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A R T I C L E I N F O A B S T R A C T

Editor: Editor: N. Lambert In this work we study the inflationary framework of Einstein-Gauss-Bonnet theories which produce a primordial 
gravitational wave speed that respects the constraint imposed by the GW170817 event, namely |||𝑐2𝑇 − 1||| < 6 ×
10−15 in natural units. For these theories in general, the scalar Gauss-Bonnet coupling function 𝜉(𝜙) is arbitrary 
and unrelated to the scalar potential. We develop the inflationary formalism of this theory, and present analytic 
forms for the slow-roll indices, the observational indices and the 𝑒-foldings number, assuming solely a slow-roll 
era and also that the constraints imposed by the GW170817 event hold true. We present in detail an interesting 
class of models that produces a viable inflationary era. Finally, we investigate the behavior of the Einstein-Gauss-

Bonnet coupling function during the reheating era, in which case the evolution of the Hubble rate satisfies a 
constant-roll-like relation �̇� = 𝛿𝐻2. As we show, the behavior of the scalar Gauss-Bonnet coupling during the 
reheating is different from that of the inflationary era. This is due to the fact that the evolution governing the 
reheating is different compared to the inflationary era.
1. Introduction

The inflationary paradigm [1–4] for the early Universe evolution is 
one exceptional theoretical prediction which explains most of the short-

comings of the Big Bang paradigm and also predicts how the large scale 
structure of our Universe emerged from the primordial curvature pertur-

bations. To date no sign of inflation has been detected though, and it is 
vital for the validity of the theory to be observationally confirmed. The 
next decade is expected to answer the question whether the inflationary 
era occurred or not, or at least further constrain inflationary theories and 
give signs or hints that inflation occurred. Indeed, the stage four cosmic 
microwave background (CMB) experiments that are expected to com-

mence in 2027 [5,6], will directly probe the 𝐵-modes in the CMB polar-

ization pattern, and the future gravitational wave experiments [7–15]

will probe inflation indirectly via the stochastic gravitational wave back-

ground, which is believed to have been generated during the inflationary 
era. The recent NANOGrav results [16] have imposed stringent bounds 
and constraints on the inflationary era, and it seems highly unlikely that 
a standard inflationary era can explain the NANOGrav 2023 stochastic 
gravitational wave background [17], however non-standard inflationary 
scenarios can potentially predict an enhanced inflationary spectrum, see 
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for example [18,19]. Thus the future experiments are expected to shed 
light on the question whether inflation actually occurred or not.

Among the candidate theories that can yield an interesting inflation-

ary era are Einstein-Gauss-Bonnet theories [20–46], which can predict a 
blue-tilted tensor spectrum. In general, Einstein-Gauss-Bonnet theories 
are strongly motivated since these are basically string-corrected scalar 
field theories. Let us recall that the most general scalar field Lagrangian 
in four dimensions, that contains two derivatives at most is,

𝜑 = ∫ d4𝑥
√
−𝑔

(1
2
𝑍(𝜑)𝑔𝜇𝜈𝜕𝜇𝜑𝜕𝜈𝜑+ (𝜑) + ℎ(𝜑))

, (1)

and by evaluating the scalar field at its vacuum configuration, it must 
be either minimally or conformally coupled. By considering the former 
case, thus 𝑍(𝜑) = −1 and also ℎ(𝜑) = 1 in the action (1), the most gen-

eral quantum corrections containing up to fourth order derivatives, of 
the local effective action, consistent with diffeomorphism invariance, 
are [46],

𝑒𝑓𝑓 = ∫ d4𝑥
√
−𝑔

(
Λ1 +Λ2+Λ32 + Λ4𝜇𝜈𝜇𝜈 +Λ5𝜇𝜈𝛼𝛽𝜇𝜈𝛼𝛽

+Λ6□+Λ7□+Λ8𝜇𝜈□𝜇𝜈 +Λ93 +(𝜕8) + ...

)
,

(2)
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with the parameters Λ𝑖, 𝑖 = 1, 2, ..., 6 being appropriate dimensionful 
constants. In 2017 however, the GW170817 event observed by the 
LIGO-Virgo collaboration [47–50] altered our perspective on several 
candidate theories of inflation, because the observation indicated that 
the gravitational waves have a propagation speed that it is almost equal 
to that of light. This result has put severe constraints on theories that 
predict a propagation speed of tensor perturbations different from that 
of light, see Refs. [51–55]. However, the GW170817 event is a late-time 
event, thus one might claim that the speed of primordial tensor pertur-

bations could be different from that of light primordially. This argument 
however is not correct because inflation is basically a classical theory 
corresponding to a four dimensional post-Planck Universe. Thus there 
is no fundamental reason that could make the graviton to change its 
on-shell mass during and after the inflationary era. Hence, the rule in 
massive gravity theories is that the speed of tensor perturbations should 
be equal to that of light. In a series of articles [56–58], the requirement 
that the gravitational wave speed is equal to that of light was modeled

