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a b s t r a c t

This work is dedicated to the consideration of the construction of a representation of
braid group generators from vertex models with N-states, which provides a great way
to study the knot invariant. An algebraic formula is proposed for the knot invariant
when different spins (N − 1)/2 are located on all components of the knot. The work
summarizes procedure outputting braid generator representations from three-partite
vertex model. This representation made it possible to study the invariant of a knot with
multi-colored links, where the components of the knot have different spins. The formula
for the invariant of knot with a multi-colored link is studied from the point of view of
the braid generators obtained from the R-matrices of three-partite vertex models. The
resulting knot invariant 52 corresponds to the Jones polynomial and HOMFLY-PT.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

An important event which happened at the end of the 20th century in the mathematical theory of knots and links, is the
iscovery of new and direct ways of constructing knot invariants using the statistical mechanics method. Since knots and
inks can be received from the closure of the braid word, knot and link invariants may be obtained from the representative
heory of braid groups. There are many ways to solve the representation of different braid groups. By Drinfeld’s quantum
roup, as well as the independent research of F.A. Berezin [1] in the field of statistical and quantum mechanics, the
tatistical sum turned out to be closely related to the invariants of knots (and links). Vertex and IRF models not only
llow us to very easily reconstruct the Jones polynomial from the statistical sum, but actually lead to a whole new series
f Jones-type knot invariants [2]. By the help of the Ising model in the theory of phase transitions and Hill’s theory in the
heory of liquids [3] and liquid solutions, significant advances have been made in numerous application areas of statistical
echanics [4]. Consideration of the tetrahedron equation or the Zamolodchikov equation, which is a 3D generalization of

he well-known Yang–Baxter equation [5], shows that it provides invariance with respect to Reidemeister III motions, the
mportance of charge conservation and the construction of knot invariants from vertex models [6]. Heretofore, statistical
echanics and knot theory had nothing to do with each other. However, in the process of discovering new polynomial

nvariants for knots, Vaughan Jones established a connection between these two fields. Currently, this is of research [7]
s extremely active [8]. But the question remains open whether there are Vassiliev invariants that can distinguish an
riented knot from its inverse, i.e., a knot with an opposite orientation [9]. Families of polynomial invariants virtual knots
nd links arise when considering some 2 × 2 matrices with elements quaternions [10].
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In the next paper, the Jones polynomial VL(t) is calculated for several families of alternating knots and links, and the
Tutte polynomial T (G, x, y) for the associated graphs G, and the computation of the Jones polynomial for unchanging links
is also discussed [11]. The research relationship between knots and braids provides the process of obtaining a knot or link
from a given braid by ‘‘closing’’ the braid, which leads to the formulation of two fundamental questions about knots and
braids [12].

The study of welded braids and classical knots [13] and a new invariant of virtual knots and links [14] have led
to the rapid development of knot theory. The theory of module skeins is a consequence of the discovery the Jones
polynomial [15], which led to a thorough analysis of all other classes of 2-bridge knots [16]. Creation an invariant of
virtual knots and links [17] and the definition of the properties of birac and biquandl, where natural invariants arise
from virtual knots and braids [18]. The new virtual knot invariant and the transcendental functional invariant combine
several polynomial virtual knot invariants, such as the zero polynomial [19,20], the bend of the polynomial [21], and the
affine index polynomial [22]. It also explains the general method for calculating the Tutte polynomial for partitioning a
graph [23]. The article computes exact expressions for the Jones polynomials for a family of links [24].

According to the Chern–Simons SU(2) theory, Witten’s pioneering work [25] is one such method in which the Jones
polynomial located at the knot K [26] is formed from the expectation of the Wilson loop ⟨WR(K )⟩. A great quality of
this approach is the relationship between the 3D SU(2) Chern–Simons theory and the two-dimensional SU(2)k Wess–
Zumino–Witten (WZW) model, where k is the Chern–Simons coupling constant showing degree of the WZW model. For
example, the deformation coefficient q = exp(2Π/k + 2) for the group SU(2) [27]. The Temperley–Lieb algebra and the
Birman–Murakami–Wenzl algebra (BMW) played a main role in solving models and knot theory [28]. The article mentions
especially of the most important and well-known classical results of F. Wu, and also describes some of his recent research
on the connection of lattice statistical mechanical models with deep problems of pure mathematics [29].

The description of the Boltzmann weight and the determination of SO(N) for any N spin vertex model of algebra [30]
erved the discovery of new problems in the field of statistical physics. Braid group representations obtained from rational
onformal field theories can be used to obtain explicit representations of Temperley–Lieb–Jones algebras [31]. It was found
hat the Yang–Baxter relation provides both an algebraic and a graphical method in knot theory [32]. The universal R-
atrices constructed using generators J±, Jz of matrices Uq(SU(2)) obey the defining relations of braid groups. Therefore,

these universal R-matrices are representations of braid groups. Exactly solvable models of statistical mechanics [33]
features from the method of constructing a representation of the braid group. Vertex models of N-states are one of
such statistical mechanical models with Boltzmann weights (Rj,j)n1,n2m1,m2 (u) associated with each vertex on a square lattice,
depending on the spins m1,m2, n1, n2 ∈ {−j,−j + 1, . . . , j}, located on four edges intersecting the vertex, where spin
= (N−1)/2. The Yang–Baxter equations obey the spectral parameters u depending on the Boltzmann weight (Rj,j)n1,n2m1,m2 (u)
f these vertex models. In fact, the Yang–Baxter equation in the limit u → ∞ can be reduced to the definition of braid
roup relations by applying the permutation operator P̂ to the Boltzmann weights. This means that, the braid generators
re proportional to P̂[(Rj,j)n1,n2m1,m2 (u → ∞)]. The Boltzmann weights for new vertex models in which edges carry states
ith spin j > 3/2 [22] ensure us with new representations of braid matrices that are productive for constructing new
not invariants using the algebraic expression αj, j, . . . , j  

