ p < ∞, (14)

where ‖ · ‖HS denotes the Hilbert-Schmidt matrix norm i.e.

‖σ(π)‖HS := (Tr(σ(π)σ(π)∗))
1
2 .

It was shown in [25, Section 10.3] that, among other things, these are interpolation spaces, and that the 
Fourier transform FG and its inverse F−1

G satisfy the Hausdorff-Young inequalities in these spaces.
The power of dπ in (14) can be naturally interpreted if we rewrite it in the form

‖σ‖�p(Ĝ) :=

⎛⎝∑ d2
π

(
‖σ(π)‖HS√

dπ

)p
⎞⎠1/p

, σ ∈ Σ, 1 ≤ p < ∞, (15)

π∈Ĝ
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and think of μ(Q) =
∑

π∈Q d2
π as the Plancherel measure on Ĝ, and of 

√
dπ as the normalisation for matrices 

σ(π) ∈ Cdπ×dπ , in view of ‖Idπ
‖HS =

√
dπ for the identity matrix Idπ

∈ Cdπ×dπ .
We note that for a matrix σ(π) ∈ Cdπ×dπ , for 1 ≤ p ≤ 2, by Hölder inequality we have

‖σ(π)‖Sp ≤ d
1
p− 1

2
π ‖σ(π)‖HS.

Consequently, for 1 ≤ p ≤ 2, one can show the embedding �p(Ĝ) ⊂ �psch(Ĝ), with the inequality

‖σ‖�psch(Ĝ) ≤ ‖σ‖�p(Ĝ), ∀σ ∈ Σ, 1 ≤ p ≤ 2. (16)

We now describe the setting of Fourier coefficients on a compact homogeneous manifold M following [9]
or [22], and referring for further details with proofs to Vilenkin [35] or to Vilenkin and Klimyk [36].

Let G be a compact motion group of M and let K be the stationary subgroup of some point. Alternatively, 
we can start with a compact Lie group G with a closed subgroup K, and identify M = G/K as an analytic 
manifold in a canonical way. We normalise measures so that the measure on K is a probability one. Typical 
examples are the spheres Sn = SO(n + 1)/SO(n) or complex spheres CSn = SU(n + 1)/SU(n).

Let us denote by Ĝ0 the subset of Ĝ of representations that are class I with respect to the subgroup K. 
This means that π ∈ Ĝ0 if π has at least one non-zero invariant vector a with respect to K, i.e. that

π(h)a = a for all h ∈ K.

Let Bπ denote the space of these invariant vectors and let

kπ := dimBπ.

Let us fix an orthonormal basis in the representation space of π so that its first kπ vectors are the basis of 
Bπ. The matrix elements π(x)ij , 1 ≤ j ≤ kπ, are invariant under the right shifts by K.

We note that if K = {e} so that M = G/K = G is the Lie group, we have Ĝ = Ĝ0 and kπ = dπ for 
all π. As the other extreme, if K is a massive subgroup of G, i.e., if for every such π there is precisely one 
invariant vector with respect to K, we have kπ = 1 for all π ∈ Ĝ0. This is, for example, the case for the 
spheres M = Sn. Other examples can be found in Vilenkin [35].

We can now identify functions on M = G/K with functions on G which are constant on left cosets with 
respect to K. Then, for a function f ∈ C∞(M) we can recover it by the Fourier series of its canonical lifting 

f̃(g) := f(gK) to G, f̃ ∈ C∞(G), and the Fourier coefficients satisfy ̂̃f(π) = 0 for all representations with 

π /∈ Ĝ0. Also, for class I representations π ∈ Ĝ0 we have ̂̃f(π)ij = 0 for i > kπ.
With this, we can write the Fourier series of f (or of f̃ , but we identify these) in terms of the spherical 

functions πij of the representations π ∈ Ĝ0, with respect to the subgroup K. Namely, the Fourier series (9)
becomes

f(x) =
∑
π∈Ĝ0

dπ

dπ∑
i=1

kπ∑
j=1

f̂(π)jiπ(x)ij =
∑
π∈Ĝ0

dπ Tr(f̂(π)π(x)), (17)

where, in order to have the last equality, we adopt the convention of setting π(x)ij := 0 for all j > kπ, for 
all π ∈ Ĝ0. With this convention the matrix π(x)π(x)∗ is diagonal with the first kπ diagonal entries equal 
to one and others equal to zero, so that we have

‖π(x)‖HS =
√
kπ for all π ∈ Ĝ0, x ∈ G/K. (18)
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Following [9], we will say that the collection of Fourier coefficients {f̂(π)ij : π ∈ Ĝ, 1 ≤ i, j ≤ dπ} is 
of class I with respect to K if f̂(π)ij = 0 whenever π /∈ Ĝ0 or i > kπ. By the above discussion, if the 
collection of Fourier coefficients is of class I with respect to K, then the expressions (9) and (17) coincide 
and yield a function f such that f(xh) = f(h) for all h ∈ K, so that this function becomes a function on 
the homogeneous space G/K.

For the space of Fourier coefficients of class I we define the analogue of the set Σ in (11) by

Σ(G/K) := {σ : π �→ σ(π) : π ∈ Ĝ0, σ(π) ∈ Cdπ×dπ , σ(π)ij = 0 for i > kπ}. (19)

In analogy to (14), we can define the Lebesgue spaces �p(Ĝ0) by the following norms which we will apply 
to Fourier coefficients f̂ ∈ Σ(G/K) of f ∈ D′(G/K). Thus, for σ ∈ Σ(G/K) we set

‖σ‖�p(Ĝ0) :=

⎛⎝∑
π∈Ĝ0

dπk
p( 1

p− 1
2 )

π ‖σ(π)‖pHS

⎞⎠1/p

, 1 ≤ p < ∞. (20)

In the case K = {e}, so that G/K = G, these spaces coincide with those defined by (14) since kπ = dπ in 
this case. These spaces are interpolation spaces [25, Theorem 10.3.39], i.e. (�p0(Ĝ0), �p1(Ĝ0))θ,p = �p(Ĝ0), 
0 < θ < 1, 1p = 1−θ

p0
+ θ

p1
and the Hausdorff-Young inequality holds for them. We refer to [22] for some more 

details on these spaces.
Similarly to (15), the power of kπ in (20) can be naturally interpreted if we rewrite it in the form

‖σ‖�p(Ĝ0) :=

⎛⎝∑
π∈Ĝ0

dπkπ

(
‖σ(π)‖HS√

kπ

)p
⎞⎠1/p

, σ ∈ Σ(G/K), 1 ≤ p < ∞, (21)

and think of μ(Q) =
∑

π∈Q dπkπ as the Plancherel measure on Ĝ0, and of 
√
kπ as the normalisation for 

matrices σ(π) ∈ Cdπ×dπ under the adopted convention on their zeros in (19).
Let ΔG/K be the differential operator on G/K obtained by the Laplacian ΔG on G acting on functions 

that are constant on right cosets of G, i.e., such that ˜ΔG/Kf = ΔGf̃ for f ∈ C∞(G/K).
Recalling, that the Hardy-Littlewood inequality can be formulated as (7) or (8), we will show that the 

analogue of (8) on a compact homogeneous manifold G/K becomes

‖f̂‖�p(Ĝ0) ≤ Cp‖(1 − ΔG/K)n( 1
p− 1

2 )f‖Lp(G/K), 1 < p ≤ 2, (22)

where n = dimG/K. This yields sharper results compared to using the Schatten-based space �psch(Ĝ0) in 
view of the inequality

‖f̂‖�psch(Ĝ0) ≤ ‖f̂‖�p(Ĝ0).

For more extensive analysis and description of Laplace operators on compact Lie groups and on compact 
homogeneous manifolds we refer to e.g. [33] and [24], respectively. We note that every representation π(x) =
(πij(x))dπ

i,j=1 ∈ Ĝ0 is invariant under the right shift by K. Therefore, π(x)ij for all 1 ≤ i, j ≤ dπ are 
eigenfunctions of ΔG/K with the same eigenvalue, and we denote by 〈π〉 the corresponding eigenvalue for 
the first order pseudo-differential operator (1 − ΔG/K)1/2, so that we have

(1 − ΔG/K)1/2π(x)ij = 〈π〉π(x)ij for all 1 ≤ i, j ≤ dπ.

We now formulate the analogue of the Hardy-Littlewood Theorem 1.1 on a compact homogeneous man-
ifolds G/K as the inequality (22) and its dual:
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Theorem 1.2 (Hardy-Littlewood inequalities). Let G/K be a compact homogeneous manifold of dimension n. 
Then the following holds.