by using the constraint 𝜉 =𝐻�̇� in Einstein-Gauss-Bonnet theories. This 
constraint made the scalar potential and the scalar Gauss-Bonnet cou-

pling to be interdependent. In this work we aim to study the inflationary 
phenomenology of Einstein-Gauss-Bonnet theories by using the actual 
phenomenological constraints on the gravitational wave speed imposed 
by the GW170817 event, which is |||𝑐2𝑇 − 1||| < 6 × 10−15 in natural units. 
Thus, we shall model inflation in Einstein-Gauss-Bonnet theories with-

out taking the constraint 𝜉 = 𝐻�̇� into account. In this way, the scalar 
Gauss-Bonnet coupling function 𝜉(𝜙) is free to choose and is not directly 
related to the potential by some physically motivated constraint. We de-

velop the formalism of Einstein-Gauss-Bonnet inflationary theories and 
we extract analytic relations for the slow-roll indices and the observa-

tional indices of inflation. Among a large variety of models, we present 
a promising class of potentials and scalar Gauss-Bonnet couplings 
that yield a viable inflationary phenomenology compatible with the 
GW170817 constraint. Finally, we consider the behavior of the Einstein-

Gauss-Bonnet theory during the reheating era, in which case the Hubble 
rate and its time derivative satisfy a constant-roll-like relation �̇� = 𝛿𝐻2. 
In this case, the scalar Gauss-Bonnet coupling function is required to 
obey a differential equation that relates it directly to the scalar poten-

tial. We examine several potentials which yielded a viable inflationary 
phenomenology and we find the functional form of the scalar Gauss-

Bonnet coupling for these potentials, and these are different from the 
forms of the scalar Gauss-Bonnet couplings during the inflationary era.

This article is organized as follows: In section 2 we develop the 
Einstein-Gauss-Bonnet inflation formalism, we extract analytic forms 
for the slow-roll indices and the observational indices of inflation. We 
also impose several constraints in order to comply with the GW170817 
event. In section 3 we apply the formalism by using a class of models that 
yields a viable phenomenology for inflationary theories. We determine 
the range of values of the free parameters of the theory that produce a 
viable inflationary phenomenology and at the same time a gravitational 
wave speed which respects the constraint |||𝑐2𝑇 − 1||| < 6 ×10−15 in natural 
units. Also, in section 3 we study the behavior of Einstein-Gauss-Bonnet 
theories during the reheating era and we extract the functional form of 
the scalar Gauss-Bonnet coupling during this era, given the scalar po-

tential. Finally, the conclusions appear in the end of this article.

2. Essential features of Einstein-Gauss-Bonnet in view of 
GW170817 event

We start our analysis by presenting the essential features of Einstein-

Gauss-Bonnet theories in view of the GW170817 event. The gravita-

tional action of Einstein-Gauss-Bonnet theories is,

4 √ (
𝑅 1 𝜇 1 )
2

𝑆 = ∫ 𝑑 𝑥 −𝑔
2𝜅2 −

2
𝜕𝜇𝜙𝜕 𝜙− 𝑉 (𝜙) −

2
𝜉(𝜙) , (3)
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where 𝑅 denotes as usual the Ricci scalar, 𝜅 = 1
𝑀𝑝

where 𝑀𝑝 is the 
reduced Planck mass, and also  stands for the Gauss-Bonnet invari-

ant in four dimensions, which in terms of the Ricci scalar, the Ricci 
tensor 𝑅𝛼𝛽 and the Riemann tensor 𝑅𝛼𝛽𝛾𝛿 reads as follows  = 𝑅2 −
4𝑅𝛼𝛽𝑅

𝛼𝛽 + 𝑅𝛼𝛽𝛾𝛿𝑅
𝛼𝛽𝛾𝛿 . We assume that the geometric background is 

a flat Friedmann-Lemaitre-Robertson-Walker (FLRW) spacetime of the 
form,

𝑑𝑠2 = −𝑑𝑡2 + 𝑎(𝑡)2
3∑

𝑖=1
(𝑑𝑥𝑖)2 . (4)

We assume that the scalar field is solely time-dependent, so the variation 
of the gravitational action (3) with respect to the scalar field and with 
respect to the metric yields the following field equations,

3𝐻2

𝜅2 = 1
2
�̇�2 + 𝑉 + 12�̇�𝐻3 , (5)

2�̇�
𝜅2 = −�̇�2 + 4𝜉𝐻2 + 8�̇�𝐻�̇� − 4�̇�𝐻3 , (6)

�̈�+ 3𝐻�̇�+ 𝑉 ′ + 12𝜉′𝐻2(�̇� +𝐻2) = 0 . (7)