n

(A) [34–39]. Application of algebraic expression when obtaining

the polynomials of the knot and links is the optimal method corresponding to any arbitrary word braid A and includes
only the multiplication of matrices. Traditional approach vertex model is able to efficiently compute the knot and link
invariant αj, j, . . . , j  

n

(A). An attempt to obtain a modified algebraic expression for the knot invariant αj, j, . . . , j  
n

(A) in terms

f matrix representations of braid matrices were called multi-colored knot and link invariants, where j1, j2, . . .-spin states
ocated in different constituent links of the knot. The mathematical solution for the knot polynomial using these braid
atrices was studied in publications [34–39] for the spin j = 1/2, j = 1, j = 3/2, which are common in the sources as

he 6-vertex, 19-vertex and 44-vertex models. The numbers 6, 19, 44 indicate the number of nonzero Boltzmann weights
or the corresponding vertex model with N-states.

As a result of obtaining an eight-vertex model using the Grassmann algebra, a series of solutions to the tetrahedron
quation is specified as a sufficient condition for the permutation of the transition matrices on a simple square lattice [40].
n the fifteen-vertex model, which satisfying the ice rule, the algebraic-differential method [41] is utilized to solve the
ang–Baxter equation, where the matrix elements also depend on the spectral parameter. The 32-vertex free fermion
odel, which demonstrates the Ising behavior, can also has various transitions [42]. The article examines a family of
olvable A–D–E lattice models that demonstrate order–disorder transitions, as well as different classes of critical behavior
niversality [43].
The Ashkin–Teller model represents two Ising models (s and σ )-models. Subsequently, the Ashkin–Teller model on a

quare lattice attracted the attention of physicists. Later it turned out that it is conformally invariant. The close relationship
f the Ashkin–Teller model on a square lattice was studied with models of statistical mechanics such as like the Potts
odel, the eight-vertex model with two sublattices is a special case of the six-vertex model [44]. Using the method of
iagonalization by known Boltzmann weights for the 15-vertex model, 32-vertex model, and the Ashkin–Teller model on
square lattice, one can obtain diagonal matrix elements λJ (j1, j2, j3; u), depending on the spectral parameter. In vertex
odels with Boltzmann weights, when diagonalizing, one can verify that the diagonal matrix elements depend on the
pectral parameter for the spin j > 3/2 [45].
2
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Fig. 1. Vertex model (Rj,j)n1,n2m1,m2 (u).

The method for obtaining invariants is associated with multi-colored links [46], with the statistical sum of the Chern–
imons theory [47] and with obtaining the topological solution SU(2) of the Chern–Simons theory on S3 [48]. The 3D
U(2) Chern–Simons theory has been studied as a topological field theory for the field-theoretical description of knots
nd links in three dimensions [44]. Thus, one can use braid theory to study knot theory and vice versa [49]. Thereafter,
he connection between the invariant of knot theory and the new ten-vertex model of statistical mechanics was studied,
ith using the transition of the commuting transfer matrix, including the Boltzmann weights, into the braid matrix [50].
The polynomial form can be calculated for any braid word A using the algebraic expression αj, j, . . . , j  

n

(A), which will

be considered below in the formula (1.4), as described in [34–39]. Here, the spin states j are located on all strands of
he braid, and n denotes the number of knots components of the link obtained as a result of the closure of the braid
. We need to map these braid matrices to the monodromy matrices in the WZW models. Braid generators should
e derived from (Rj1,j2,j3 )n1,n2,n3m1,m2,m3 (u)-matrices of new vertex models. We call such vertex models three-partite vertex

models in which each strand has m1, n1 ∈ j1, j1 − 1, . . . − j1, m2, n2 ∈ j2, j2 − 1, . . . − j2, m3, n3 ∈ j3, j3 − 1, . . . − j3.
The procedure for obtaining Boltzmann weights for the vertex model (Rj1,j2,j3 )n1,n2,n3m1,m2,m3 (u) from the spectral parameter-
dependent elements of the diagonal braid λJ (j1, j2, j3) can be generalized to obtain three-partite vertex models of
Boltzmann weights (Rj1,j2,j3 )n1,n2,n3m1,m2,m3 (u), where each strand carries different spins j1, j2, j3. It is important to emphasize that
the relations of quasigroups [25] for the braid generators P̂[(Rj1,j2,j3 )n1,n2,n3m1,m2,n3 (u → ∞)] were obtained from the Boltzmann
weights in the limit u → ∞ using the permutation operator P̂ .

Our main aim in this article is to construct braid representations from (Rj1,j2,j3 )n1,n2,n3m1,m2,m3 (u), which obey the properties
of quasigroups [48] from various spin j-states on the strands. This paper describes the derivation of the matrix form of the
three-partite vertex model from the Boltzmann weights, which allows using the modified formula for the knot from the
closure of an arbitrary word of the braid A and effectively calculate the multi-colored knot invariant and link αj, j, . . . , j  

n

(A).

