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ABSTRACT
We discuss inverse problems to finding the time-dependent coef-
ficient for the multidimensional Cauchy problems for both strictly
hyperbolic equations and polyharmonic heat equations. We also
extend our techniques to the general inverse Cauchy problems for
evolution equations.
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1. Introduction

In inverse problems many authors have aimed to find a unique pair (u, f ) or (u, a) from
the data given by a part of solutions, where u is a solution, f is a source function and a is a
coefficient in partial differential equations.Wemention only a few, see [1–7] for references.
Inverse problems have been considered significantly in a form of only one initial/initial-
boundary problem with some additional data. In this paper, we solve multidimensional
inverse problems by considering two Cauchy problems and find a unique pair, which con-
sists of a solution and a time-dependent coefficient in an explicit form, that is, the solution
is given by the Poisson integral, the time-dependent coefficient is given by the ratio of the
additional data at an internal fixed point of any open bounded set in Rn. Historically, one
of the pioneering works devoted to finding the time-dependent coefficient in the parabolic
equations is a paper by Jones [8]. In the present paper, our method is closely related to
Malyshev’s approach [5] in which the author studied inverse problems in one-dimensional
degenerate parabolic equations.

The structure of this short paper is as follows. In Section 2we consider an inverseCauchy
problem for strictly hyperbolic equations. The uniqueness of the solution follows from the
well-posedness of the Cauchy problem, which also implies the uniqueness of the recov-
ered coefficient. In Section 3, in order to solve an inverse problem for polyharmonic heat
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equations, first we present its fundamental solution and discuss some properties. Then
by using known results from [9] we establish the uniqueness of the solution of Cauchy
problems as a special case and solve the inverse problem in the same way as in Section 2.
Section 4 is devoted to a systematic study of inverse problems for general partial differen-
tial equations. Thus, we conclude that the developed method in Sections 2 and 3 can be
applied to more general cases.

2. Wave equations

In this section, we consider the (inverse) Cauchy problem for the strictly hyperbolic
equation in the form

L�u := ∂2t u(t, x) − �(t)�xu(t, x) = 0, 0 < t ≤ T < ∞, x ∈ R
n,

u(t, x)|t=0 = u0(x), x ∈ R
n,

∂tu(t, x)|t=0 = u1(x), x ∈ R
n, (1)

where �(t) ≥ C > 0 and is Lipschitz continuous. Here and after �x = ∑n
j=1 ∂2xj is

the Laplacian. Problem (1) is well-posed in Sobolev spaces. It is known that for any
u0 ∈ Hm(Rn) and u1 ∈ Hm−1(Rn) there exists a unique solution u ∈ C([0,T];Hm(Rn)) ∩
C1([0,T]; Hm−1(Rn)) form ≥ 1, see [10, Chapter 9]. The solution of problem (1) is given
by

u(t, x) =
∫

Rn
E(t, 0, x, y)u1(y) dy +

∫
Rn

∂τE(t, τ , x, y)
∣∣∣∣
τ=T

τ=0
u0(y) dy, (2)

where E is the fundamental solution.
Let � ⊂ Rn, n ∈ N, be an open bounded set with piecewise smooth boundary ∂� and

let q ∈ � be a fixed point throughout the paper. Now we consider the inverse problem by
studying two Cauchy problems with the additional data at q ∈ �:

∂2t v(t, x) − �(t)�xv(t, x) = 0, 0 < t ≤ T, x ∈ R
n,

v(t, x)|t=0 = 0, x ∈ R
n,

∂tv(t, x)|t=0 = u1(x), x ∈ R
n,

v(t, x)|x=q = h1(t), 0 < t ≤ T, q ∈ �, (3)

and

∂2t w(t, x) − �(t)�xw(t, x) = 0, 0 < t ≤ T, x ∈ R
n,

w(t, x)|t=0 = 0, x ∈ R
n,

∂tw(t, x)|t=0 = �xu1(x), x ∈ R
n,

w(t, x)|x=q = h2(t), 0 < t ≤ T, q ∈ �, (4)

where u1 ∈ C2(�) and supp(u1) ⊂ �. Assuming that � is a certain Lipschitz continu-
ous function and satisfies �(t) ≥ C > 0, we solve Cauchy problems in (3) and (4). Their
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solutions are expressed by

v(t, x) =
∫

Rn
E(t, 0, x, y)(χ�u1)(y) dy =

∫
�

E(t, 0, x, y) u1(y) dy,

and

w(t, x) =
∫

Rn
E(t, 0, x, y)(χ��yu1)(y) dy =

∫
�

E(t, 0, x, y)�yu1(y) dy,

correspondingly, where χ� is the characteristic function of �. From the additional data it
follows that

v(t, q) =
∫

�

E(t, 0, x, y)
∣∣∣∣
x=q

u1(y) dy = h1(t),

w(t, q) =
∫

�

E(t, 0, x, y)
∣∣∣∣
x=q

�yu1(y) dy = h2(t). (5)

Assuming that h1 ∈ C2[0,T] and twice differentiating (5), we arrive at

h′′
1(t) =

∫
�

∂2t E(t, 0, x, y)
∣∣∣∣
x=q

u1(y) dy.

