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A B S T R A C T   

The numerical procedures of the fractional order kidney function model (FO-KFM) are presented in this study. 
These derivatives are implemented to get the precise and accurate solutions of FO-KFM. The nonlinear form of 
KFM is separated into human (infected, susceptible, recovered) and the components of water (calcium, mag-
nesium). Three cases of FO-KFM are numerically accessible using the stochastic computing scaled conjugate 
gradient neural networks (SCJGNNs). The statics assortment is performed to solve the FO-KFM, which is used as 
78 % for verification and 11 % for both endorsement and training. The precision of SCJGNNs is achieved using 
the achieved and source outcomes. The reference solutions have been obtained by using the Adam numerical 
scheme. The competence, rationality, constancy is observed through the SCJGNNs accompanied by the imita-
tions of state transition, regression performances, correlation, and error histograms measures.   

1. Introduction 

Water is a need of the life, which is very important for the health to 
drink enough water for every living being. One of the forms of the water 
is hard water, which affects the health of individual and contains the 
higher substance concentrations (calcium, magnesium) [1]. The 
continuous use of hard water can create the kidney dysfunction, which 
creates numerous diseases, like diabetes and cerebrovascular [2]. The 
people of Nusa Tenggara Timur (NTT) consumed the water based on 
different foundations, which are operated for average tenacities along 
with the higher percentages of calcium and magnesium. NTT people 
suffer the kidney disease among four provinces with higher ratio [3]. 
Therefore, it is important to know that how affects the people’s health by 
using the hard water. For the required productivity based on different 
indications, a detailed assessment is mandatory. Such evaluations and 
consequences with different statistics are available. To find the better 
performances, the reduction of illnesses or spread of infection is char-
acteristically used to evaluate the issues of public health. 

Mathematical modeling is used to solve various complicated systems, 
some of the applications of these models are the pattern/classification 

recognition [4], metadata base system for semantic image [5], trans-
mission network expansion planning [6], potato inspection using ma-
chine vision [7], waterborne spread/disease control [8], and cell- 
mediated immune response to tumor growth [9]. 

This research shows the simulations of fractional order kidney 
function model (FO-KFM) by applying the stochastic scaled conjugate 
gradient neural networks (SCJGNNs). The stochastic applications have 
been exploited in various stiff and complicated models, e.g., fluid dy-
namics models [10], Liénard differential model [11] and food chain 
nonlinear model [12]. The minute specifics using the super slow and 
superfast transition are scrutinized, which shows more topographies by 
applying the fractional derivatives that is considered difficult for the 
integer order complements. Moreover, the model dynamics is done by 
applying the fractional calculus, which performs better in comparison to 
integer derivatives by using the accessibility of condition. These de-
rivatives have been implemented to verify the system’s performance of 
the real-world submissions. The fractional calculus is generally accom-
plished to the last 3 decades by applying the considerable operatives. 
The above-mentioned fractional operators have their individual signif-
icance and worth. Whereas the most extensively Caputo derivative (CD) 
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definition is used to present the solutions of homogeneous and non- 
homogeneous initial conditions and easy to execute. In view of all the 
FO applications and stochastic solvers, authors are inspired to present 
the solutions of the FO-KFM. 

The other paper parts are shown as: FO-KFM is presented in Section 
2. Designed structure of the SCJGNNs is shown in Section 3. Numerical 
performances are shown in Section 4. Conclusions are listed in Section 5. 

2. Mathematical FO-KFM 

The mathematical structure based on the FO-KFM is presented in this 

section, which is divided into human (infected, susceptible, recovered) 
and the water components (calcium, magnesium). Three FO-KFM cases 
have been solved by operating the SCJGNNs, which is mathematically 
shown as [13]: 

Fig. 1. Illustrations of SCJGNNs to solve the FO-KFM.  
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(v)
dv

= A − βλ(W)S(v) − μS(v),

dI(v)
dv

= βλ(W)S(v) − γI(v) − μI(v),

dR(v)
dv

= γI(v) − μR(v),

dW(v)
dv

= bW(v)
(

1 −
W(v)

K

)

− cW(v).