In order for the inflationary era to occur, a requirement is that �̇� ≪

𝐻2, and in addition to that we shall assume that the scalar field slow-

rolls its potential during the whole inflationary era, so the following 
requirements are assumed to hold true,

�̇� ≪𝐻2,
�̇�2

2
≪𝑉 , �̈� ≪ 3𝐻�̇� . (8)

Einstein-Gauss-Bonnet gravities are known to be plagued with the is-
sue related to the propagation speed of primordial gravitational waves, 
or equivalently with the propagation speed of the tensor perturbations, 
which is [20],

𝑐2
𝑇
= 1 −

𝑄𝑓

2𝑄𝑡

, (9)

where the functions 𝑄𝑓 , 𝐹 and 𝑄𝑏 are equal to 𝑄𝑓 = 8(𝜉 −𝐻�̇�), 𝑄𝑡 =
𝐹 + 𝑄𝑏

2 , 𝐹 = 1
𝜅2

and also 𝑄𝑏 = −8�̇�𝐻 . Now there are two ways to take 
into account the constraints imposed by the GW170817 event, either by 
requiring that 𝑄𝑓 = 0, hence one gets 𝑐2

𝑇
= 1 for all the subsequent eras 

after inflation, or by imposing direct constraints on the values of the 
terms entering in the gravitational wave speed (9). The first approach 
was considered in a series of papers [56–58] so we shall not consider this 
approach in this paper. Instead, we shall assume that the terms entering 
in the expression of the gravitational wave speed, are sufficiently small, 
so that the gravitational wave speed satisfies the constraint imposed by 
the GW170817 event, which is,|||𝑐2𝑇 − 1||| < 6 × 10−15 . (10)

In order to achieve this, we assume that,

𝜅2�̇�𝐻 ≪ 1, 𝜅2𝜉 ≪ 1 , (11)

and if these constraints are satisfied during the inflationary era, then the 
gravitational wave speed can be sufficiently small in order to satisfy the 
constraint (10). Let us highlight an important issue here having to do 
with the inequalities (11), these are not chosen for the sake of analytic 
simplicity, but these basically quantify the requirement that 𝑐2

𝑇
∼ 1. In-

deed, by looking at Eq. (9) we can see that the gravitational wave speed 
deviates from unity once the parameter 𝑄𝑓 = 8(𝜉 −𝐻�̇�) deviates from 
zero. This parameter can be small enough if 𝜉 ≃𝐻�̇�, a case thoroughly 
analyzed in Refs. [56–58], or if each of the terms 𝜅2𝜉 and 𝜅2�̇�𝐻 are in-

dependently very small. This is exactly what the inequalities presented 
in Eq. (11) signify. Note that the approach we adopted does not con-

strain the functional form of the Gauss-Bonnet scalar coupling function 
𝜉(𝜙), which is free to choose, in contrast to the approach adopted in 

Refs. [56–58], which constrain the functional form of the Gauss-Bonnet 
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scalar coupling function 𝜉(𝜙) to be related to the scalar potential. In our 
approach both the scalar potential and the Gauss-Bonnet scalar coupling 
function are free to choose. Now let us consider the Friedmann equation, 
and notice that since we assumed that the constraints of Eq. (11) hold 
true, the term 𝐻2 dominates over the terms 𝜅2 �̇�𝐻3. We also make an-

other crucial assumption, regarding the Raychaudhuri equation, that is, 
we assume that 𝜅2�̇�𝐻3 ≪𝜅2�̇�2 and 𝜅2𝜉𝐻2 ≪𝜅2�̇�2, that is,

𝜅2�̇�𝐻3 ≪𝜅2�̇�2, 𝜅2𝜉𝐻2 ≪𝜅2�̇�2 . (12)

The constraints (12) are additional constraints, which must be satis-

fied from any viable model. To sum up, the slow-roll and inflationary 
constraints (8) are natural constraints imposed by inflationary dynam-

ics, the constraints (11) are additional constraints imposed by the 
GW170817 event, and finally the constraints (12) are rather logical 
assumptions, which however must be checked if they hold true for any 
viable model we shall develop. Now in view of the above, the field 
equations take the simpler form, regarding the Friedmann equation, it 
becomes,

𝐻2 ≃ 𝜅2𝑉

3
, (13)

while the Raychaudhuri equation becomes,

�̇� ≃ −1
2
𝜅2�̇�2 , (14)

and the modified Klein-Gordon equation yields,

�̇� ≃ −12𝜉′(𝜙)𝐻4 + 𝑉 ′

3𝐻
. (15)

Now the inflationary phenomenology can be studied by using the slow-

roll indices and the corresponding observational indices of inflation. 
Regarding the slow-roll indices, these have the following general form 
[20],