Now by using the fact that E is the fundamental solution, that is,

∂2t E(t, 0, x, y) = �(t)�xE(t, 0, x, y) = �(t)�yE(t, 0, x, y), t > 0,

and also applying Green’s second identity, we arrive at

h′′
1(t) =

∫
�

∂2t E(t, 0, x, y)
∣∣∣∣
x=q

u1(y) dy = �(t)
∫

�

�yE(t, 0, x, y)
∣∣∣∣
x=q

u1(y) dy

= �(t)
∫

�

E(t, 0, x, y)
∣∣∣∣
x=q

�yu1(y) dy = �(t)h2(t).

As we have assumed that� is Lipschitz continuous, we require h2 to be a Lipschitz continu-
ous function such that h2(t) 	= 0 for all t ∈ (0,T]. As we have assumed that�(t) ≥ C > 0,
we require h1 and h2 to satisfy h′′

1(t)/h2(t) ≥ C > 0 for all t ∈ (0,T]. So, we have recovered
the coefficient �. The uniqueness of the solution of the inverse problem follows from the
uniqueness of the solution of the Cauchy problems. Thus, we obtain the following theorem.

Theorem 2.1: Let us make the assumptions:

(1) u1 ∈ C2(�) and supp(u1) ⊂ �;
(2) h1 ∈ C2[0,T];
(3) h2 is a Lipschitz continuous function such that h2(t) 	= 0 for all t ∈ (0,T];
(4) h′′

1(t)/h2(t) ≥ C > 0 for all t ∈ (0,T].

Then there exists a unique solution of inverse problem (3)–(4) with the corresponding
Lipschitz continuous coefficient �(t) = h′′

1(t)/h2(t) for all t ∈ (0,T].
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3. Polyharmonic heat equations

The idea of the proof from the previous section can be applied to inverse Cauchy prob-
lems for more general evolution equations. To demonstrate it in this section, we discuss
an inverse problem for the Cauchy problem for polyharmonic heat equations with a
time-dependent coefficient.

We consider the following Cauchy problem for the polyharmonic heat equation with
the time-dependent coefficient

∂tu(t, x) + α(t)(−�x)
mu(t, x) = 0, 0 < t ≤ T, x ∈ R

n,

u(t, x)|t=0 = u0(x), x ∈ R
n, (6)

wherem ∈ N, u0 is a given function. Here the coefficient α ∈ L1[0,T] satisfies the assump-
tion that

α1(t) :=
∫ t

0
α(s) ds > 0, for all 0 < t ≤ T.

By the Fourier transfrom, see [11], one finds its fundamental solution for all t>0 and
x ∈ Rn in the form

Eα1(t, x) := (2π)−n
∫

Rn
eix·s−|s|2mα1(t) ds. (7)

Note that the fundamental solution (7) can be reduced to the one-dimensional integral
representation

Eα1(t, x) = (2π)−n/2α1(t)−n/2m
∫ ∞

0
e−r2mrn/2J(n−2)/2(r|x|α1(t)−1/2m) dr, (8)

where Jk is the Bessel function of the first kind. For details, we refer to [12, p.183–184].
From (8) it is obvious that Eα1(t, x − y) = Eα1(t, y − x) for all x, y ∈ Rn and t>0.

In [13], the author studied Cauchy problem (6) in the case when m = n = 1. In
our previous paper [14], we investigated Cauchy problem (6) in the case when m = 1,
n ≥ 2.

Nowwe assume that the equation in (6) is uniformly parabolic in the sense of Petrovskii,
see [9, 12] for a precise definition. We recall the following theorem, which is a particular
case of [9, Theorem 5.3].