1. Let 1 < p ≤ 2. If f ∈ Lp(G/K), then FG/K

(
(1 − ΔG/K)n( 1

2− 1
p )f

)
∈ �p(Ĝ0), and

‖FG/K

(
(1 − ΔG/K)n( 1

2− 1
p )f

)
‖�p(Ĝ0) ≤ Cp‖f‖Lp(G/K). (23)

Equivalently, we can rewrite this estimate as

∑
π∈Ĝ0

dπk
p( 1

p− 1
2 )

π 〈π〉n(p−2)‖f̂(π)‖pHS ≤ Cp‖f‖pLp(G/K). (24)

2. Let 2 ≤ p < ∞. If {σ(π)}π∈Ĝ0
∈ Σ(G/K) is a sequence of complex matrices such that 〈π〉n(p−2)

σ(π) is 
in �p(Ĝ0), then there is a function f ∈ Lp(G/K) with Fourier coefficients given by f̂(π) = σ(π), and

‖f‖Lp(G/K) ≤ C ′
p‖〈π〉

n(p−2)
p f̂(π)‖�p(Ĝ0). (25)

Using the definition of the norm on the right hand side we can write this as

‖f‖pLp(G/K) ≤ C ′
p

∑
π∈Ĝ0

dπk
p( 1

p− 1
2 )

π 〈π〉n(p−2)‖f̂(π)‖pHS. (26)

For p = 2, both of these statements reduce to the Plancherel identity (10).
We note that in view of the inequality (16) the formulations in terms of the space �p(Ĝ0) are sharper 

than if we used the space �psch(Ĝ0). Indeed, for example, for 1 < p ≤ 2, the inequality (16) means that

∑
π∈Ĝ0

dπ〈π〉n(p−2)‖f̂(π)‖pSp ≤
∑
π∈Ĝ0

dπk
p( 1

p− 1
2 )

π 〈π〉n(p−2)‖f̂(π)‖pHS, (27)

which in turn implies

‖FG/K

(
(1 − ΔG/K)n( 1

2− 1
p )f

)
‖�psch(Ĝ0)

≤ ‖FG/K

(
(1 − ΔG/K)n( 1

2− 1
p )f

)
‖�p(Ĝ0) ≤ Cp‖f‖Lp(G/K). (28)

1.2. Paley and Hausdorff-Young-Paley inequalities

In [18], Lars Hor̈mander proved a Paley-type inequality for the Fourier transform on Rn. Here we give 
an analogue of this inequality on compact homogeneous manifolds.

Theorem 1.3 (Paley-type inequality). Let G/K be a compact homogeneous manifold. Let 1 < p ≤ 2. If ϕ(π)
is a positive sequence over Ĝ0 such that

Mϕ := sup
t>0

t
∑
π∈Ĝ0
ϕ(π)≥t

dπkπ < ∞ (29)

is finite, then we have
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⎛⎝∑
π∈Ĝ0

dπk
p( 1

p− 1
2 )

π ‖f̂(π)‖pHS ϕ(π)2−p

⎞⎠ 1
p

� M
2−p
p

ϕ ‖f‖Lp(G/K). (30)

As usual, the sum over an empty set in (29) is assumed to be zero.
With ϕ(π) = 〈π〉−n, where n = dimG/K, using the asymptotic formula (58) for the Weyl eigenvalue 

counting function, we recover the first part of Theorem 1.2 (see the proof of Theorem 1.2). In this sense, 
the Paley inequality is an extension of one of the Hardy-Littlewood inequalities.

Now we recall the Hausdorff-Young inequality:

⎛⎝∑
π∈Ĝ0

dπk
p′( 1

p′ −
1
2 )

π ‖f̂(π)‖p
′

HS

⎞⎠ 1
p′

≡ ‖f̂‖�p′ (Ĝ0) � ‖f‖Lp(G/K), 1 ≤ p ≤ 2, (31)

where, as usual, 1
p + 1

p′ = 1. The inequality (31) was argued in [22] in analogy to [25, Section 10.3], so we 
refer there for its justification. Further, we recall a result on the interpolation of weighted spaces from [3]:

Theorem 1.4 (Interpolation of weighted spaces). Let dμ0(x) = ω0(x)dμ(x), dμ1(x) = ω1(x)dμ(x), and write 
Lp(ω) = Lp(ωdμ) for the weight ω. Suppose that 0 < p0, p1 < ∞. Then

(Lp0(ω0), Lp1(ω1))θ,p = Lp(ω),

where 0 < θ < 1, 1p = 1−θ
p0

+ θ
p1

, and ω = ω
p 1−θ

p0
0 ω

p θ
p1

1 .

From this, interpolating between the Paley-type inequality (30) in Theorem 1.3 and Hausdorff-Young 
inequality (31), we obtain:

Theorem 1.5 (Hausdorff-Young-Paley inequality). Let G/K be a compact homogeneous manifold. Let 1 <
p ≤ b ≤ p′ < ∞. If a positive sequence ϕ(π), π ∈ Ĝ0, satisfies condition

Mϕ := sup
t>0

t
∑
π∈Ĝ0
ϕ(π)≥t

dπkπ < ∞, (32)

then we have ⎛⎝∑
π∈Ĝ0

dπk
b( 1

b− 1
2 )

π

(
‖f̂(π)‖HS ϕ(π)

1
b− 1

p′
)b⎞⎠ 1

b

� M
1
b− 1

p′
ϕ ‖f‖Lp(G/K). (33)

This reduces to the Hausdorff-Young inequality (31) when b = p′ and to the Paley inequality in (30)
when b = p.

Proof of Theorem 1.5. We consider a sub-linear operator A which takes a function f to its Fourier transform 
f̂(π) ∈ Cdπ×dπ divided by 

√
kπ, i.e.

Lp(G/K) � f �→ Af =
{
f̂(π)√
kπ

}
π∈Ĝ0

∈ �p(Ĝ0, ω),

where the spaces �p(Ĝ0, ω) is defined by the norm
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‖σ(π)‖�p(Ĝ0,ω) :=

⎛⎝∑
π∈Ĝ0

‖σ(π)‖pHS ω(π)

⎞⎠ 1
p

,

and ω(π) is a positive scalar sequence over Ĝ0 to be determined. Then the statement follows from The-
orem 1.4 if we regard the left-hand sides of inequalities (30) and (31) as ‖Af‖�p(Ĝ0,ω)-norms in weighted 

sequence spaces over Ĝ0, with the weights given by ω0(π) = dπkπϕ(π)2−p and ω1(π) = dπkπ, π ∈ Ĝ0, 
respectively. �
1.3. Integrability criterion for functions in terms of the matrix Fourier coefficients

In this section we show that the results of Section 1.1 are in general sharp, by looking at the specific 
example of the group SU(2) in detail.

Imposing more conditions on matrix Fourier coefficients, we make a criterion out of the Hardy-Littlewood 
inequalities in Theorem 1.2. In fact, here we aim at obtaining a noncommutative version of the following 
criterion that Hardy and Littlewood proved in [17]:

Theorem 1.6. Let 1 < p < ∞. Suppose f ∈ L1(T ), f ∼
∑

f̂me2πimx, and its Fourier coefficients {f̂m}m∈Z
are monotone. Then we have

f ∈ Lp(T ) (34)

if and only if ∑
m∈Z

(1 + |m|)p−2|f̂m|p < ∞. (35)

In this section we extend this result to G = SU(2) and formulate a necessary and sufficient condition for 
f ∈ L1(SU(2)) to belong to Lp(SU(2)). The criterion is given in terms of the matrix Fourier coefficients. It 
argues that the powers chosen in the Hardy-Littlewood inequality are in general sharp.

First we propose a notion of general monotonicity for a sequence of matrices extending the usual notion 
of monotonicity of scalars (of scalar Fourier coefficients).

Definition 1.7. A sequence of matrices {σ(π)}π∈Ĝ0
∈ Σ(G/K) will be called almost scalar if the following 

conditions hold:

1. For any π ∈ Ĝ0 the matrix σ(π) is normal.
2. There are constants C1 > 0 and C2 > 0 such that for any π ∈ Ĝ0 we have

C1 ≤ |λi(π)|
|λj(π)| ≤ C2,

for every λi(π) �= 0 and λj(π) �= 0, where λi(π) ∈ C, i = 1, . . . , dπ, denote the eigenvalues of σ(π) ∈
Cdπ×dπ .

As our main interest in this subsection is the group SU(2), we specify the following definition to its 
setting, with the specific notation for SU(2) explained after the following definition. This specification is 
done for simplicity; the following notion of monotonicity can be naturally extended to the setting of general 
compact Lie groups as well.
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Definition 1.8. A sequence of matrices {σ(l)}l∈ 1
2N0 is said to be monotone if the following conditions hold:

1. The sequence {σ(l)}l∈ 1
2N0 is almost scalar and every matrix σ(l) is non-negative definite.

2. Denoting by σl any non-zero eigenvalue of the almost scalar matrix σ(l) ∈ C(2l+1)×(2l+1), the sequence 
(2l + 1)σl is decreasing, i.e.