𝜖1 = − �̇�

𝐻2 𝜖2 =
�̈�

𝐻�̇�
𝜖3 = 0 𝜖4 =

�̇�

2𝐻𝐸

𝜖5 =
𝑄𝑎

2𝐻𝑄𝑡

𝜖6 =
�̇�𝑡

2𝐻𝑄𝑡

, (16)

where 𝑄𝑎 = −4�̇�𝐻2, 𝑄𝑏 = −8�̇�𝐻 , 𝐸 = 1
(𝜅�̇�)2

(
�̇�2 + 3𝑄2

𝑎

2𝑄𝑡
+𝑄𝑐

)
, 𝑄𝑐 = 0, 

𝑄𝑑 = 0, 𝑄𝑒 = −16�̇��̇� , 𝑄𝑓 = 8 
(
𝜉 − �̇�𝐻

)
and also 𝑄𝑡 =

1
𝜅2

+ 𝑄𝑏

2 . Regard-

ing the observables of inflation, the scalar spectral index of the primor-

dial curvature perturbations in terms of the slow-roll indices, is equal to,

𝑛 = 1 +
2(−2𝜖1 − 𝜖2 − 𝜖4)

1 − 𝜖1
, (17)

and the tensor-to-scalar ratio is equal to,

𝑟 =
|||||||
16

(
𝑐3
𝐴

(
𝜖1 −

1
4𝜅

2
(
2𝑄𝑐+𝑄𝑑

𝐻2 − 𝑄𝑒

𝐻
+𝑄𝑓

)))
𝑐3
𝑇

(
𝜅2𝑄𝑏

2 + 1
) ||||||| , (18)

with 𝑐𝐴 being the sound speed of the scalar perturbations which is,

𝑐𝐴 =

√√√√√√√√√√
𝑄𝑎𝑄𝑒
2
𝜅2

+𝑄𝑏

+𝑄𝑓

(
𝑄𝑎

2
𝜅2

+𝑄𝑏

)2

+𝑄𝑑

�̇�2 + 3𝑄2
𝑎

2
𝜅2

+𝑄𝑏

+𝑄𝑐

+ 1 , (19)

and in addition 𝑐𝑇 is the gravitational wave speed appearing in Eq. (9). 
Furthermore, the spectral index of the tensor perturbations is,

𝑛 = −2
(
𝜖1 + 𝜖6

)
1 − 𝜖1

. (20)

An essential and important quantity for the study of the phenomenologi-
3

cal viability of an Einstein-Gauss-Bonnet model is the 𝑒-foldings number 
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expressed in terms of known or given quantities. This is defined as fol-

lows,

𝑁 =

𝑡𝑓

∫
𝑡𝑖

𝐻𝑑𝑡 =

𝜙𝑓

∫
𝜙𝑖

𝐻

�̇�
𝑑𝜙 , (21)

where 𝜙𝑖 and 𝜙𝑓 denote the scalar field values at first horizon cross-

ing, in the beginning of inflation, and the end of the inflationary era 
respectively. We can find the value of the scalar field at the end of in-

flation easily by equating the first slow-roll index to unity |𝜖1| ∼ (1), 
since the condition �̇� = −𝐻2 indicates the end of inflation, it is the 
condition of non-acceleration. Alternatively, if the first slow-roll index 
is constant, another condition would be 𝜖2 ∼ (1) because this would 
indicate the end of the slow-roll era, which is equivalent to the end of 
inflation condition. In view of Eqs. (21) and (15), the 𝑒-foldings number 
(21) is written as follows,

𝑁 =

𝜙𝑓

∫
𝜙𝑖

2𝐻2

12𝜉′𝐻4 + 𝑉 ′ 𝑑𝜙 , (22)

which in view of the Friedmann equation (13) is finally written as fol-

lows,

𝑁 =

𝜙𝑖

∫
𝜙𝑓

𝜅2𝑉 (𝜙)
𝑉 ′(𝜙) + 4

3𝜅
4𝑉 (𝜙)2𝜉′(𝜙)

𝑑𝜙 . (23)

Another important quantity, necessary for the phenomenological viabil-

ity of a model, is the amplitude of scalar perturbations 𝜁 (𝑘∗) and the 
constraints on this quantity imposed by the latest Planck data [59]. The 
amplitude of the scalar perturbations is defined as follows,

𝜁 (𝑘∗) =
𝑘3∗
2𝜋2 𝑃𝜁 (𝑘∗) , (24)

evaluated at the first horizon crossing when inflation commenced, 
where 𝑘∗ is the CMB pivot scale. The constraint on the amplitude 
of the scalar perturbations coming from the Planck data is 𝜁 (𝑘∗) =
2.196+0.051−0.06 × 10−9 [59] at the CMB pivot scale. We can express the 
amplitude of the scalar perturbations 𝜁 (𝑘) in terms of the two point 
function of the curvature perturbation 𝜁(𝑘) as follows,