This work is dedicated to graphical methods of calculation, which are based on the Clebsch–Gordan coefficients and
transformation matrices [51]. Using the quantum-deformed Clebsch–Gordan coefficients q − CG, these braid matrices
P̂[(Rj,j)n1,n2m1,m2 (u → ∞)] can be diagonalized [52], whose diagonal elements λJ (j, j) are the eigenvalues of the monodromy
atrices in the WZW model.
The work plan is as following. In Section 2, we consider the construction of braid matrices from the R-matrix of the

sual and ten-vertex models for the same case of spin and the derivation of the knot invariant with links. In Section 3, we
eneralize the procedure for defining a new representation of the braid generators from the R(u)-matrix associated with
he three-partite vertex model and propose an algebraic formula for the invariant of a knot with multi-colored links.

. Vertex model & R-matrix

In this section, we briefly review the ten-vertex model approach to constructing representations of braid group
enerators leading to the computation of the b51 knot invariant.

ertex model. N-vertex models consider a two-dimensional model of statistical mechanics with states of the same spin
, located on four edges intersecting each vertex, as shown in Fig. 1.

This exactly solvable model of statistical mechanics shows that the spectral parameter u directly depends on the
oltzmann weights (Rj,j)n1,n2m1,m2 (u) and with the Yang–Baxter equation is agreed

Σm′
1,m

′
2,m

′
3
(Rj,j)

m′
1,m

′
2

m1,m2 (u)(R
j,j)

m′′
1 ,m

′
3

m′
1,m3

(u + υ)(Rj,j)
m′′

2 ,m
′′
3

m′
2,m

′
3
(υ) =

= Σm′
1,m

′
2,m

′
3
(Rj,j)

m′
2,m

′
3

m2,m3 (υ)(R
j,j)

m′
1,m

′′
3

m1,m′
3
(u + υ)(Rj,j)

m′′
1 ,m

′′
2

m′
1,m

′
2
(u). (1)

he parameterized form of this R-matrix depends on the spectral parameter u and the deformation parameter q = e2µ is
iven in [33,34] for 6, 9, 44-vertex models. The above equation in the limit u → 0, supplementing the product of R-matrix
3
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lements by the permutation operator P̂ (up to full normalization), shows an explicit relation for the braid group Br , where
he generators bi’s (i = 1, 2, . . . , r) have the following representation

bi[j, j] = I1 × I2 × · · · I×  
i−1

(R̂j,j)n1,n2m1,m2
× Ii+2 . . . ,

bi[j, j]−1
= I1 × I2 × · · · I×  

i−1

((R̂j,j)n1,n2m1,m2
)−1

× Ii+2 . . . . (2)

Here

((R̂j,j)n1,n2m1,m2
) =

1
N
P̂((Rj,j)n1,n2m1,m2

)(u → ∞), (3)

normalization factor N = (Rj,j)j,jj,j(u → ∞) ensures that all matrix elements in the limit u → ∞. As a result, we have a
new representation of the braid of the R-matrix of the vertex model, which leads to new invariants of the knot or link.
The mathematical form αj, j, . . . , j  

n

(A) [34] helps to calculate the invariant of any n-component link at a knot obtained by

he closure of the braid word A ∈ Br , with the same spin j at other multicomponent sites

αj, j, . . . , j  
n

(A) = (τjτ j)−n/2(
τ j

τj
)e/2Tr[HA], (4)

where e is the exponent sum of the bi’s appearing in the braid word A, H = hj ⊗ hj . . . hj  
r

where

hj =
1

1 + q + · · · + q2j
Diag[1, q, . . . , q2j], (5)

and τj and τ j are

τj =
1

1 + q + · · · + q2j
; τ j =

q2j

1 + q + · · · + q2j
. (6)

When performing Markov movements on the braid, the above invariant αj,j,...,j(A) with the variable q remains unchanged,
nd for a trivial knot, the braid word A has the form αj(b1) =

∑j
i=−j q

i. In sources on knot theory, this invariant is known
s unnormalized knot invariants.
In the next subsection, we briefly study the computation of the knot invariant using the braid matrices obtained from

he R-matrices of the new model with 10 vertices. It is assumed here that the edges in fig. 1 have spins j = 1/2.

en-vertex model. The new vertex model is a ten vertex model in which the spins j = 1/2 are located on four edges that
ntersect each vertex. Thus, the Boltzmann weights (Rj,j)n1,n2m1,m2 (u) associated with each vertex are nonzero if and only if
1 + m2 = n1 + n2 where m1,m2, n1, n2 ∈ (−1/2, 1/2). This condition admits ten nonzero Boltzmann weights, resulting

n a model with 10 vertices. In matrix form, the elements are

Rn1,n2
m1,m2

=

⎛⎜⎜⎜⎜⎜⎝
Rn1,n2
m1,m2 ↑↑ ↓↑ ↑↓ ↑↓ ↓↓

↑↑ sinh(λ− u) sinh 2λ sinh u 0 0 sinh(λ) sinh(u − λ)
↓↑ sinh(λ+ u) sinh λ sinh λ 0
↑↓ 0 sinh λ sinh(λ+ u) sinh(λ+ u) 0
↑↓ 0 sinh λ sinh(λ+ u) sinh(λ+ u) 0
↓↓ sinh(λ) sinh(u − λ) 0 0 sinh 2λ sinh u sinh(λ− u)

⎞⎟⎟⎟⎟⎟⎠ .