(1) 

The human population using the susceptible birth is taken as a rate A. 
βλ(W) shows the regular use of hard water, which is distressed to kidney 
dysfunction. The treating water procedure reasons a decrement rate at c 
using the compounds (magnesium, calcium). The recovered part is γ, b is 
the concentration of compound (calcium, magnesium) water, which is 
limited enhanced at rate K. β is the magnesium and calcium ratio of 
water, λ(W) shows the ingestions prospect and the values of λ are taken 
between 0 and 1. Furthermore, the individual’s ratio by using the kidney 
dysfunction based on the water’s calcium/magnesium concentration, 
which is given as λ(W) =

W(v)
W(v)+K . The fractional kind of the mathematical 

KFM is shown as: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dαS(v)
dvα = A − βλ(W)S(v) − μS(v),

dαI(v)
dvα = βλ(W)S(v) − (γ + μ)I(v),

dαR(v)
dvα = γI(v) − μR(v),

dαW(v)
dvα = bW(v)

(

1 −
W(v)

K

)

− cW(v),

(2)  

where α represents the fractional CD to solve the FO-KFM, which is 
shown in above system (2). The FO derivative values are used in the 
interval 0 and 1. These derivatives are unified to perceive the minute 
particulars (super slow and superfast transients), which is tough to 
recognize through the integer order. Recently, FO derivatives are 
applied in many applications, like time-delayed genetic regulatory net-
works [14], tobacco smoking model containing snuffing class [15], and 
gene regulatory networks [16]. The novel topographies of this work are 

shown as:  

• The design of the FO is accessible to perform the accurate numerical 
results of mathematical KFM.  

• The present soft computing performance based on the designed 
structure is not executed before to solve FO-KFM. 

• The precision of stochastic SCJGNNs is provided by using the out-
comes comparisons.  

• A reduceable absolute error (AE) represents the competency of 
proposed SCJGNNs to solve the FO-KFM.  

• The error histograms (EHs), transition of state (ToS), and regression 
measures enhance the dependability of FO-KFM. 

3. Proposed SCJGNNs method 

This section presents the methodology of the proposed SCJGNNs to 
solve the mathematical FO-KFM. The methodology is performed using 
the essential execution of the practice together with some numerical 
computing phases. Fig. 1 shows the stepwise system depictions using the 
operative performances of the FO-KFM. The first phase shows the 
framework of the model, system expressions to solve the nonlinear dy-
namics of the FO-KFM are presented in second step, third phase shows 
the SCJGNNs presentations, while the last step presents the numerical 
results. 

The dataset by performing the epochs based on the FO-KFM is pro-
vided to get the standard outputs, which are presented in Fig. 2(a) using 
the “NDSolve” in Mathematica. The comparison assessments also 
perform the generation of the data for FO-KFM. The performances of the 
SCJGNNs are implemented to get the wide-ranging observation of the 
system based single neurons is presented in Fig. 2(b). The procedure 
based SCJGNNs is provided using the ‘nftool’ command in ‘Matlab’ with 
appropriate hidden layers including testing, learning and corroboration 
statics. The implementing setting of the parameter using the proposed 
structure for the FO-KFM is presented in Table 1. 

4. Numerical solutions 

This section is based on three cases of the FO-KFM using the 
SCJGNNs, which is mathematically shown as: 

Case 1 to 3 is presented by taking α = 0.6, 0.7 and 0.8, while the 
other values μ = 1

65, γ = 1
45, β = 1

100, K = 60, b = 1
10, c = 2

5, A = 2, S0 =

0.1, I0 = 0.2, W0 = 0.3 and R0 = 0.4 are taken in Eq. (1). The obtained 
results have been obtained by applying the designed SCJGNNs proced-
ure to solve the nonlinear FO-KFM. The input interval has been taken 
between 0 and 1 to solve the mathematical FO-KFM. Eighteen neurons 
with the selection of data have been used together with the selection of 
training, authentication, and testing. Fig. 3 shows the obtained results 
by applying the SCJGNNs for the nonlinear FO-KFM along with the best 
corroboration values and ToS. The best authentication performances are 

1

Fig. 2. Single and multiple layers to solve the FO-KFM using the SCJGNNs, (a) 
Single neuron network structure, (b) Single, hidden and output layers using 
18 neurons. 

Table 1 
Implementation and parameter setting.  