(2l + 1)σl − (2l + 2)σl+ 1
2
≥ 0 (36)

for all l ∈ 1
2N0.

In terms of general compact Lie groups, condition (36) means that the sequence {dπσπ}π is decreasing 
along some specified ordering on the representation lattice. In the case of the torus we have dπ ≡ 1, so this 
corresponds to the usual notion of monotonicity on T̂ ∼= Z.

We now give a criterion for f to be in Lp also for p < 2, for central functions on the compact Lie 
group SU(2). In this case it is common to simplify the notation, since we have the identification of the 

dual ̂SU(2) ∼= 1
2N0 with non-negative half-integers. Following Vilenkin [35] it is customary to denote the 

representations by T l ∈ ̂SU(2) for l ∈ 1
2N0. Then we have dl := dT l = 2l+1, and we abbreviate f̂(T l) = f̂(l). 

The Plancherel identity on SU(2) can then be written as

‖f‖2
L2(SU(2)) =

∑
l∈ 1

2N0

(2l + 1)‖f̂(l)‖2
HS. (37)

We can refer to [26,25] for explicit calculations of representations and difference operators on SU(2).

Remark 1.9. The range 3
2 < p ≤ 2 appearing in Theorem 1.10 has a natural interpretation and is related 

to the convergence properties of the polyhedral Fourier partial sums. It corresponds exactly to the range 
1 < p < ∞ on the circle. We refer to Appendix A for the detailed explanation of these properties in terms 
of an auxiliary number s that can be expressed in terms of the root system of the group.

In the following theorem, we denote by Lp
∗(G) space of central functions on G. The restriction on p to 

satisfy 2 − 1
s+1 < p < 2 + 1

s in the setting of compact Lie groups comes from the fact that on compact simply 
connected semisimple Lie groups, the polyhedral Fourier partial sums of (a central function) f converge to 
f in Lp if and only if 2 − 1

s+1 < p < 2 + 1
s , with s defined as in (A.3) in terms of the root system of G, 

see Stanton [32], Stanton and Tomas [30], and Colzani, Giulini and Travaglini [4] for the only if statement. 
We recall one of such statements in Theorem A.1. In the case of SU(2) the number s is s = 1, so that 
the range 2 − 1

1+s < p ≤ 2 that we are interested in becomes 3
2 < p ≤ 2 appearing in Theorem 1.10. We 

note that such restriction of p > 3
2 already appeared in the literature on SU(2) also in other contexts, for 

example also for questions related to Fourier multipliers (extending the results of Coifman and Weiss [8]), 
see Clerc [5].

Theorem 1.10. Let 3
2 < p ≤ 2. Suppose f ∈ L

3/2
∗ (SU(2)) and the sequence of its Fourier coefficients 

{f̂(l)}l∈ 1
2N0 is monotone. Assume that there is a constant C > 0 such that for any ξ ∈ 1

2N0 the following 
inequality holds true ∑

l∈ 1
2N0

l≥ξ

(dl+ 1
2
− dl)f̂l ≤ Cdξ f̂ξ, (38)

where dl are the dimensions of the irreducible representations {T l}l∈ 1
2N0 of the group SU(2), and f̂l are 

obtained from f̂(l) as in Definition 1.8. Then we have
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f ∈ Lp(SU(2)) (39)

if and only if ∑
l∈ 1

2N0

(2l + 1)
5p
2 −4‖f̂(l)‖pHS < ∞. (40)

Moreover, in this case we have

‖f‖pLp(SU(2))
∼=

∑
l∈ 1

2N0

(2l + 1)
5p
2 −4‖f̂(l)‖pHS. (41)

Remark 1.11. The non-oscillation type condition (38) always holds for compact abelian groups, since in that 
case all the irreducible representations are 1-dimensional, so that the expression on the left hand side of 
(38) would be zero. Here, in the setting of SU(2), since dl = 2l + 1, (38) boils down to assuming∑

l∈ 1
2N0

l≥ξ

f̂l ≤ C(2ξ + 1)f̂ξ.

From this point of view this kind of assumption may be viewed as rather natural in some sense because 
it does measure how fast the sequence of Fourier coefficients decreases compared to the dimensions of 
representations. We formulate this condition in the form (38) to emphasise its geometric meaning: it becomes 
clear how it can be extended to more general groups1 and it is very clear that it is trivially satisfied on the 
torus.

Therefore, Theorem 1.10 can be regarded as the direct extension of the Hardy-Littlewood criterion in 
Theorem 1.6 from the circle T to SU(2). Indeed, the condition that functions on SU(2) are central is rather 
natural since (all) functions on T are also central. Moreover, the indices of p correspond to each other as 
well, both coming from the condition 2 − 1

1+s < p ≤ 2, which on T becomes 1 < p ≤ 2 since s = 0, and on 
SU(2) it is 3

2 < p ≤ 2 since s = 1. We also note that the assumption for functions to be central functions 
is rather natural since their behaviour is very different from that of general functions, as we now briefly 
explain also from a more general perspective.

For example, if G is a compact connected semisimple Lie group and p �= 2, there is a function f ∈ Lp(G)
such that the polyhedral Fourier partial sum of f does not converge to f in Lp, for the dilations of any open 
convex polyhedron in the Lie algebra of the maximal torus centred at the origin, see Stanton and Tomas 
[30,31]. Such negative results are closely related with multiplier problems for the ball and for multiple 
Fourier series, see Fefferman [12]. The same negative results hold also for spherical sums, see Fefferman 
[11] on the torus, and on more general groups Clerc [6] and [7]. In this paper we are using the polyhedral 
Fourier sums, in which case positive results become possible if we restrict to considering central functions. 
Thus, on a compact semisimple Lie group G, for 2 − 1

s+1 < p < 2 + 1
s , polyhedral Fourier partial sums 

of a central function f converge to f in Lp(G), see Stanton [32, Theorem 4.1]. If G is a simple simply 
connected compact Lie group and p falls outside of the above interval, there are central functions in Lp(G)
such that their polyhedral Fourier partial sums do not converge to f in the Lp-norm, see Stanton and 
Tomas [30,31] and Colzani, Giulini and Travaglini [4]. Such restrictions are not surprising as they also 
appear naturally in the multiplier problems already on Rn with n ≥ 2: while the characteristic function 

1 We conjecture an analogue of Theorem 1.10 to hold for general compact Lie groups, or even for compact homogeneous manifolds. 
At the moment we can not prove it in full generality since currently we can prove in Proposition 3.2 the estimate for the Dirichlet 
kernel that is needed for our proof only in the setting of SU(2).
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of the ball is not a multiplier on Lp(Rn) for any p �= 2 [11], it does become an Lp-multiplier on radial 
functions if and only if 2 − 2

n+1 < p < 2 + 2
n−1 , see Herz [16]. We refer to Appendix A for further precise 

statements.

2. Lp-Lq boundedness of operators

In this section we use the Hausdorff-Young-Paley inequality in Theorem 1.5 to give a sufficient condition 
for the Lp-Lq boundedness of Fourier multipliers on compact homogeneous spaces. It extends the condition 
that was obtained by a different method in [23] on the circle T . In the case of compact Lie groups, we 
extend the criterion for Fourier multipliers in a rather standard way, to derive a condition for the Lp-Lq

boundedness of general operators, all for the range of indices 1 < p ≤ 2 ≤ q < ∞.
In the case of a compact Lie group G, the Fourier multipliers correspond to left-invariant operators, and 

these can be characterised by the condition that their symbols do not depend on the space variable. Thus, 
we can write such operators A in the form

Âf(π) = σA(π)f̂(π), (42)

with the symbol σA(π) depending only on π ∈ Ĝ. The Hörmander-Mihlin type multiplier theorem for such 
operators to be bounded on Lp(G) for 1 < p < ∞ was obtained in [28], see also [27] for the setting of groups.

Now, in the context of compact homogeneous spaces G/K we still want to keep the formula (42) as 
the definition of Fourier multipliers, now for all π ∈ Ĝ0. Indeed, due to properties of zeros of the Fourier 
coefficients, we have that both sides of (42) are zero for π /∈ Ĝ0. Also, for π ∈ Ĝ0, we have f̂(π) ∈ Σ(G/K)
with the set Σ(G/K) defined in (19), which means that

f̂(π)ij = Âf(π)ij = 0 for i > kπ.

Therefore, we can assume that the symbol σA of a Fourier multiplier A on G/K satisfies

σA(π) = 0 for π /∈ Ĝ0; and σA(π)ij = 0 for π ∈ Ĝ0, if i > kπ or j > kπ. (43)

Therefore, only the upper-left block in σA(π) of the size kπ × kπ may be non-zero. Thus, we will say that 
A is a Fourier multiplier on G/K if conditions (42) and (43) are satisfied.