(7)

To construct the braid generators bi, we take the spectral parameter, which is considered for u → ∞ by the above matrix
elements and replace e2λ with the variable q. Compare with the corresponding normalization so that the matrix elements
are finite in this limit u → ∞, as shown below

(R
1
2 ,

1
2 )n1,n2m1,m2 (u → ∞)

(R
1
2 ,

1
2 )↑,↑

↑,↑(u → ∞)
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

Rn1,n2
m1,m2 ↑↑ ↓↑ ↑↓ ↑↓ ↓↓

↑↑ 1 1
2 (−

√
q + q

3
2 ) 0 0 −1+q

2
√
q

↓↑ 0 0
√
q

√
q 0

↑↓ 0
√
q −1 + q −1 + q 0

↑↓ 0
√
q −1 + q −1 + q 0

↓↓
−1+q

√ 0 0 1 (−
√
q + q

3
2 ) 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (8)
2 q 2

4
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pplying the permutation matrix

P̂1/2,1/2
=

⎛⎜⎜⎜⎝
1 1 0 0 1
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
1 0 0 1 1

⎞⎟⎟⎟⎠ , (9)

he elements of (R̂
1
2 ,

1
2 )n1,n2m1,m2 (3)turn out to be

(R̂
1
2 ,

1
2 )n1,n2m1,m2

=

⎛⎜⎜⎜⎜⎜⎜⎝
1 1

2 (−
√
q + q

3
2 ) 0 0 −1+q

2
√
q

0
√
q 0

√
q 0

0
√
q −1 + q

√
q 0

0 −1 + q −1 + q −1 + q 0
−1+q
2
√
q 0 0 1

2 (−
√
q + q

3
2 ) 1

⎞⎟⎟⎟⎟⎟⎟⎠ . (10)

hus, it is possible to compute the matrix form of the braid generators bi[1/2, 1/2] (2), using the R̂-matrix. Using the
formula (4), one can calculate the invariant for some knot with links. Be aware that there is only one braid generator b1
for all braid words A ∈ B2, whose matrix form will be 5 × 5. It,

b1 = (R
1
2 ,

1
2 )n1,n2m1,m2

. (11)

q. (4) shows a ready-made invariant for links of an infinite group of knots, trefoils and Hopf using the braid words
= b1, b31 and b21 respectively [38]. For knots and links resulting from the closure of braid words A ∈ B3, there are two
raid generators b1, b2, which are 10 × 10 matrices

b1 = (R
1
2 ,

1
2 )n1,n2m1,m2

× I, (12)

b2 = (I × R
1
2 ,

1
2 )n1,n2m1,m2

. (13)

or example, the knot 61, in which the word braid is A = b1b−1
2 b3b24b

−1
3 b−1

4 . You should know that such an action of the
braid word on a 3-strand braid implies the following order of work of the matrix on the initial state |j,m1; j,m2; j;m3⟩

A|3 − strand⟩ ≡ b2
[
b−1
1

{
b2(b−1

1 |j,m1; j,m2; j,m3⟩)
}]
. (14)

The generalized way of solving the braid A ∈ Bn for any word leads to the calculation of polynomial invariants in the
formula (4). This polynomial is similar to the Jones polynomial, although the method includes only matrix product. The
method is very effective in obtaining polynomial invariants for any knot or link from a vertex model, the elements of
the R-matrix of which are known. In the sources on knot theory, the multi-colored Jones polynomials correspond to the
placement of the higher spins j ≥ 1 on the components of the knot. Interestingly, these polynomials for j = 1, 3/2 agree
with the knot and link invariant αj, j, . . . , j  (A) in Eq. (4), where the matrix representation of the generators of the braids

i’s is obtained from the Boltzmann weights of the 19-vertex and 44-vertex models. The Wess–Zumino conformal field
heory implies a compact relation for the braid generators bi’s obtained from the (Rj,j)n1,n2m1,m2-vertex model matrices and
also from the eigenvalues (λ) of the monodromy matrix in SU(2)k [53]

(R̂j,j)n1,n2m1,m2
=

1
N
P̂ j,j(Rj,j)n1,n2m1,m2

(u → ∞) =

=
1
N
P̂ j,j

∑
J∈j⊗j

(
j j J

m2 m1 M

)
λJ (j, j)

(
j j J
n1 n2 M

)
, (15)

here M = m1 + m2 = n1 + n2 and items in brackets
(

j j J
m2 m1 M

)
denote the quantum form of the formula for the

Clebsch–Gordan coefficient (q − CG) [27]. In addition, the summation J ∈ j ⊗ j belongs to the range {0, 1, . . . , 2j}. The
essence of the main problem is to obtain the eigenvalues of λJ (j, j; u) depending on the spectral parameter, for any spin
j the relation in Eq. (15) gives the value of Rj,j(u)-matrices, where matrix elements with spins j1 = 1/2, j2 = 1, j3 = 1/2
belong to 15-vertex model, 32-vertex model and Ashkin–Teller models on a square lattice. This assumption λJ (j, j; u) is
formulated in [53]

λJ (j, j; u) =

J∏
(sinh(k1µ− u))

2J∏
(sinh(k2µ+ u)) , (16)
k1=1 k2=J+1

5
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s a result, matrices are obtained depending on the spectral parameter, where (Rj,j)n1,n2m1,m2 (u) are matrices associated with
ew vertex models

(Rj,j)n1,n2m1,m2
(u) =

∑
J∈j⊗j

(
j j J

m2 m1 M

)
λJ (j, j)

(
j j J
n1 n2 M

)
. (17)

ere SU(2) spin J ∈ j ⊗ j ≡ 0, 1, 2, . . . , 2j (allowed irreducible representations in the tensor product). We have verified
or some spin values of j that these R-matrices obtained from the assumed form in the formula (16) obey the Yang–
Baxter equation and hence are admissible Boltzmann weights for completely new vertex models. Initially, we analyzed
the computation of the knot and link invariant from vertex models with edges carrying states with the same spin j.