⟨𝜁(𝑘)𝜁(𝑘′)⟩ = (2𝜋)3𝛿3(𝑘− 𝑘′)𝑃𝜁 (𝑘) . (25)

For Einstein-Gauss-Bonnet theories, the amplitude of the scalar pertur-

bations 𝜁 (𝑘) expressed in terms of the slow-roll parameters is given 
below [20],

𝜁 (𝑘) =

⎛⎜⎜⎜⎜⎝
𝑘
(
(−2𝜖1 − 𝜖2 − 𝜖4) (0.57 + log (|𝑘𝜂|) − 2 + log(2)) − 𝜖1 + 1

)
(2𝜋)

(
𝑧𝑐

4−𝑛
2

𝐴

)
⎞⎟⎟⎟⎟⎠

2

,

(26)

where 𝑧 =
𝑎�̇�

√
𝐸(𝜙)
1
𝜅2

𝐻(𝜖5+1)
and all the quantities must be evaluated at the first 

horizon crossing, and furthermore 𝜂 = − 1
𝑎𝐻

1
−𝜖1+1

at first horizon cross-

ing [20].

Now, we have all the necessary formulas in order to perform vi-

able model building for GW170817-compatible Einstein-Gauss-Bonnet 
theories, so let us recapitulate here all the necessary formulas and tech-

niques, and also we discuss the strategy towards choosing a convenient 
form for the Gauss-Bonnet scalar coupling function. One starts by solv-

ing the equation |𝜖1(𝜙𝑓 )| = (1), and the value of the scalar field is 
determined. Then one solves the equation (22) with respect to 𝜙𝑖, after 

the integration is performed, and accordingly the slow-roll indices and 
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the observational indices of inflation are evaluated for the value 𝜙𝑖 of 
the scalar field at first horizon crossing.

Regarding the strategy we shall adopt for choosing the appropriate 
functional form for the Gauss-Bonnet coupling function 𝜉(𝜙), the choice 
will be made based on which one yields analytically simple results. In 
the present formalism 𝜉(𝜙) is basically free to choose and it is not con-

strained in any way, in contrast to the scenario studied in Refs. [56–58]. 
Thus in the case at hand, the most elegant solution and simple to extract 
will be determined by the functional form of the first slow-roll index 𝜖1
and by the integral in Eq. (23). The exact form of the slow-roll index 
𝜖1 in terms of the scalar potential is very simple, so by using the Fried-

mann equation (13), the Raychaudhuri equation (14) and the modified 
Klein-Gordon equation (15), we get,

𝜖1 =
4
3
𝜅2𝜉′(𝜙)𝑉 ′(𝜙) + 𝑉 ′(𝜙)2

2𝜅2𝑉 (𝜙)2
+ 8

9
𝜅6𝑉 (𝜙)2𝜉′(𝜙)2 , (27)

and the important issue is to find a convenient form for 𝜉′(𝜙) which can 
simplify both the functional form of 𝜖1 appearing in Eq. (27) and also 
to simplify the quantity appearing in the integral (23). In view of this 
line of research, in the next section we shall present several classes of 
models we did examine and we analyze the resulting phenomenology in 
detail, also examining whether the constraints we assumed hold true.

3. Phenomenological viability of several classes of 
Einstein-Gauss-Bonnet models

In this section we shall consider several viable models of Einstein-

Gauss-Bonnet gravity which yield both a viable inflationary era and also 
produce a propagation speed of tensor perturbations that is almost equal 
to the speed of light and satisfy the constraint (10). For convenience, we 
shall use the Planck units system for which,

𝜅2 = 1
8𝜋𝐺

= 1
𝑀2

𝑃

= 1 .

Among the numerous choices for the Gauss-Bonnet coupling function 
which can be made, the most viable scenarios and the most easy to 
tackle analytically are obtained by using the following choice,

𝜉′(𝜙) = 𝜆𝑉 ′(𝜙)
𝑉 (𝜙)2

. (28)

In this case, the propagation speed of the tensor perturbations acquires 
a simple form, which is,

𝑐2
𝑇
= −8𝜆(4𝜆+ 3)2𝑉 (𝜙)𝑉 ′(𝜙)2𝑉 ′′(𝜙) + 10𝜆(4𝜆+ 3)2𝑉 ′(𝜙)4 + 27𝑉 (𝜙)4

3𝑉 (𝜙)2
(
4𝜆(4𝜆+ 3)𝑉 ′(𝜙)2 + 9𝑉 (𝜙)2

) ,

(29)

and the first slow-roll index takes the form,

𝜖1 =
(4𝜆+ 3)2𝑉 ′(𝜙)2

18𝑉 (𝜙)2
, (30)

while the 𝑒-foldings number integral takes the form,

𝑁 =

𝜙𝑖

∫
𝜙𝑓

𝑉 (𝜙)
4
3𝜆𝑉

′(𝜙) + 𝑉 ′(𝜙)
d𝜙 . (31)