Theorem 2.1. Let 1 < p ≤ 2 ≤ q < ∞ and suppose that A is a Fourier multiplier on the compact homogeneous 
space G/K. Then we have

‖A‖Lp(G/K)→Lq(G/K) � sup
s>0

s

⎛⎜⎜⎜⎝ ∑
π∈Ĝ0

‖σA(π)‖op>s

dπkπ

⎞⎟⎟⎟⎠
1
p− 1

q

. (44)

We note that if μ(Q) =
∑

π∈Q dπkπ denotes the Plancherel measure on Ĝ0, then (44) can be rewritten 
as

‖A‖Lp(G/K)→Lq(G/K) � sup
s>0

{
sμ(π ∈ Ĝ0 : ‖σA(π)‖op > s)

1
p− 1

q

}
.

Remark 2.2. Inequality (44) is sharp for p = q = 2.
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Proof. First, we have the estimate

‖A‖L2(G/K)→L2(G/K) ≤ sup
π∈Ĝ0

‖σA(π)‖op.

Since the set

{π ∈ Ĝ0 : ‖σA(π)‖op ≥ s}

is empty for s > ‖A‖L2(G/K)→L2(G/K) and a sum over the empty set is set to be zero, we have by (44)

‖A‖L2(G/K)→L2(G/K) ≤ sup
s>0

s

⎛⎜⎜⎝ ∑
π∈Ĝ0

‖σA(π)‖op≥s

dπkπ

⎞⎟⎟⎠
0

= sup
0<s≤‖A‖L2(G/K)→L2(G/K)

s · 1 = ‖A‖L2(G/K)→L2(G/K).

Thus, for p = q = 2 we attain equality in (44). �
Proof of Theorem 2.1. Recall that A is a Fourier multiplier on G/K, i.e.

Âf(π) = σA(π)f̂(π),

with σA satisfying (43). Since the application of [1, p. 14, Theorem 4.2] with X = G/K and μ =
{Haar measure on G} yields

‖A‖Lp(G/K)→Lq(G/K) = ‖A∗‖Lq′ (G/K)→Lp′ (G/K), (45)

we may assume that p ≤ q′, for otherwise we have q′ ≤ (p′)′ = p and ‖σA∗(π)‖op = ‖σA(π)‖op. When 
f ∈ C∞(G/K) the Hausdorff-Young inequality gives, since q′ ≤ 2,

‖Af‖Lq(G/K) � ‖Âf‖�q′ (Ĝ0) = ‖σAf̂‖�q′ (Ĝ0).

We set σ(π) := ‖σA(π)‖ropIdπ
. It is obvious that

‖σ(π)‖op = ‖σA(π)‖rop. (46)

Now, we are in a position to apply the Hausdorff-Young-Paley inequality in Theorem 1.5. With σ(π) =
‖σA‖rIdπ

and b = q′, the assumption of Theorem 1.5 are then satisfied and since 1
q′ −

1
p′ = 1

p − 1
q = 1

r , we 
obtain

‖σAf̂‖�q′ (Ĝ0) �

⎛⎜⎜⎜⎝sup
s>0

s
∑
π∈Ĝ0

‖σ(π)‖op≥s

dπkπ

⎞⎟⎟⎟⎠
1
r

‖f‖Lp(G/K), f ∈ Lp(G/K).

Further, it can be easily checked that
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⎛⎜⎜⎜⎝sup
s>0

s
∑
π∈Ĝ0

‖σ(π)‖op>s

dπkπ

⎞⎟⎟⎟⎠
1
r

=

⎛⎜⎜⎜⎝sup
s>0

s
∑
π∈Ĝ0

‖σA(π)‖r
op>s

dπkπ

⎞⎟⎟⎟⎠
1
r

=

⎛⎜⎜⎝sup
s>0

sr
∑
π∈Ĝ

‖σA(π)‖op>s

dπkπ

⎞⎟⎟⎠
1
r

= sup
s>0

s

⎛⎜⎜⎝ ∑
π∈Ĝ

‖σA(π)‖op>s

dπkπ

⎞⎟⎟⎠
1
r

.

This completes the proof. �
A standard addition to the proof of the preceding theorem extends Theorem 2.1 to the non-invariant 

case. For the simplicity in the formulation and in the understanding a variant of (42) in the non-invariant 
case, the following result is given in the context of general compact Lie groups. To fix the notation, we note 
that according to [25, Theorem 10.4.4] any linear continuous operator A on C∞(G) can be written in the 
form

Af(g) =
∑
π∈Ĝ

dπ Tr
(
π(g)σA(g, π)f̂(π)

)

for a symbol σA that is well-defined on G × Ĝ with values σA(g, π) ∈ Cdπ×dπ .

Theorem 2.3. Let 1 < p ≤ 2 ≤ q < ∞. Suppose that l > p
dim(G) is an integer. Let A be a linear continuous 

operator on C∞(G). Then we have

‖A‖Lp(G)→Lq(G) �
∑
|α|≤l

sup
u∈G

sup
s>0

s

⎛⎜⎜⎝ ∑
π∈Ĝ

‖∂α
uσA(u,π)‖op≥s

dπkπ

⎞⎟⎟⎠
1
p− 1

q

. (47)

In other words, if the expression on the right hand side of (47) is finite, the operator A extends to 
a bounded operator from Lp(G) to Lq(G). The derivatives ∂α

u are derivatives with respect to a basis of 
left-invariant vector fields on the Lie algebra g of G.

Proof. Let us define

Auf(g) :=
∑
π∈Ĝ

dπ Tr
(
π(g)σA(u, π)f̂(π)

)

so that Agf(g) = Af . Then

‖Af‖Lq(G) =

⎛⎝∫
G

|Af(g)|q dg

⎞⎠ 1
q

≤

⎛⎝∫
G

sup
u∈G

|Auf(g)|q dg

⎞⎠ 1
q

. (48)

By an application of the Sobolev embedding theorem we get
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sup
u∈G

|Auf(g)|q ≤ C
∑
|α|≤l

∫
G

|∂α
uAuf(g)|q dy.

Therefore, using the Fubini theorem to change the order of integration, we obtain

‖Af‖qLq(G) ≤ C
∑
|α|≤l

∫
G

∫
G

|∂α
uAuf(g)|q dg du

≤ C
∑
|α|≤l

sup
u∈G

∫
G

|∂α
uAyf(g)|p dg

= C
∑
|α|≤l

sup
u∈G

‖∂α
uAuf‖qLq(G)

≤ C
∑
|α|≤l

sup
u∈G

‖f �→ Op(∂α
uσA)f‖qL(Lp(G)→Lq(G))‖f‖

q
Lp(G)

�

⎡⎢⎢⎢⎣∑
|α|≤l

sup
u∈G

sup
s>0

s

⎛⎜⎜⎝ ∑
π∈Ĝ

‖∂α
uσA(u,π)‖op≥s

d2
π

⎞⎟⎟⎠
1
p− 1

q

⎤⎥⎥⎥⎦
q

‖f‖qLp(G),

where the last inequality holds due to Theorem 2.1. This completes the proof. �
3. Proofs

In this section we prove results stated in the previous section. We start by proving the Paley inequality 
in Theorem 1.3 and then use it to deduce the Hardy-Littlewood Theorem 1.2.

3.1. Proof of Theorem 1.3

Proof of Theorem 1.3. Let ν give measure ϕ2(π)dπkπ to the set consisting of the single point {π}, π ∈ Ĝ0, 
i.e.

ν({π}) := ϕ2(π)dπkπ.