Therefore, one can see a specific relationship between the R-matrix with a spectral parameter that depends on
he λJ (j, j; u) eigenvalue of the vertex model matrix. It is noteworthy that the assumed eigenvalue in Eq. (16) can be
eneralized to λJ (j1, j2, j3; u), where J ∈ j1 ⊗ j2 ⊗ j3 ≡ |j1 − j2 − j3|, |j1 − j2 − j3| + 1, . . . , j1 + j2 + j3, which will lead to
vertex model with adjacent edges having states of different spins j1 ̸= j2, but j1 = j3. These vertex models should be
alled three-partite vertex models. In the next section, we will describe the three-partite vertex model and propose a new
lgebraic expression for the multi-colored invariant of a knot with links from associated Boltzmann weights.

. Three-partite vertex model

In this paper, we investigate a new vertex model with different spins on adjacent edges of the lattice, which is called
he ‘‘three-partite vertex model’’. The eigenvalue in the formula (16) both for identical spins and for multi-colored spins
(j1, j2, j3; u) has the form [51]

λJ (j1, j2, j3; u) =

J∏
k1=|j2−j3|+1

sinh (k1µ− u)
|j1−j3|∏
k2=J+1

sinh (k2µ− u)+

+

J∏
k3=|j2+j3|+1

sinh (k3µ+ u)
|j1−j2|∏
k3=J+1

sinh (k4µ+ u) , (18)

here J ∈ j1×j2×j3 elements corresponding to the R-matrix depending on the spectral parameter (similar to Eq. (17))takes
he form

(Rj1,j2,j3 )n1,n2,n3m1,m2,m3 (u) =

=

∑
j12,m12

{
j2 j1 J12

−m2 −m1 M12

}
λJ12 (j1, j2; u)

{
j1 j J12
n1 n2 n12

}
+

+

∑
j23,m23

{
J123 j1 j23

−m123 m1 m23

}
λj23 (j1, J123; u)

{
j1 J123 j23
n1 −n123 n23

}
+

+

∑
j23,m23

{
j2 j3 J23
m2 m3 −m23

}
λJ23 (j3, j2; u)

{
j3 j2 J23
n3 n2 −n23

}
+

+

∑
j12,m12

{
J123 j3 j12
m123 −m3 −m12

}
λJ12 (J123, j3; u)

{
j3 J123 j12

−n3 n123 −n12

}
. (19)

arlier it was mentioned about the R-matrix satisfying the following Yang–Baxter equation [33,53]∑
m′

1,m
′
2,m

′
3

(Rj1,j2,j3 )
m′

1,m
′
2,m

′
3

m1,m2,m3 (u)(R
j1,j3 )

m′′
1 ,m

′
3

m1,m3 (u + υ)(Rj2,j3 )
m′′

2 ,m
′′
3

m′
2,m

′
3
(υ) =

= (Rj2,j3 )
m′

1,m
′′
3

m2,m3 (υ)(R
j1,j3 )

m′
1,m

′′
3

m1,m′
3
(u + υ)(Rj1,j2 )

m′′
1 ,m

′′
2

m′
1,m

′
2
(u). (20)

nvestigation and calculation of the assumed form of the R-matrix (19) for j1, j2, j3 spins, completely satisfies the above
ang–Baxter equation. Starting from the limit u, υ, u + υ → ∞ of (Rj1,j2 )

m′
1,m

′
2

m1,m2 (u) and a suitable normalization N =

Rj1,j2,j3 )n1,n2,n3m1,m2,m3 = (u → ∞), we get matrix elements, not depending on the spectral parameter. Multiplying the
orresponding permutation P̂ j1,j2,j3 by the R-matrix we obtain

(R̂j1,j2,j3 )n1,n2,n3m1,m2,m3 =
1
(P̂ j1,j2,j3 )

m′
1,m

′
2,m

′
3

m1,m2,m3 (R
j1,j2,j3 )n1,n2,n3m′ ,m′ ,m′ (u → ∞), (21)
N 1 2 3

6
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alculating the braid generators b(j1, j2, j3), where the closure of each link in the knot occurs on three strands with
epresentations j1, j2, j3

b(j1, j2, j3)|j1, j2, j3⟩∞|j3, j2, j1⟩. (22)

n arbitrary braided word using these generators should track the spins of j1, j2, . . . , jn on n-strands. The collection of
uch braid words actually forms quasigroups [51].
In addition, the closure requires that the initial state |j1, j2, . . . , jn⟩ remain the same as the final state after the braid

ord procedure. For example, closing a braid word will result in different knot and link components that carry different
epresentations. Using the matrix form of the braid generators b(j1, j2), b(j1, j3) . . ., obtained from three-partite vertex
odels, we reveal the invariant of multi-colored links for the components of the knot having different representations.

n the next section, introducing explicit forms of Boltzmann weights, one can perform Rj1=1/2,j2=1,j3=1/2 sequentially
alculating the knot invariant.