Theorem3.1 ([9]): Let α ∈ C[0,T] and u0 ∈ C2m,γ (�), 0 < γ < 1,with compact support
in �. Then there exists a unique solution u ∈ C2m,γ ,0([0,T] × �) of problem (6) defined by
the Poisson integral

u(t, x) =
∫

Rn
Eα1(t, x − y)(χ�u0)(y) dy =

∫
�

Eα1(t, x − y)u0(y) dy. (9)

Now we consider an inverse problem for (6). Let us consider Cauchy problem (6) with
the additional data

u(t, x)|x=q = h1(t), 0 ≤ t ≤ T, q ∈ �, (10)
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and another Cauchy problem

∂tv(t, x) + α(t)(−�x)
mv(t, x) = 0, 0 < t ≤ T, x ∈ R

n,

v(t, x)|t=0 = −(−�x)
mu0(x), x ∈ R

n, (11)

with the additional data

v(t, x)|x=q = h2(t), 0 ≤ t ≤ T, q ∈ �. (12)

Let us suppose that α ∈ C[0,T] which ensures uniform parabolicity of the homogeneous
equation in the sense of Petrovskii. In addition, we assume that u0 ∈ C4m,γ (�) with
supp(u0) ⊂ �. Then, we have unique solutions of Cauchy problems (6), (11) and they can
be represented by formula (9) and by

v(t, x) = −
∫

Rn
Eα1(t, x − y)(χ�

(−�y
)m u0)(y) dy

= −
∫

�

Eα1(t, x − y)
(−�y

)m u0(y) dy.

Using the additional data (10), (12), we come to

u(t, x)|x=q =
∫

�

Eα1(t, x − y)
∣∣∣∣
x=q

u0(y) dy = h1(t),

and

v(t, x)|x=q = −
∫

�

Eα1(t, x − y)
∣∣∣∣
x=q

(−�y)
mu0(y) dy = h2(t).

Nowwe assume that h1 ∈ C1[0,T]. Differentiating h1, and then using the fact that the fun-
damental solution is an even function with respect to spatial variables and Green’s second
identity, we arrive at

h′
1(t) =

∫
�

∂tEα(t, x − y)
∣∣∣∣
x=q

u0(y) dy = −α(t)
∫

�

(−�y)
mEα(t, x − y)

∣∣∣∣
x=q

u0(y) dy

= −α(t)
∫

�

(−�y)
m−1Eα(t, x − y)

∣∣∣∣
x=q

(−�y)u0(y) dy

= · · · = −α(t)
∫

�

Eα(t, x − y)
∣∣∣∣
x=q

(−�y)
mu0(y) dy = α(t)h2(t). (13)

Here we assume that h2 ∈ C[0,T] and h2(t) 	= 0 for all 0 ≤ t ≤ T. Thus, we have

α(t) = h′
1(t)

h2(t)
, 0 ≤ t ≤ T. (14)

Note that h2(0) = v(0, x)|x=q = −(−�x)
mu0(x)|x=q 	= 0. By the assumption, α ensures

that the equation in (6) is uniformly parabolic in the sense of Petrovskii. The uniqueness of
the inverse problem follows from the uniqueness ofα. That is, we have proved the following
theorem.
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Theorem 3.2: Let us make the following assumptions:

(1) u0 ∈ C4m,γ (�) and supp(u0) ⊂ �;
(2) h1 ∈ C1[0,T];
(3) h2 ∈ C[0,T] such that h2(t) 	= 0 for all 0 ≤ t ≤ T (which also implies

v(0, x)|x=q = −(−�x)
mu0(x)|x=q = h2(0) 	= 0);

(4) h′
1/h2 ensures that the equation in (6) is uniformly parabolic in the sense of Petrovskii.

Then there exists a unique solution for inverse problem (6), (10)–(12) with the coefficient
α ∈ C[0,T] defined by (14).

4. General Cauchy problems

Let us consider the higher order linear partial differential equation with the first-order
partial time derivative

L�u(t, x) := ∂tu(t, x) − �(t)Lx[u](t, x) = 0, t > 0, x ∈ R
n, (15)

where

Lx[u](t, x) :=
∑

|k|≤m

Ak(t, x)∂ku(t, x),

in multi-index notation with k = (k1, . . . , kn) ∈ (N ∪ {0})n, |k| = k1 + · · · + kn,
∂k = ∂

k1
1 · · · ∂knn and ∂j = ∂/∂xj. We assume that the coefficients �(t)Ak(t, x) are suffi-

ciently smooth and bounded if necessary. Also we assume that the coefficients of the
highest derivatives are non-zero everywhere in Rn. The solution of (15) with the initial
condition

u(t, x)|t=0 = u0(x), x ∈ R
n, (16)

is given by

u(t, x) =
∫

Rn
ε1(t, 0, x, y)u0(y) dy,

where ε1 is the fundamental solution, see [15, Section 9.6.3-1].We assume that the solution
of (15)–(16) is unique and the fundamental solution satisfies

ε1(t, 0, x, y) = ε1(t, 0, y, x), t > 0.