Parameter Settings 

Authorization and training 11 % 
Testing 78 % 
Decreeing Mu values 0.2 
Maximum iteration 1000 
Increasing Mu factor 12 
Maximum mu performances 1008 

Reference dataset Adam solver 
Number of neurons 18 
Fitness 0 
Output/hidden and input layers Single 
Minimum gradient values 10− 06 

Stoppage specifications Default 
Adaptive Mu values 0.0005 
Selection of samples Arbitrary  
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Fig. 3. Performances of MSE and ToS for the nonlinear FO-KFM, (a) MSE values (1), (b) MSE values (2), (c) MSE values (3), (d) ToS-1, (e) ToS-2, (f) ToS-3.  
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Fig. 4. MSE and EHs values to solve the nonlinear FO-KFM, (a) Fit Func (1), (b) Fit Function (2), (c) Fit Func (3).  
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shown as 6.41316 × 10− 10, 5.57853 × 10− 10 and 4.36235 × 10− 11 at 
epochs 610, 868 and 286. The values of the gradient are shown in Fig. 3, 
which are calculated as 9.9804 × 10− 08, 9.9974 × 10− 08 and 9.9629 ×
10− 08. The fitting curve illustrations are presented in Fig. 4 to get the 
numerical results of FO-KFM, which shows the exactness of the 
SCJGNNs. The performances of EHs using the testing, training and 

corroboration are presented in Fig. 4 calculated as − 6.10 × 10− 07, 5.80 
× 10− 06 and 1.45 × 10− 05. The regression (Reg) illustrations are pro-
vided in Fig. 5, which have been performed as 1 for each case of 
mathematical FO-KFM, which shows the accuracy of proposed scheme 
for the FO-KFM. MSE performances for each case of the FO-KFM are 
shown in Table 2. 

Fig. 5. Performances of Reg for the mathematical FO-KFM, (a) Reg values (1), (b) Reg values (2), (c) Reg values (3).  
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Figs. 6 and 7 present the comparison performances and AE for the 
FO-KFM using the designed SCJGNNs procedure. Fig. 6 shows the output 
comparison, which is performed through the results matching. The re-
sults matching provide the exactness and accuracy of FO-KFM. Fig. 7 
depicts the AE measures for FO-KFM through the designed SCJGNNs 
that is divided into human and water components. The values of AE for 
first class (susceptible) are shown for case 1 to 3 as 10− 04–10− 05, 
10− 05–10− 07 and 10− 04–10− 06. For the 2nd category (infected), the AE 
measures are reported as 10− 05–10− 08, 10− 06–10− 09 and 10− 06–10− 10 

for case 1 to 3. The third class (recovered) values are shown as 
10− 05–10− 07, 10− 06–10− 08 and 10− 05–10− 08 for case 1 to 3, whereas the 
performances of AE water components are noticed as 10− 05–10− 08, 
10− 06–10− 08 and 10− 06–10− 07 for respective cases. These reduceable 
performances of AE depict the consistency of the procedure to solve the 
FO-KFM. 

5. Concluding remarks 

The numerical performances of the fractional order kidney function 
model have been reported in this study. The nonlinear KFM has been 
separated into human (infected, susceptible, recovered) and the water 
components (calcium, magnesium). Few concluding comments of this 
study are presented as:  

• The fractional derivatives in this work have been used to find the 
accurate results of mathematical FO-KFM.  

• Three FO-KFM cases have been solved by applying the stochastic 
computing SCJGNNs performances.  

• The statics selection is performed to solve the FO-KFM, which is used 
as 78 % for authorization, and 11 % for both testing and training.  

• The exactness of stochastic SCJGNNs has been provided by applying 
the obtained and reference solutions. 

Table 2 
Statistics illustrations to solve the nonlinear FO-KFM.  

Case MSE Iterations Performance Gradient Mu Complexity 

Train Test Endorsement 

1 1.1512 × 10− 09 2.2568 × 10− 11 6.4131 × 10− 10  610 1.15 × 10− 09 9.98 × 10− 08 1 × 10− 09 03 Sec 
2 2.2559 × 10− 11 1.5239 × 10− 09 5.5785 × 10− 10  868 2.26 × 10− 11 1.00 × 10− 07 1 × 10− 10 03 Sec 
3 4.0211 × 10− 11 6.2303 × 10− 09 4.3623 × 10− 11  286 4.02 × 10− 11 9.96 × 10− 08 1 × 10− 10 01 Sec  

(a) Results: Susceptible )b(  Results: Infected 

(c) Results: Recovered (d) Results: Water components 

Fig. 6. Solution performances for each class of the FO-KFM, (a) Results: Susceptible, (b) Results: Infected, (c) Results: Recovered, (d) Results: Water components.  
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• The performances of the reference solutions have been achieved by 
applying the Adam scheme.  

• The competence and rationality have been observed through the 
stochastic SCJGNNs, while the simulations through the state transi-
tion, regression performances, correlation, and error histograms 
measures. 

In upcoming studies, the process of DNNs with different schemes can 
be executed to perform the solutions of the fractional, fluid, and 
different biology based differential systems [17,18,19,20]. 
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