-matrix for different spin. For calculation the knot invariant with it is critically important to define the matrix
Rj1,j2,j3 )n1,n2,n3m1,m2,m3 for different spins j1, j2, j3. As an example, take Rj1=1/2,j2=1,j3=1/2, where the eigenvalues of (18), depending
n the spectral parameter, are

λ0(u) = sinh(µ+ u),

λ 1
2
(u) = sinh(

3µ
2

+ u),

λ1(u) = sinh(µ− u),

λ 3
2
(u) = sinh(

3µ
2

− u), (23)

λ0(u)
u−→∞
→ (

eu+µ

2
)(
eu+2µ

2
) =

e2u

22 e3µ =

{
(
e2u

4
)q

3
2

}
(1), (24)

λ 1
2
(u)

u−→∞
→ (

eu+µ

2
)(

−eu−2µ

2
) =

e2u

22 (−e−µ) =

{
(
e2u

4
)q

3
2

}
(−q−1), (25)

λ1(u)
u−→∞
→ (

−eu−µ

2
)(
eu+2µ

2
) =

e2u

22 (−eµ) =

{
(
e2u

4
)q

3
2

}
(−q2), (26)

λ 3
2
(u)

u−→∞
→ (

−eu−µ

2
)(

−eu−2µ

2
) =

e2u

22 (−e−µ) =

{
(
e2u

4
)q

3
2

}
(−q−1). (27)

he eigenvalues of the braids for three strands carrying spins 1
2 , 1,

1
2 , their representation in SU(2) of the Chern–Simons

heory have the form

λB1 ∼ (−)lq
−l(l+1)

2 , (28)

λB0 ∼ 1, λB1/2 ∼ −q−1, λBl ∼ −q2, λ

B
3
2
∼ q−1. (29)

ere λl(u) are proportional to λBl knots u → (u)

M = m1 + m2 = n1 + n2, (30)

nd the general form of the R-matrix will be

(R
1
2 ,1,

1
2 )n1 ,n2 ,n3m1 ,m2 ,m3 (u) =⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

m1,m2/n1, n2
1
2 , 1,

1
2

1
2 , 1,−

1
2

1
2 ,−1,− 1

2
1
2 , 0,

1
2

1
2 , 0,−

1
2 −

1
2 , 0,

1
2 −

1
2 , 0,−

1
2 −

1
2 , 1,

1
2 −

1
2 ,−1, 1

2 −
1
2 ,−1,− 1

2
1
2 , 1,

1
2 χ1(u) 0 0 0 0 0 0 0 0 0

1
2 , 1,−

1
2 0 χ2(u) 0 χ

′

3(u) 0 0 0 0 0 0
1
2 ,−1,− 1

2 0 0 χ2(u) 0 χ
′

5(u) 0 χ
′

6(u) 0 0 0
1
2 , 0,

1
2 0 χ3(u) 0 χ4(u) 0 0 0 χ

′

6(u) 0 0
1
2 , 0,−

1
2 0 0 χ5(u) 0 χ

′

4(u) 0 0 0 0 0

−
1
2 , 0,

1
2 0 0 0 0 0 χ

′

4(u) 0 χ
′

5(u) 0 0

−
1
2 , 0,−

1
2 0 0 χ6(u) 0 0 0 χ4(u) 0 χ

′

3(u) 0

−
1
2 , 1,

1
2 0 0 0 χ6(u) 0 χ5(u) 0 χ2(u) 0 0

−
1
2 ,−1, 1

2 0 0 0 0 0 0 χ3(u) 0 χ2(u) 0

−
1
2 ,−1,− 1

2 0 0 0 0 0 0 0 0 0 χ1(u)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(31)
7



T.K. Kassenova, P.Y. Tsyba, O.V. Razina et al. Physica A 597 (2022) 127283

w

R

t
j

W

here

χ1 = 2 sinh(
3µ
2

− u) + sinh(µ− u), χ2 = cosh 2µ− sinh u,

χ3 = (sinh 2µ sinhµ)
1
2 e−u, χ4 = 2 sinh(

µ

2
− u) + sinh(µ− u),

χ5 = − sinh 2µ(sinh 3µ)
1
2 sinh(

3µ
2

+ u) − sinh u,

χ6 = sinh 2µ(sinhµ)
1
2 eu − (sinh 3µ)

1
2 sinh(

3µ
2

),

χ ′

3 = (sinh 2µ sinhµ)
1
2 eu, χ ′

5 = sinh 2µ(sinh 3µ)
1
2 sinh(

3µ
2

+ u) + sinh u,

χ ′

6 = sinh 2µ(sinhµ)
1
2 e−u

+ (sinh 3µ)
1
2 sinh(

3µ
2

). (32)

eplacing u → ∞ and q = e2µ for j1 = 1/2, j2 = 1, j3 = 1/2, we have

lim
u→∞

(R
1
2 ,1,

1
2 )

n1 ,n2 ,n3
m1 ,m2 ,m3

(u)

(R
1
2 ,1,

1
2 )