Note that, the fundamental solution is a solution of

∂tε1(t, τ , x, y) − �(t)Lx[ε1](t, τ , x, y) = 0, t > τ ≥ 0, x, y ∈ R
n,

ε1(t, τ , x, y)|t=τ = δ(x − y), x, y ∈ R
n.

We also assume that the operator Lx satisfies Green’s second identity, that is,∫
�

(ϕLx[ε1] − ε1Lx[ϕ]) dx = 0,

for all ϕ ∈ C|k|(�) and supp(ϕ) ⊂ �. We solve the following inverse problem of finding a
unique pair (u,�)

∂tu(t, x) − �(t)Lx[u](t, x) = 0, 0 < t ≤ T, x ∈ R
n,
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u(t, x)|t=0 = u0(x), x ∈ R
n,

u(t, x)|x=q = h1(t), 0 ≤ t ≤ T, q ∈ �, (17)

and

∂tv(t, x) − �(t)Lx[v](t, x) = 0, 0 < t ≤ T, x ∈ R
n,

v(t, x)|t=0 = Lx[u0](x), x ∈ R
n,

v(t, x)|x=q = h2(t), 0 ≤ t ≤ T, q ∈ �, (18)

where u0 ∈ C|k|(�) with supp(u0) ⊂ � and h1, h2 are sufficiently smooth such that
h2(t) 	= 0 for all t ∈ [0,T] which implies h2(0) = Lx[u0](x)|x=q 	= 0.

Theorem 4.1: Let us assume

(1) L� , ε1 and Lx satisfy all the previous assumptions;
(2) u0 ∈ C|k|(�) with supp u0 ⊂ �;
(3) h1, h2 are sufficiently smooth such that h2(t) 	= 0 for all t ∈ [0,T].

Then there exists a unique solution of inverse problem (17)–(18) with the corresponding
coefficient �(t) = h′(t)/h2(t).

Also one can consider an inverse problem for higher order equations with the
second-order partial time derivative, see [15, Section 9.6.3-2], that is,

L�u(t, x) := ∂2t u(t, x) − �(t)Lx[u](t, x) = 0, 0 < t ≤ T, x ∈ R
n,

u(t, x)|t=0 = 0, x ∈ R
n,

∂tu(t, x)|t=0 = u1(x), x ∈ R
n,

u(t, x)|x=q = h1(t), 0 < t ≤ T, q ∈ �, (19)

and

∂2t v(t, x) − �(t)Lx[v](t, x) = 0, 0 < t ≤ T, x ∈ R
n,

v(t, x)|t=0 = 0, x ∈ R
n,

∂tv(t, x)|t=0 = Lx[u1](x), x ∈ R
n,

v(t, x)|x=q = h2(t), 0 < t ≤ T, q ∈ �, (20)

where the coefficients �(t)Ak(t, x) are sufficiently smooth and bounded if necessary,
u1 ∈ C|k|(�) with supp(u1) ⊂ �. Note that, the fundamental solution ε2(t, τ , x, y)
of (19)–(20) solves

∂2t ε2(t, τ , x, y) − �(t)Lx[ε2](t, τ , x, y) = 0, t > τ ≥ 0, x, y ∈ R
n,

ε2(t, τ , x, y)|t=τ = 0, x, y ∈ R
n,

∂tε2(t, τ , x, y)|t=τ = δ(x − y), x, y ∈ R
n.
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Assuming all necessary facts for L�, Lx and ε2, we can obtain a unique solution
of (19)–(20) with the corresponding time-dependent sufficiently smooth coefficient
�(t) = h′′

1(t)/h2(t).
Thus the above idea can be extended to general inverse Cauchy problems.

5. Conclusion

We propose a method to finding the time-dependent coefficient for multidimensional
Cauchy problems for both strictly hyperbolic equations and polyharmonic (degenerate)
heat equations. In addition, we show that the method can be extended to solving the gen-
eral multidimensional inverse Cauchy problems for higher order linear partial differential
(evolution) equations. Basically, it is a theoretical work. However, it can be also applied to
some concrete real-world processes since we consider a general class of the inverse Cauchy
problems for evolution equations. The key idea is to apply the Poisson integral to find a
unique pair that consists of a solution and a time-dependent coefficient in an explicit form.
The time-dependent coefficient is given by the ratio of the additional data at an internal
fixed point of any open bounded set of the Euclidean space. We believe a new numerical
algorithm to finding the time-dependent coefficient for the Cauchy problems for evolution
equations can be tested by the explicit solutions given in this paper.
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