We define the corresponding space Lp(Ĝ0, ν), 1 ≤ p < ∞, as the space of complex (or real) sequences 
a = {aπ}π∈Ĝ0

such that

‖a‖Lp(Ĝ0,ν) :=

⎛⎝∑
π∈Ĝ0

|aπ|pϕ2(π)dπkπ

⎞⎠ 1
p

< ∞. (49)

We will show that the sub-linear operator

A : Lp(G/K) � f �→ Af =
{

‖f̂(π)‖HS√
kπϕ(π)

}
π∈Ĝ0

∈ Lp(Ĝ0, ν)

is well-defined and bounded from Lp(G/K) to Lp(Ĝ0, ν) for 1 < p ≤ 2. In other words, we claim that we 
have the estimate
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‖Af‖Lp(Ĝ0,ν) =

⎛⎝∑
π∈Ĝ0

(
‖f̂(π)‖HS√
kπϕ(π)

)p

ϕ2(π)dπkπ

⎞⎠ 1
p

� N
2−p
p

ϕ ‖f‖Lp(G/K), (50)

which would give (30) and where we set Nϕ := supt>0 t 
∑

π∈Ĝ0
ϕ(π)≥t

dπkπ. We will show that A is of weak type 

(2, 2) and of weak-type (1, 1). For definition and discussions we refer to Appendix B where we give definitions 
of weak-type, formulate and prove Marcinkiewicz-type interpolation Theorem B.2 to be used in the present 
setting. More precisely, with the distribution function ν as in Theorem B.2, we show that

νĜ0
(y;Af) ≤

(
M2‖f‖L2(G/K)

y

)2

with norm M2 = 1, (51)

νĜ0
(y;Af) ≤

M1‖f‖L1(G/K)

y
with norm M1 = Mϕ, (52)

where νĜ0
is defined in the Appendix in (B.2). Then (50) would follow by Marcinkiewicz interpolation 

theorem (Theorem B.2 from Appendix B) with Γ = Ĝ0 and δπ = dπ, κπ = kπ.
Now, to show (51), using Plancherel’s identity (10), we get

y2νĜ0
(y;Af) ≤ ‖Af‖2

Lp(Ĝ0,ν) =
∑
π∈Ĝ0

dπkπ

(
‖f̂(π)‖HS√
kπϕ(π)

)2

ϕ2(π)

=
∑
π∈Ĝ0

dπ‖f̂(π)‖2
HS = ‖f̂‖2

�2(Ĝ0)
= ‖f‖2

L2(G/K).

Thus, A is of type (2, 2) with norm M2 ≤ 1. Further, we show that A is of weak-type (1, 1) with norm 
M1 = Mϕ; more precisely, we show that

νĜ0
{π ∈ Ĝ0 : ‖f̂(π)‖HS√

kπϕ(π)
> y} � Mϕ

‖f‖L1(G/K)

y
. (53)

The left-hand side here is the weighted sum 
∑

ϕ2(π)dπkπ taken over those π ∈ Ĝ0 for which 
‖f̂(π)‖HS√
kπϕ(π)

> y. 

From the definition of the Fourier transform it follows that

‖f̂(π)‖HS ≤
√
kπ‖f‖L1(G/K).

Therefore, we have

y <
‖f̂(π)‖HS√
kπϕ(π)

≤
‖f‖L1(G/K)

ϕ(π) .

Using this, we get {
π ∈ Ĝ0 : ‖f̂(π)‖HS√

kπϕ(π)
> y

}
⊂
{
π ∈ Ĝ0 :

‖f‖L1(G/K)

ϕ(π) > y

}

for any y > 0. Consequently,
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ν

{
π ∈ Ĝ0 : ‖f̂(π)‖HS√

kπϕ(π)
> y

}
≤ ν

{
π ∈ Ĝ0 :

‖f‖L1(G/K)

ϕ(π) > y

}
.

Setting v := ‖f‖L1(G/K)
y , we get

ν

{
π ∈ Ĝ0 : ‖f̂(π)‖HS√

kπϕ(π)
> y

}
≤

∑
π∈Ĝ0
ϕ(π)≤v

ϕ2(π)dπkπ. (54)

We claim that ∑
π∈Ĝ0
ϕ(π)≤v

ϕ2(π)dπkπ � Mϕv. (55)

In fact, we have

∑
π∈Ĝ0
ϕ(π)≤v

ϕ2(π)dπkπ =
∑
π∈Ĝ0
ϕ(π)≤v

dπkπ

ϕ2(π)∫
0

dτ.

We can interchange sum and integration to get

∑
π∈Ĝ0
ϕ(π)≤v

dπkπ

ϕ2(π)∫
0

dτ =
v2∫
0

dτ
∑
π∈Ĝ0

τ
1
2 ≤ϕ(π)≤v

dπkπ.

Further, we make a substitution τ = t2, yielding

v2∫
0

dτ
∑
π∈Ĝ0

τ
1
2 ≤ϕ(π)≤v

dπkπ = 2
v∫

0

t dt
∑
π∈Ĝ0

t≤ϕ(π)≤v

dπkπ ≤ 2
v∫

0

t dt
∑
π∈Ĝ0
t≤ϕ(π)

dπkπ.

Since

t
∑
π∈Ĝ0
t≤ϕ(π)

dπkπ ≤ sup
t>0

t
∑
π∈Ĝ0
t≤ϕ(π)

dπkπ = Mϕ

is finite by the assumption that Mϕ < ∞, we have

2
v∫

0

t dt
∑
π∈Ĝ0
t≤ϕ(π)

dπkπ � Mϕv.

This proves (55). Thus, we have proved inequalities (51), (52). Then by using the Marcinkiewicz interpolation 
theorem (Theorem B.2 from Appendix B) with p1 = 1, p2 = 2 and 1 = 1 − θ + θ we now obtain
p 2
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⎛⎝∑
π∈Ĝ0

(
‖f̂(π)‖HS
ϕ(π)

)p

ϕ2(π)dπkπ

⎞⎠ 1
p

= ‖Af‖Lp(Ĝ0,μ) � M
2−p
p

ϕ ‖f‖Lp(G/K).

This completes the proof. �
We now prove the Hardy-Littlewood Theorem 1.2.

3.2. Proof of Theorem 1.2

Proof of Theorem 1.2. The second part of Theorem 1.2 follows from the first by duality, so we will concen-
trate on proving the first part.

Denote by N(L) the eigenvalue counting function of eigenvalues (counted with multiplicities) of the first 
order elliptic pseudo-differential operator (I − ΔG/K) 1

2 on the compact manifold G/K, i.e.

N(L) :=
∑
π∈Ĝ0
〈π〉≤L

dπkπ. (56)

Using the eigenvalue counting function N(L), we can reformulate condition (29) for ϕ(π) = 〈π〉−n in the 
following form

sup
0<u<+∞

uN(u− 1
n ) < ∞. (57)

Since N(L) is a right-continuous monotone function, the set of discontinuity points on (0, +∞) is at most 
countable. Therefore, without loss of generality, we can assume that ψ(u) = uN

(( 1
u

) 1
n

)
is a continuous 

function on (0, +∞). It is clear that limu→+∞ ψ(u) = 0. Further, we use the asymptotic of the Weyl 
eigenvalue counting function N(L) for the first order elliptic pseudo-differential operator (1 − ΔG/K)1/2
on the compact manifold G/K, to get that the eigenvalue counting function N(L) (see e.g. Shubin [29]) 
satisfies

N(L) =
∑
π∈Ĝ0
〈π〉≤L

dπkπ ∼= Ln for large L. (58)

With L =
( 1
u

) 1
n and n = dimG/K, this implies

lim
u→0

ψ(u) = lim uN

((
1
u

) 1
n

)
= lim

u→0
u

(
1
u

1
n

)n

= lim
u→0

1 = 1.

Thus, we showed that ψ(u) is a bounded function on (0, +∞), or equivalently, we established (57). Then, it 
is clear that ϕ(π) = 〈π〉−n satisfies condition (29). The application of the Paley inequality from Theorem 1.3
yields the Hardy-Littlewood inequality. This completes the proof. �
3.3. Proof of Theorem 1.10

Proof of Theorem 1.10. In view of Theorem 1.2, it is sufficient to prove the converse inequality, i.e.

‖f‖p
Lp

∗(SU(2)) �
∑
1

(2l + 1)
5p
2 −4‖f̂(l)‖pHS. (59)
l∈ 2N0
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We will first prove that there is C > 0 such that for any ξ ∈ 1
2N0 we have

|f(u)| ≤ C
1

(2ξ + 1)2
1

(sin π t
2 )2

∣∣∣∣∣∣∣∣
∑

l∈ 1
2N0

l≤ξ

(2l + 1) Tr f̂(l)

∣∣∣∣∣∣∣∣ , (60)

where

u(t, θ, ψ) =
(

cos( θ2 )ei(2πt+ψ)/2 i sin( θ2 )ei(2πt−ψ)/2

i sin( θ2 )e−i(2πt−ψ)/2 cos( θ2 )e−i(2πt+ψ)/2

)
(61)

is a parameterisation of SU(2), and the coordinates (t, θ, ψ) vary in the parameter ranges

0 ≤ t < 1, 0 ≤ θ ≤ π, −2π ≤ ψ ≤ 2π. (62)

We refer to [26] or [25] for the general discussion of the Euler angles in this setting. We also note that due 
to the assumption that the Fourier coefficients are monotone, they are nonnegative and decreasing, so the 
modulus on the right hand side of (60) can be actually dropped.