1
2 ,1,

1
2

1
2 ,1,

1
2
(u)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

m1,m2/n1, n2
1
2 , 1,

1
2

1
2 , 1,−

1
2

1
2 ,−1,− 1

2
1
2 , 0,

1
2

1
2 , 0,−

1
2 −

1
2 , 0,

1
2 −

1
2 , 0,−

1
2 −

1
2 , 1,

1
2 −

1
2 ,−1, 1

2 −
1
2 ,−1,− 1

2

1
2 , 1,

1
2 1 0 0 0 0 0 0 0 0 0

1
2 , 1,−

1
2 0 q

1
4 −q−

1
4

q
1
2 −q−

1
2

0 −
q

3
4 −q−

3
4

q
1
2 −q−

1
2

0 0 0 0 0 0

1
2 ,−1,− 1

2 0 0 q
1
4 −q−

1
4

q
1
2 −q−

1
2

0 q
1
2 − q−

1
2 0 −q − q−1 0 0 0

1
2 , 0,

1
2 0 q

3
4 −q−

3
4

q
1
2 −q−

1
2

0 −q
1
4 − q−

1
4 0 0 0 −q − q−1 0 0

1
2 , 0,−

1
2 0 0 −q

1
2 − q−

1
2 0 q

1
4 − q−

1
4 0 0 0 0 0

−
1
2 , 0,

1
2 0 0 0 0 0 q

1
4 − q−

1
4 0 q

1
2 − q−

1
2 0 0

−
1
2 , 0,−

1
2 0 0 q − q−1 0 0 0 −q

1
4 − q−

1
4 0 −

q
3
4 −q−

3
4

q
1
2 −q−

1
2

0

−
1
2 , 1,

1
2 0 0 0 q − q−1 0 −q

1
2 − q−

1
2 0 q

1
4 −q−

1
4

q
1
2 −q−

1
2

0 0

−
1
2 ,−1, 1

2 0 0 0 0 0 0 q
3
4 −q−

3
4

q
1
2 −q−

1
2

0 q
1
4 −q−

1
4

q
1
2 −q−

1
2

0

−
1
2 ,−1,− 1

2 0 0 0 0 0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(33)

To obtain the braid generators b(j1 =
1
2 , j2 = 1, j3 =

1
2 ), choose the corresponding permutation P̂ j1=

1
2 ,j2=1,j3=

1
2 so

hat the sequence of spins indicated in the row and column above in Rj1=
1
2 ,j2=1,j3=

1
2 -the matrix remains unchanged. For

1 =
1
2 , j2 = 1, j3 =

1
2 , the P̂ j1=

1
2 ,j2=1,j3=

1
2 maybe

P̂ j1=
1
2 ,j2=1,j3=

1
2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (34)

e apply this permutation matrix in the construction of the braid generator

(R̂j1,j2,j3 )n1,n2,n3m1,m2,m3 = (P̂ j1,j2,j3 )
m′

1,m
′
2,m

′
3

m1,m2,m3 lim
u→∞

(R
1
2 ,1,

1
2 )

n1,n2,n3
m1,m2,m3

(u)

(R
1
2 ,1,

1
2 )

1
2 ,1,

1
2

1
2 ,1,

1
2
(u)

, (35)
8



T.K. Kassenova, P.Y. Tsyba, O.V. Razina et al. Physica A 597 (2022) 127283

a

S

w
b
w

s a result of which we obtain the explicit form R̂j1=
1
2 ,j2=1,j3=

1
2 -matrix for the three-partite vertex model

(R̂
1
2 ,1,

1
2 )n1,n2,n3m1,m2,m3 =⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 0

0 0
−

1

q
1
4

+q
1
4

−
1√

q+
√
q

0 −
1
q − q 0 0 0 0 0

0 0 −
1

√
q −

√
q 0 −

1

q
1
4

+ q
1
4 0 0 0 0 0

0 0 −
1
q + q 0 0 0 −

1

q
1
4

+ q
1
4 0 −

−
1

q
3
4

+q
3
4

−
1√

q+
√
q

0

0 0 0 0 0 0
−

1

q
3
4

+q
3
4

−
1√

q+
√
q

0
−

1

q
1
4

+q
1
4

−
1√

q+
√
q

0

0
−

1

q
1
4

+q
1
4

−
1√

q+
√
q

0 −

−
1

q
3
4

+q
3
4

−
1√

q+
√
q

0 0 0 0 0 0

0
−

1

q
3
4

+q
3
4

−
1√

q+
√
q

0 −
1

q
1
4

− q
1
4 0 0 0 −

1
q − q 0 0

0 0 0 0 0 −
1

q
1
4

+ q
1
4 0 −

1
√
q +

√
q 0 0

0 0 0 −
1
q + q 0 −

1
√
q −

√
q 0

−
1

q
1
4

+q
1
4

−
1√

q+
√
q

0 0

0 0 0 0 0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (36)

imilar construction R̂
1
2 ,1 for 1

2 , 1,
1
2 is the transposed matrix R̂1, 12 . The explicit form of the identity matrix can be written

as

R̂j1,j2 [R̂j1,j2 ]−1
= R̂j1,j2

[
[R̂j2,j1 ]⊺

]−1
= I, (37)

R̂j1,j3 [R̂j1,j3 ]−1
= R̂j1,j3

[
[R̂j3,j1 ]⊺

]−1
= I, (38)

R̂j2,j3 [R̂j2,j3 ]−1
= R̂j2,j3

[
[R̂j3,j2 ]⊺

]−1
= I. (39)

Thus, we have the opportunity to represent the matrix forms bi[j1, j2, j3] groupoids that satisfy the constructions of
the braid generators

bi[j1, j2][b
j1,j2
i ]([bj2,j1i ])−1I, (40)

bi[j1, j3][b
j1,j3
i ]([bj3,j1i ])−1I, (41)

bi[j2, j3][b
j2,j3
i ]([bj3,j2i ])−1I, (42)

in this form

bi[j1, j2] = I × I × · · · I×  
i−1

(R̂j1,j2 )−1
× Ii+2, (43)

bi[j1, j3] = I × I × · · · I×  
i−1

(R̂j3,j1 )−1
× Ii+2, (44)

bi[j2, j3] = I × I × · · · I×  
i−1

(R̂j3,j2 )−1
× Ii+2. (45)