Also the tensor-to-scalar ratio takes the form,

𝑛 =

−
2(4𝜆+ 3)2𝑉 ′(𝜙)2

(
4𝜆(4𝜆+ 9)𝑉 ′(𝜙)2 − 24𝜆𝑉 (𝜙)𝑉 ′′(𝜙) + 9𝑉 (𝜙)2

)(
4𝜆(4𝜆+ 3)𝑉 ′(𝜙)2 + 9𝑉 (𝜙)2

)(
18𝑉 (𝜙)2 − (4𝜆+ 3)2𝑉 ′(𝜙)2

) ,

(32)

while the rest of the observational indices and the slow-roll parameters 
have quite complicated form to present these here. Now, there are many 
4

potentials that can generate a viable evolution, which we list here,
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Fig. 1. Marginalized curves of the Planck 2018 data and the RGI potential in-

flation predictions (red curve).

𝑉 (𝜙) =𝑀

(
1 − 𝛿

𝜅𝜙

)
, 𝑉 (𝜙) =𝑀

(
1 − 𝛿

𝜅𝜙2

)
, 𝑉 (𝜙) =𝑀(1−𝑑(𝜅𝜙))2 ,

(33)

𝑉 (𝜙) =𝑀

(
1 − 𝑑

𝜅𝜙

)2
, 𝑉 (𝜙) = 𝑀

1 − 𝑑

𝜅𝜙

, 𝑉 (𝜙) =𝑀

√
1 − 𝑑

𝜅𝜙
, (34)

𝑉 (𝜙) = 𝑀(𝜅𝜙)2

𝑑 + (𝜅𝜙)2
, 𝑉 (𝜙) =𝑀 100

√
1 − 𝑑

𝜅𝜙
, 𝑉 (𝜙) =𝑀

(
1 − 𝑑

𝜅𝜙

)3∕2

(35)

𝑉 (𝜙) =𝑀 5

√
1 − 𝑑

𝜅𝜙
. (36)

From the above, the last one, namely (36) is viable only for a short in-

flationary era with 𝑁 ∼ 35 𝑒-foldings, so let us consider three examples 
from the above which are viable for 𝑁 ∼ 50 𝑒-foldings and also have 
some physical significance in single field scalar field theories. Consider 
first the potential,

𝑉 (𝜙) = 𝑀(𝜅𝜙)2

𝑑 + (𝜅𝜙)2
, (37)

which is known in single scalar field theory as radion gauge inflation 
scalar potential (RGI), developed in Ref. [60]. In this case, the analytic 
form of the derivative of the Gauss-Bonnet scalar coupling function in 
Planck units is,

𝜉′(𝜙) = 2𝑑𝜆
𝑀𝜙3 , (38)

hence the first slow-roll index takes the form,

𝜖1 =
2𝑑2(4𝜆+ 3)2

9𝜙2
(
𝑑 + 𝜙2

)2 , (39)

and therefore one may solve the equation |𝜖1(𝜙𝑓 )| = 1 and obtain 𝜙𝑓 , 
but we do not quote it here because it is too lengthy. In this case, the 
integral involved in the computation of the 𝑒-foldings number is quite 
easy to obtain, and it is equal to,

𝑁 =
3𝑑𝜙2

2 + 3𝜙4

4
8𝑑𝜆+ 6𝑑

|||𝜙𝑖

𝜙𝑓

, (40)

and from it, the value of the scalar field at the beginning of inflation, 
namely 𝜙𝑖 can be obtained. A viable phenomenology is obtained for 
𝑁 = 50 for various choices of the free parameters (𝑑, 𝜆, 𝑀), for ex-

ample for (𝑑, 𝜆, 𝑀) = (3, 10−13, 2.583 × 10−10), in which case we get, 
𝑛 = 0.96854, 𝑟 = 0.0148501 and 𝑛 = −0.000928563, hence the model 
is viable regarding the observational indices of inflation and well com-

patible with the Planck data. In Fig. 1 we plot the model’s predic-

tions versus the Planck 2018 likelihood curves, for 𝑁 = [48, 55] and 

it is apparent that the model is viable. Regarding the amplitude of the 
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Table I

Several Viable Einstein-Gauss-Bonnet Models with 𝜉′(𝜙) = 𝜆𝑉 ′ (𝜙)
𝑉 (𝜙)2

.