We fix an arbitrary half-integer ξ ∈ 1
2N0 and let k be any half-integer greater than ξ, i.e. k ≥ ξ, k ∈ 1

2N0. 
Then we have∣∣∣∣∣∣∣∣

∑
l∈ 1

2N0
l≤k

(2l + 1) Tr[f̂(l)T l(u)]

∣∣∣∣∣∣∣∣ ≤
∣∣∣∣∣∣∣∣
∑

l∈ 1
2N0

l≤ξ

(2l + 1) Tr[f̂(l)T l(u)]

∣∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣∣
∑

l∈ 1
2N0

ξ<l≤k

(2l + 1) Tr[f̂(l)T l(u)]

∣∣∣∣∣∣∣∣ . (63)

Since f̂(k) is an almost scalar sequence of the Fourier coefficients, we have

Tr[f̂(k)T k(u)] ∼= f̂k TrT k(u).

Thus ∣∣∣∣∣∣∣∣
∑

l∈ 1
2N0

l≤ξ

(2l + 1) Tr[f̂(l)T l(u)]

∣∣∣∣∣∣∣∣ ≤
∑

l∈ 1
2N0

l≤ξ

(2l + 1)|f̂l||TrT l(u)|.

Since matrices T l(u) are unitary of size (2l + 1) × (2l + 1), we have∣∣TrT l(u)
∣∣ ≤ (2l + 1).

Therefore ∑
l∈ 1

2N0
l≤ξ

(2l + 1)|f̂l||TrT l(u)| ≤
∑

l∈ 1
2N0

l≤ξ

(2l + 1)2|f̂l|.

Applying the Abel transform to f̂l and (2l + 1) Tr[T l(u)] in the second term in the sum in (63), we get∑
l∈ 1

2N0
ξ≤l≤k

(2l + 1)f̂l Tr[T l(u)] =
∑

l∈ 1
2N0

1

(f̂l − f̂l+ 1
2
)Dl(t) + f̂kDk(t) − f̂ξDξ− 1

2
(t),
ξ≤l≤k− 2
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where Dk(t) =
∑

l∈ 1
2N0

l≤k

(2l + 1) TrT l(u). We will now use the estimate (68) for the Dirichlet kernel from 

Proposition 3.2 that we postpone to be proved later. Thus, we first estimate∣∣∣∣∣∣∣∣
∑

l∈ 1
2N0

ξ≤l≤k

(2l + 1) Tr[f̂(l)T l(u)]

∣∣∣∣∣∣∣∣ ≤
∣∣∣∣∣∣∣∣∣

∑
l∈ 1

2N0
ξ≤l≤k− 1

2

(f̂l − f̂l+ 1
2
)Dl(t)

∣∣∣∣∣∣∣∣∣+
∣∣∣f̂kDk(t)

∣∣∣
+
∣∣∣f̂ξDξ− 1

2
(t)
∣∣∣ ≤ ∑

l∈ 1
2N0

ξ≤l≤k− 1
2

∣∣∣f̂l − f̂l+ 1
2

∣∣∣ |Dl(t)| +
∣∣∣f̂k∣∣∣ |Dk(t)| +

∣∣∣f̂ξ∣∣∣ ∣∣∣Dξ− 1
2
(t)
∣∣∣

Using estimate (68) for the Dirichlet kernel and monotonicity of (2k + 1)f̂k we can estimate this as

� 1
t2

⎛⎜⎜⎜⎝ ∑
l∈ 1

2N0
ξ≤l≤k− 1

2

[(2l + 2)f̂l − (2l + 2)f̂l+ 1
2
] + (2k + 1)f̂k + 2ξf̂ξ

⎞⎟⎟⎟⎠

= 1
t2

⎛⎜⎜⎜⎝ ∑
l∈ 1

2N0
ξ≤l≤k− 1

2

[(2l + 1)f̂l − (2l + 2)f̂l+ 1
2
] +

∑
l∈ 1

2N0
ξ≤l≤k− 1

2

f̂l + (2k + 1)f̂k + 2ξf̂ξ

⎞⎟⎟⎟⎠

� 1
t2

⎛⎜⎜⎜⎝(2ξ + 1)f̂ξ − (2k + 1)f̂k +
∑

l∈ 1
2N0

ξ≤l≤k− 1
2

f̂l + (2k + 1)f̂k + 2ξf̂ξ

⎞⎟⎟⎟⎠
� 1

t2
(2ξ + 1)f̂ξ,

where the sum in the last line is finite even as k → ∞ in view of the non-oscillating assumption (38), namely, 
since ∑

l∈ 1
2N0

ξ≤l≤k− 1
2

f̂l ≤
∑

l∈ 1
2N0

l≥ξ

(dl − dl+1)f̂l < (2ξ + 1)f̂ξ.

Collecting these estimates, we get∣∣∣∣∣∣∣∣
∑

l∈ 1
2N0

l≤k

(2l + 1) Tr[f̂(l)T l(u)]

∣∣∣∣∣∣∣∣ ≤
∑

l∈ 1
2N0

l≤ξ

(2l + 1)2f̂l + (2ξ + 1)f̂ξ
t2

=
∑

l∈ 1
2N0

l≤ξ

(2l + 1)2f̂l + (2ξ + 1)3f̂ξ
(2ξ + 1)
(2ξ + 1)3

1
t2
.

By Theorem A.2 the partial sums 
∑

l∈ 1
2N0

l≤k

(2l + 1) Tr[f̂(l)T l(u)] converge to f(x) for almost all x ∈ G. Then 

taking the limit as k → ∞, we get
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|f(u)| �
∑

l∈ 1
2N0

l≤ξ

(2l + 1)2f̂l + (2ξ + 1)3f̂ξ
(2ξ + 1)
(2ξ + 1)3

1
t2
.

We assumed that (2l + 1)f̂l is a monotone sequence. Then f̂k is also a monotone decreasing sequence. 
Therefore, we get

(2ξ + 1)3f̂ξ ≤
∑

l∈ 1
2N0

l≤ξ

(2l + 1)2f̂l.

Thus

∑
l∈ 1

2N0
l≤ξ

(2l + 1)2f̂l + (2ξ + 1)3f̂ξ
2ξ + 1

(2ξ + 1)3
1
t2

≤
(

1 + 1
(2ξ + 1)2

1
t2

) ∑
l∈ 1

2N0
l≤ξ

(2l + 1)2f̂l

� 1
(2ξ + 1)2

1
t2

∑
l∈ 1

2N0
l≤ξ

(2l + 1)2f̂l.

Since f̂l is almost scalar, by Definition 1.7, the last sum equals to

1
(2ξ + 1)2

1
t2

∑
l∈ 1

2N0
l≤ξ

(2l + 1) Tr f̂(l).

Finally, we obtain

|f(u)| � 1
(2ξ + 1)2

1
t2

∑
l∈ 1

2N0
l≤ξ

(2l + 1) Tr f̂(l). (64)

This proves (60). Using this inequality and applying Weyl’s integral formula for class functions (cf. e.g. Hall 
[15]), we immediately get

‖f‖pLp(SU(2)) =
∫

[0,1]

|f(u)|p sin2 πt

2 dt

�
∫

[0,1]

⎛⎜⎜⎝ 1
(2ξ + 1)2

1
t2

∑
l∈ 1

2N0
l≤ξ

(2l + 1) Tr f̂(l)

⎞⎟⎟⎠
p

sin2 πt

2 dt.

Here ξ is an arbitrary fixed half-integer. We split the interval [0, 1] as the union [0, 1] = �
ξ∈ 1

2N0

[(2ξ + 1 +

1)−1, (2ξ + 1)−1]. Using the estimate with the corresponding ξ in each interval of this decomposition, the 
last integral becomes

∑
ξ∈ 1

2N0

1
(2ξ+1)∫
1

(2ξ+1+1)

⎛⎜⎜⎝ 1
(2ξ + 1)2

1
t2

∑
l∈ 1

2N0

(2l + 1) Tr f̂(l)

⎞⎟⎟⎠
p

sin2 πt

2 dt
l≤ξ
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∼=
∑

ξ∈ 1
2N0

1
(2ξ+1)∫
1

(2ξ+1+1)

(
1

(2ξ + 1)2
1
t2

)p

⎛⎜⎜⎝ ∑
l∈ 1

2N0
l≤ξ

(2l + 1) Tr f̂(l)

⎞⎟⎟⎠
p

t2 dt.

Now, we notice that the inner sum 
∑

l∈ 1
2N0

2l+1≤2ξ+1

(2l + 1) Tr f̂(l) does not depend on t. Therefore, we can inter-

change summation and integration to get

∑
ξ∈ 1

2N0

1
(2ξ+1)∫
1

(2ξ+1+1)

(
1

(2ξ + 1)2
1
t2

)p

⎛⎜⎜⎝ ∑
l∈ 1

2N0
l≤ξ

(2l + 1) Tr f̂(l)

⎞⎟⎟⎠
p

t2 dt

=
∑

ξ∈ 1
2N0

(
1

(2ξ + 1)2

)p

⎛⎜⎜⎝ ∑
l∈ 1

2N0
l≤ξ

(2l + 1) Tr f̂(l)

⎞⎟⎟⎠
p 1

(2ξ+1)∫
1

(2ξ+1+1)

t2−2p dt.