As a result, using the matrix representation, for any word of the braid A, the closure of which will give multicomponent
links at the knot. Similarly to the formula for the knot invariant (4), we present the following formula for the multi-colored
knot invariant, in which the components of the knot have different spins. Invariant of multi-colored knot α̃j1,j2,j3 (A) (up to
the total deformation coefficient q1/2) for a six-component link, where the components of the knot have different spins,
obtained by closing any r-word of the braid CollapseBraid A is given by formula

αj1,j2,j3 [A(CB)] = q
1
2 C α̃j1,j2,j3 (A) = q

1
2 C

n∏
i=1

(τjiτji )
−

li
2 Tr {HA} , (46)

here the first factor derives from q the coefficient of deformation with an integer C , which depends on the spins, the
ending and number between constituent knots of links. The li’s is the number of strands in the braid generator, that is,
hen the spin j is in the r-strand braid A, where

∑n l = r . In addition, the matrix representation of H depends on the
i i=1 i

9
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rder of such repeating spins occurring in a braid of r-strands. This article describes a 3-strand braid obtained from knot
2, with j1 braiding on the first strand, j2 ̸= j1 on the second, and j3 on the third strand, which implies

H = hj1 ⊗ hj2 ⊗ hj3 . (47)

oming back to the matrix operations for the braid word A, we use the formula (14), following the sequence of closure
f each link in the braid, where each strand has the same spins mentioned above. From the above definition hji ’s (5), τji ’s
nd τ ji ’s (6), as discussed in Section 2. In the next section, we will calculate in detail the invariant of the multi-colored
ink 52 knot.

ulti-colored knot invariants. In this section of the work, we will find the invariant of a knot with links with spins
1 = j3 =

1
2 and j2 = 1, for this we first need to write a braid word of n-strands that tracks the spins. For the CollapseBraid

BR] Knot 52 knot, consisting of simple links obtained by closing a three-strand braid and the matrix representation looks
ike this

A([BR]Knot52) = b−1
2 (

1
2
,
1
2
)b2(1,

1
2
)b−1

3 (
1
2
, 1)b−1

2 (
1
2
, 1)b−1

3 (
1
2
, 1)b−1

2 (1,
1
2
),

A([BR]Knot52) = b−1
2 (

1
2
,
1
2
)b2(1,

1
2
)b−1

3 (
1
2
, 1)b−1

2 (
1
2
, 1)b−1

3 (
1
2
, 1)b−1

2 (1,
1
2
), (48)

nd H = h 1
2

⊗ h1 ⊗ h 1
2
will give us

α 1
2 ,1,

1
2
[A(52)] =

κδη
3
2

ψ
, (49)

here
κ =

√
q,

η = ( (1+q+q2+q3+2q4+q5+q6+q9+q11+q13)(1+q+q2+q3+2q4+q5+q6+q9+q11+q13)
q13

),

ψ = ((1 +
√
q)5q

5
2 (1 + q + q2 + q3 + 2q4 + q5 + q6 + q9 + q11 + q13)),

δ = 1 − q
1
4 + 3

√
q − 4q

3
4 + 2q − 2q

5
4 − 7q

3
2 + 15q

7
4 − 13q2 + 40q

9
4 + 2q

5
2 + 52q

11
4 +

32q3 + 44q
13
4 + 76q

7
2 + 40q

15
4 + 150q4 + 55q

17
4 + 238q

9
2 + 48q

19
4 + 289q5 − 15q

21
4 +

276q
11
2 − 104q

23
4 + 192q6 − 142q

25
4 + 27q

13
2 − 75q

27
4 − 174q7 + 88q

29
4 − 328q

15
2 +

312q
31
4 − 335q8 + 466q

33
4 − 241q

17
2 + 422q

35
4 − 167q9 + 223q

37
4 − 80q

19
2 + 37q

39
4 +

22q10 − 40q
41
4 + 18q

21
2 − 34q

43
4 − 119q11 + 30q

45
4 − 253q

23
2 + 151q

47
4 − 304q12 +

264q
49
4 − 292q

25
2 + 262q

51
4 − 231q13 + 137q

53
4 − 133q

27
2 + 2q

55
4 − 4q14 − 30q

57
4 +

105q
29
2 + 46q

59
4 + 130q15 + 136q

61
4 + 95q

31
2 + 148q

63
4 + 47q16 + 84q

65
4 + 9q

32
2 +

9q
67
4 −14q17

− 21q
69
4 − 21q

35
2 − 5q

71
4 − 15q18 + 10q

73
4 − 6q

37
2 + 8q

75
4 − q19 + 2q

77
4 ,

which is consistent with the multi-colored Jones polynomial calculated on the basis of the SU(2) Chern–Simons theory
up to a full factor.

4. Conclusion

In this work, we have obtained a completely new R-matrix of the three-partite vertex model for the knot 52 with multi-
olored links from the representations of the braid group, produced by the Vogel algorithm. Here, adjacent knot edges
ear different spins. This invariant is proportional to the multi-colored polynomial Jones. In the article the representation
f the group SO(N) instead of SU(2) was used, which has spins j1, j2, j3 states on the edges intersecting the vertex. The
rocess of finding the knot invariant outlined in the paper should be generalizable for the group SO(N) and generate, in
urn, new vertex models and their invariants. In the future, one can find such types of vertex models and solutions of their
not invariants with different links. The found invariant can be compared with the HOMFLY-PT polynomial indicated in
he literature.
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