Model Planck Constraints Values of Scalar Field Gravitational Wave Speed

𝑉 (𝜙) = 𝑀(𝜅𝜙)2

𝑑+(𝜅𝜙)2
(𝑑,𝜆,𝑀) = (3,10−13,2.583 × 10−10) (𝜙𝑖,𝜙𝑓 ) = (5.64629,1.03964) 𝑐2

𝑇
− 1 = −1.19917 × 10−16

𝑉 (𝜙) =𝑀

(
1 − 𝛿

𝜅𝜙2

)
(𝛿, 𝜆,𝑀) = (10−3,10−13,4.2706 × 10−12) (𝜙𝑖,𝜙𝑓 ) = (0.787,0.115) 𝑐2

𝑇
− 1 = −2.16654 × 10−17

𝑉 (𝜙) =𝑀

(
1 − 𝛿

𝜅𝜙

)2
(𝛿, 𝜆,𝑀) = (3,10−13,1.8597 × 10−9) (𝜙𝑖,𝜙𝑓 ) = (11.385,4.048) 𝑐2

𝑇
− 1 = −5.39095 × 10−16
scalar perturbations for the current model, for the choice (𝑑, 𝜆, 𝑀) =
(3, 10−13, 2.583 × 10−10) we get exactly 𝜁 (𝑘∗) = 2.196 × 10−9, and the 
amplitude of the scalar perturbations crucially depends on the value 
of 𝑀 as expected. For (𝑑, 𝜆, 𝑀) = (3, 10−13, 2.583 × 10−10) we obtain 
super-Planckian values for the scalar field at the beginning and the end 
of inflation, but this is a model dependent feature as we show later 
using other models. For (𝑑, 𝜆, 𝑀) = (3, 10−13, 2.583 × 10−10) we get, 
(𝜙𝑖, 𝜙𝑓 ) = (5.64629, 1.03964). Regarding the gravitational wave speed, 
we have 𝑐2

𝑇
− 1 = −1.19917 × 10−16, so the model is consistent with the 

constraint (10). Regarding the constraints (12), these are well satisfied 
since for (𝑑, 𝜆, 𝑀) = (3, 10−13, 2.583 × 10−10) we have �̇�2 ∼ (10−14), 
�̇�𝐻3 ∼(10−26) and 𝜉𝐻2 ∼(10−28). In Table I we collect the charac-

teristic features of this model for convenience. Let us now consider the 
potential,

𝑉 (𝜙) =𝑀

(
1 − 𝛿

𝜅𝜙2

)
, (41)

which is known in the single scalar field theory literature as brane 
inflation potential (BI), developed in Refs. [61–67]. In this case, the 
derivative of the Gauss-Bonnet scalar coupling function in natural units 
has the form,

𝜉′(𝜙) = 2𝛿𝜆𝜙

𝑀
(
𝛿 − 𝜙2

)2 , (42)

and the first slow-roll index becomes,

𝜖1 =
2𝛿2(4𝜆+ 3)2

9
(
𝜙3 − 𝛿𝜙

)2 , (43)

and therefore one may again solve the equation |𝜖1(𝜙𝑓 )| = 1 and obtain 
the value 𝜙𝑓 , which we omit for brevity. In the case at hand, the integral 
involved in the computation of the 𝑒-foldings number becomes,

𝑁 = −
3𝛿𝜙2

2 − 3𝜙4

4
8𝛿𝜆+ 6𝛿

|||𝜙𝑖

𝜙𝑓

, (44)

and accordingly, the value of the scalar field 𝜙𝑖 can be obtained. In this 
case too, a large range of the values of the free parameters can guar-

antee a viable inflationary phenomenology, for example for 𝑁 = 48
and for (𝛿, 𝜆, 𝑀) = (10−3, 10−13, 4.2706 × 10−12), we get, 𝑛 = 0.9687, 
𝑟 = 0.00026 and 𝑛 = −0.000016, therefore the model is viable regard-

ing the observational indices of inflation and well compatible with the 
Planck data. This can also be seen in Fig. 2 where we plot the cur-

rent model’s predictions versus the Planck 2018 likelihood curves, for 
𝑁 = [46, 52]. Regarding the amplitude of the scalar perturbations in 
this case, for the choice (𝛿, 𝜆, 𝑀) = (10−3, 10−13, 4.2706 × 10−12) we 
get exactly 𝜁 (𝑘∗) = 2.196 × 10−9, and as expected, the amplitude of 
the scalar perturbations crucially depends on the value of 𝑀 in this 
case too. For (𝛿, 𝜆, 𝑀) = (10−3, 10−13, 4.2706 × 10−12) in this case, the 
scalar field values at the beginning and the end of inflation are sub-

Planckian, specifically, for (𝛿, 𝜆, 𝑀) = (10−3, 10−13, 4.2706 × 10−12) we 
get, (𝜙𝑖, 𝜙𝑓 ) = (0.787, 0.115). Regarding the gravitational wave speed, 
in this case we have 𝑐2