The key observation now is the fact that

(
1

(2ξ + 1)2

)p

1
(2ξ+1)∫
1

(2ξ+1+1)

t2−2p dt ∼= (2ξ + 1)2(2ξ + 1)3(p−2) 1
(2ξ + 1)3p .

Thus, the last sum, up to constant, equals to

∑
ξ∈ 1

2N0

(2ξ + 1)−4

⎛⎜⎜⎝ ∑
l∈ 1

2N0
l≤ξ

(2l + 1) Tr f̂(l)

⎞⎟⎟⎠
p

.

Thus, the last sum, up to constant, equals to

∑
ξ∈ 1

2N0

(2ξ + 1)2(2ξ + 1)3(p−2)

⎛⎜⎜⎝ 1
(2ξ + 1)3

∑
l∈ 1

2N0
2l+1≤2ξ+1

(2l + 1) Tr f̂(l)

⎞⎟⎟⎠
p

.

Now, we formulate and apply the following theorem proved by the authors in [2]. Let G be a compact Lie 
group and Ĝ its unitary dual. Let us denote by M1 the collection of all finite subsets Q ⊂ Ĝ of Ĝ. Denote 
μ(Q) =

∑
π∈Q

d2
π for Q ∈ M1.

Theorem 3.1 ([2]). Let 1 < p ≤ 2. Then we have

∑
π∈Ĝ

d2
π〈π〉

n(p−2)

⎛⎜⎝ sup
Q∈M1

μ(Q)≥〈π〉n

1
μ(Q)

∣∣∣∣∣∣
∑
ξ∈Q

dξ Tr f̂(ξ)

∣∣∣∣∣∣
⎞⎟⎠

p

=: ‖f̂‖Np′,p(Ĝ,M1) � ‖f‖Lp(G). (65)

Here Np′,p(Ĝ, M1) is the net space on the lattice Ĝ which has been discussed in [2]. For an arbitrary 
collection of finite subsets M , in view of the embedding (cf. [2])
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Np′,p(Ĝ,M) ↪→ Np′,p(Ĝ,M1) (66)

and inequality (65), we get

∑
π∈Ĝ

d2
π〈π〉

n(p−2)

⎛⎜⎝ sup
Q∈M

μ(Q)≥〈π〉n

1
μ(Q)

∣∣∣∣∣∣
∑
ξ∈Q

dξ Tr f̂(ξ)

∣∣∣∣∣∣
⎞⎟⎠

p

≤ ‖f‖Lp(G). (67)

In particular, for G = SU(2) and M = {{ξ ∈ Ĝ : 〈ξ〉 ≤ 〈π〉} : π ∈ Ĝ}, we thus obtain from (67) that

∑
ξ∈ 1

2N0

(2ξ + 1)2(2ξ + 1)3(p−2)

⎛⎜⎜⎜⎝ 1
(2ξ + 1)3

∑
l∈ 1

2N0
(2l+1)3≤2ξ+1

(2l + 1) Tr f̂(l)

⎞⎟⎟⎟⎠
p

≤
∑

ξ∈ 1
2N0

(2ξ + 1)2(2ξ + 1)3(p−2)

⎛⎜⎜⎜⎝ sup
k∈ 1

2N0
(2k+1)3≥(2ξ+1)3

1
(2k + 1)3

∑
l∈ 1

2N0
(2l+1)3≤(2k+1)3

(2l + 1) Tr f̂(l)

⎞⎟⎟⎟⎠
p

≤ ‖f‖pLp(SU(2)).

This completes the proof. �
3.4. Dirichlet kernel on SU(2)

In the proof of Theorem 1.10 we made use of an estimate for the Dirichlet kernel on SU(2) which we now 
prove. We continue with the SU(2)-notation introduced in (61)–(62).

Proposition 3.2. On SU(2), the Dirichlet kernel

Dl(t) :=
∑

k∈ 1
2N0

k≤l

(2k + 1)χk(t) =
∑

k∈ 1
2N0

k≤l

(2k + 1)sin(2k + 1)πt
sin πt

, l ∈ 1
2N0,

satisfies the estimate

|Dl(t)| �
2l + 1
t2

, (68)

with a constant independent of t and l.

Proof. Since χk(t) = TrT k(t) = sin(2k+1)πt
sin πt , we have

Dl(t) =
∑

k∈ 1
2N0

k≤l

(2k + 1)χk(t) =
∑

k∈ 1
2N0

k≤l

(2k + 1)sin(2k + 1)πt
sin πt

.

Using the fact that d sin(2k + 1)πt = (2k + 1)π cos(2k + 1)πt, we can represent the last sum as follows
dt
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1
sin πt

∑
k∈ 1

2N0
k≤l

(2k + 1) sin(2k + 1)πt =
(
−1
π

)
1

sin πt

d

dt

⎛⎜⎜⎝ ∑
k∈ 1

2N0
k≤l

cos(2k + 1)πt

⎞⎟⎟⎠

=
(
−1
π

)
1

sin πt

d

dt

⎛⎜⎜⎜⎝
∑

k∈ 1
2N0

k≤l

cos(2k + 1)πt sin πt

sin πt

⎞⎟⎟⎟⎠ .

Using sine multiplication formula, we obtain

(
−1
π

)
1

sin πt

d

dt

⎛⎜⎜⎜⎝
∑

k∈ 1
2N0

k≤l

sin(2k + 1 + 1)πt− sin(2k + 1 − 1)πt

sin πt

⎞⎟⎟⎟⎠
=
(
−1
π

)
1

sin πt

d

dt

(
sin(2l + 1)πt + sin(2l + 2)πt

sin πt

)
= (sin(2l + 1)πt + sin(2l + 2)πt) cos(πt)

sin3 πt

− (2l + 1) cos(2l + 1)πt + (2l + 2) cos(2l + 2)πt
sin2 πt

.

This proves (68). �
We can refer to Giulini and Travaglini [14] and to Travaglini [34] for some other interesting properties of 

Fourier coefficients and Dirichlet kernels on SU(2).

Appendix A. Polyhedral summability on compact Lie groups

It has been shown by Stanton [32] that for class functions on semisimple compact Lie groups the poly-
hedral Fourier partial sums SNfconverge to f in Lp provided that 2 − 1

s+1 < p < 2 + 1
s . Here the number 

s depends on the root system R of the compact Lie group G, in the way we now describe. We also note 
that the range of indices p as above is sharp, see Stanton and Tomas [30,31] as well as Colzani, Giulini and 
Travaglini [4].

Let G be a compact semisimple Lie group and let T be a maximal torus of G, with Lie algebras g and 
t, respectively. Let n = dimG and l = dimT = rankG. We define a positive definite inner product on t by 
putting (·, ·) = −B(·, ·), where B is the Killing form. Let R be the set of roots of g. Choose in R a system 
R+ of positive roots (with cardinality r) and let S = {α1, . . . , αl} be the corresponding simple system. We 
define ρ := 1

2
∑

α∈R+

α.

For every λ ∈ it∗ there exists a unique Hλ ∈ t such that λ(H) = i(Hλ, H) for every H ∈ t. The vectors 
Hj = 4πiHαj

αj(Hαj
) generate the lattice sometimes denoted by Ker(exp). The elements of the set

Λ = {λ ∈ it∗ : λ(H) ∈ 2πiZ, for any H ∈ Ker(exp)}

are called the weights of G and the fundamental weights are defined by the relations λj = 2πiδjk, j, k =
1, . . . , l. The subset
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D = {λ ∈ Λ: λ =
l∑

j=1
mjλj , mj ∈ N}

of the set Λ with positive coordinates mj is called the set of dominant weights. Here, the word ‘dominant’ 
means that with respect to a certain partial order on the set Λ every weight λ =

∑l
j=1 mjλj with mj > 0

is maximal. There exists a bijection between Ĝ and the semilattice D of the dominant weights of G, i.e.

D � λ = (m1, . . . ,ml) ←→ π ∈ Ĝ.

Therefore, we will not distinguish between π and the corresponding dominant weight λ and will write

π = (π1, . . . , πl), (A.1)

where we agree to set πi = mi. With ρ = 1
2
∑

α∈R+

α, for a natural number N ∈ N, we set

QN := {ξ ∈ Ĝ : ξi ≤ Nρi, i = 1, . . . , l}. (A.2)

We call QN a finite polyhedron of N th order and denote by M0 the set of all finite polyhedrons in Ĝ or in 
Ĝ0.

Now, fix an arbitrary fundamental weight λj, j = 1, . . . , l, and set R⊥
λj

:= {α ∈ R+ : (α, λj) = 0}, and 
R+ = Rλj

⊕R⊥
λj

. We will often use the number

s := max
j=1,...,l

cardRλj
. (A.3)

We denote by Lp
∗(G/K) the Banach subspace of Lp(G/K) of functions on G/K whose canonical liftings are 

central on G: if f̃(g) = f(gK) is the canonical lifting of f from G/K to G, by definition

f ∈ Lp
∗(G/K) if and only if f ∈ Lp(G/K) and f̃(gug−1) = f̃(u) for all u, g ∈ G.

We note that such functions have then K-invariance both on the right and on the left: f̃(KuK) = f̃(u)
for all u ∈ G. Consequently, for π ∈ Ĝ0, with our choice of basis vectors for the invariant subspace of 
the representation space, the Fourier coefficient f̂(π) vanishes outside the upper-left kπ × kπ block, i.e. 
f̂(π)ij = 0 if i > kπ or j > kπ.

Further, we formulate and apply a result on semisimple Lie groups by Robert Stanton [32] for Lp-norm 
convergence of polyhedral Fourier partial sums. We also refer to Stanton and Tomas [30,31] and to Colzani, 
Giulini and Travaglini [4] for the converse statement.

Let ρ denote the half-sum of positive roots of G. Recall also the notation QN := {π ∈ Ĝ0 : πi ≤ Nρi, i =
1, . . . , l} and DN (u) := DQN

(u) =
∑

π∈QN

Tr[π(u)].

Theorem Appendix A.1 ([32]). Let G be a semisimple compact Lie group. Let f ∈ Lp
∗(G/K) and let SNf(x)

be the associated polyhedral Fourier partial sum, i.e.

SNf(u) := TQN
(x).

Then SNf converges to f in Lp(G/K) provided that 2 − 1
1+s < p < 2 + 1

s , where s is defined by (A.3). 
If G is simply connected, this range of p is in general sharp.

Consequently, one obtains
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Theorem Appendix A.2. Let 2n
n+l < p < +∞ and f ∈ Lp

∗(G). Then SNf(x) converges to f(x) for almost all 
x ∈ G.

Although Stanton’s version of this theorem is on groups, by considering the canonical liftings from the 
homogeneous space we obtain the formulation above also for homogeneous spaces, at least for the sufficient 
condition. The only if part of ‘in general sharp’ follows from [4], by for example taking K = {e}.

Appendix B. Marcinkiewicz interpolation theorem

In this section we formulate the Marcinkiewicz interpolation theorem on arbitrary σ-finite measure spaces. 
Then we show how to use this theorem for linear mappings between C∞(G) and the space Σ of finite matrices 
on the discrete unitary dual Ĝ or on the discrete set Ĝ0 of class I representations with different measures 
on Ĝ and Ĝ0.

This approach will be instrumental in the proof of the Hardy-Littlewood Theorem 1.2 and of the Paley 
inequality in Theorem 1.3.

We now formulate the Marcinkiewicz theorem for linear mappings between functions on arbitrary σ-finite 
measure spaces (X, μX) and (Γ, νΓ).

Let PC(X) denote the space of step functions on (X, μX). We say that a linear operator A is of strong 
type (p, q), if for every f ∈ Lp(X, μX) ∩ PC(X), we have Af ∈ Lq(Γ, νΓ) and

‖Af‖Lq(Γ,νΓ) ≤ C‖f‖Lp(X,μX),

where C is independent of f , and the space �q(Γ, νΓ) defined by the norm

‖h‖Lq(Γ,νΓ) :=

⎛⎝∫
Γ

|h(π)|pν(π)

⎞⎠ 1
q

. (B.1)

The least C for which this is satisfied is taken to be the strong (p, q)-norm of the operator A.
Denote the distribution functions of f and h by μX(x; f) and νΓ(y; h), respectively, i.e.

μX(x; f) :=
∫

t∈X
|f(t)|≥x

dμ(t), x > 0,

νΓ(y;h) :=
∫

π∈Γ
|h(π)|≥y

dν(π), y > 0. (B.2)

Then

‖f‖pLp(X,μX) =
∫
X

|f(t)|p dμ(t) = p

+∞∫
0

xp−1μX(x; f) dx,

‖h‖qLq(Γ,νΓ) =
∫

π∈Γ

|h(π)|qν(π) = q

+∞∫
0

yq−1νΓ(y;h) dy.

A linear operator A : PC(X) → Lq(Γ, νΓ) satisfying
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νΓ(y;Af) ≤
(
M

y
‖f‖Lp(X,μX)

)q

, for any y > 0. (B.3)

is said to be of weak type (p, q); the least value of M in (B.3) is called the weak (p, q) norm of A.
Every operation of strong type (p, q) is also of weak type (p, q), since

y (νΓ(y;Af))
1
q ≤ ‖Af‖Lq(Γ) ≤ M‖f‖Lp(X).

Theorem Appendix B.1. Let 1 ≤ p1 < p < p2 < ∞. Suppose that a linear operator A from PC(X) to 
Lq(Γ, νΓ) is simultaneously of weak types (p1, p1) and (p2, p2), with norms M1 and M2, respectively, i.e.

νΓ(y;Af) ≤
(
M1

y
‖f‖Lp1 (X,μX)

)p1

,

νΓ(y;Af) ≤
(
M2

y
‖f‖Lp2 (X,μX)

)p2

hold for any y > 0.

Then for any p ∈ (p1, p2) the operator A is of strong type (p, p) and we have

‖Af‖Lp(Γ,νΓ) � M1−θ
1 Mθ

2 ‖f‖Lp(X,μX), 0 < θ < 1,

where

1
p

= 1 − θ

p1
+ θ

p2
.

The proof is given in e.g. Folland [13]. Now, we adapt this theorem to the setting of matrix-valued 
mappings.

Suppose Γ is a discrete set. Integral over Γ is defined as sum over Γ, i.e.∫
Γ

νΓ(π) :=
∑
π∈Γ

ν(π). (B.4)

In this case, to define a measure on Γ means to define a real-valued positive sequence ν = {νπ}π∈Γ, i.e.

Γ � π �→ νπ ∈ R+.

We turn Γ into a σ-finite measure space by introducing a measure

νΓ(Q) :=
∑
π∈Q

νπ,

where Q is arbitrary subset of Γ.
We consider two sequences δ = {δπ}π∈Γ and κ = {κπ}π∈Γ, i.e.

Γ � π �→ δπ ∈ N,

Γ � π �→ κπ ∈ N.

We denote by Σ the space of matrix-valued sequences on Γ that will be realised via

Σ :=
{
h = {h(π)}π∈Γ, h(π) ∈ Cκπ×δπ

}
.
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The �p spaces on Σ can be defined, for example, motivated by the Fourier analysis on compact homogeneous 
spaces, in the form

‖h‖�p(Γ,Σ) :=
(∑

π∈Γ

(
‖h(π)‖HS√

kπ

)p

νπ

) 1
p

, h ∈ Σ.

If we put X = G, where G is a compact Lie group and let Γ = Ĝ, then Fourier transform can be regarded 
as an operator mapping a function f ∈ Lp(G) to the matrix-valued sequence f̂ = {f̂(π)}π∈Ĝ of the Fourier 
coefficients, with δπ = κπ = dπ. For Γ = Ĝ0 we put δπ = dπ and κπ = kπ, these spaces thus coincide with 
the �p(Ĝ0) spaces introduced in [25]. In Section 3, choosing different measures {νπ}π∈Γ on the unitary dual 
Ĝ or on the set Ĝ0, we use this to prove the Paley inequality and Hausdorff-Young-Paley inequalities. Let 
us denote by |h| the sequence consisting of {‖h(π)‖HS√

kπ
}, i.e.

|h| =
{
‖h(π)‖HS√

kπ

}
π∈Γ

.

Then, we have

‖h‖�q(Γ,Σ) = ‖|h|‖Lq(Γ,νΓ).

Thus, we obtain

Theorem Appendix B.2. Let 1 ≤ p1 < p < p2 < ∞. Suppose that a linear operator A from PC(X) to Σ is 
simultaneously of weak types (p1, p1) and (p2, p2), with norms M1 and M2, respectively, i.e.

νΓ(y;Af) ≤
(
M1

y
‖f‖Lp1 (X)

)p1

, (B.5)

νΓ(y;Af) ≤
(
M2

y
‖f‖Lp2 (X)

)p2

hold for any y > 0. (B.6)

Then for any p ∈ (p1, p2) the operator A is of strong type (p, p) and we have

‖Af‖�p(Γ,Σ) ≤ M1−θ
1 Mθ

2 ‖f‖Lp(X), 0 < θ < 1, (B.7)

where

1
p

= 1 − θ

p1
+ θ

p2
.
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