𝑇
− 1 = −2.16654 × 10−17, so in this case too, 

the model is consistent with the constraint (10). Regarding the con-

straints (12), these are well satisfied for this model too, for example 
for (𝛿, 𝜆, 𝑀) = (10−3, 10−13, 4.2706 × 10−12) we have �̇�2 ∼ (10−17), 
5

�̇�𝐻3 ∼ (10−29) and 𝜉𝐻2 ∼ (10−30). In Table I we collected all the 
Fig. 2. Marginalized curves of the Planck 2018 data and the BI potential inflation 
predictions (green curve).

characteristic features for this model too. Let us now consider another 
viable potential,

𝑉 (𝜙) =𝑀

(
1 − 𝛿

𝜅𝜙

)2
, (45)

which is not classified into known single scalar field potentials, but pro-

vides an interesting viable phenomenology, and we call it inverse power 
law (IPL). In this case, the derivative of the Gauss-Bonnet scalar coupling 
function in natural units has the form,

𝜉′(𝜙) = − 2𝛿𝜆𝜙
𝑀(𝛿 − 𝜙)3

, (46)

and the first slow-roll index becomes in this case,

𝜖1 =
2𝛿2(4𝜆+ 3)2

9𝜙2(𝛿 −𝜙)2
, (47)

and again one may solve the equation |𝜖1(𝜙𝑓 )| = 1 and obtain the value 
𝜙𝑓 , which we again omit for brevity. In this case, the integral involved 
in the computation of the 𝑒-foldings number becomes,

𝑁 = −
3
(

𝛿𝜙2

2 − 𝜙3

3

)
2𝛿(4𝜆+ 3)

|||𝜙𝑖

𝜙𝑓

, (48)

and accordingly, the value of the scalar field 𝜙𝑖 can be obtained. In this 
scenario too, a large range of the values of the free parameters guar-

antees a viable inflationary phenomenology, for example for 𝑁 = 48
and if we choose (𝛿, 𝜆, 𝑀) = (3, 10−13, 1.8597 × 10−9), we get, 𝑛 =
0.9686, 𝑟 = 0.066 and 𝑛 = −0.0041, therefore the model is marginally 
viable regarding the observational indices of inflation and well com-

patible with the Planck data. This can also be seen in this case in 
Fig. 3 where we plot the current model’s predictions versus the Planck 
2018 likelihood curves, for 𝑁 = [46, 52]. Now, regarding the ampli-

tude of the scalar perturbations in this case, for the choice (𝛿, 𝜆, 𝑀) =
(3, 10−13, 1.8597 × 10−9) we get exactly 𝜁 (𝑘∗) = 2.196 × 10−9. For 
(𝛿, 𝜆, 𝑀) = (3, 10−13, 1.8597 ×10−9) in this case, the scalar field values at 
the beginning and the end of inflation are super-Planckian, specifically, 
for (𝛿, 𝜆, 𝑀) = (3, 10−13, 1.8597 × 10−9) we get, (𝜙𝑖, 𝜙𝑓 ) = (11.38, 4.04), 
and this is a model dependent feature, in other models we found, the 

scalar field values are sub-Planckian. In all the cases we found, it is men-
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Fig. 3. Marginalized curves of the Planck 2018 data and the IPL potential infla-

tion predictions (blue curve).

tionable that the scalar field values decrease as time evolves, which is an 
anticipated feature, which we shall use in the next section. Regarding the 
gravitational wave speed, in this case we have 𝑐2

𝑇
−1 = −5.3909 ×10−16, 

so in this case too, the model is consistent with the constraint (10). Re-

garding the constraints (12), these are well satisfied for this model too, 
for example if we choose (𝛿, 𝜆, 𝑀) = (3, 10−13, 1.8597 × 10−9) we get 
�̇�2 ∼(10−12), �̇�𝐻3 ∼(10−27) and 𝜉𝐻2 ∼(10−35). In Table I we col-

lected all the characteristic features for this model too.

In conclusion, we presented a variety of models which provide a 
viable inflationary era, in addition to the compatibility with all the 
constraints coming from GW170817 and all the additional required con-

straints. Now in the next section we shall consider an important issue 
having to do with the functional form of the Gauss-Bonnet coupling 
function during the reheating era. In this section we chose arbitrarily 
the scalar Gauss-Bonnet coupling, however this is not the case in the re-

heating era, in which case the functional form of the scalar Gauss-Bonnet 
coupling is related to the form of the given potential. An outcome of this 
section that will be used in the next section, is the well anticipated fact 
that the scalar field values decrease as the cosmic time evolves.

4. Behavior of the Einstein-Gauss-Bonnet gravity during the 
reheating era

In this section we shall investigate the reheating era for the Einstein-

Gauss-Bonnet gravity framework we developed in the previous sections, 
and we shall demonstrate that the scalar Gauss-Bonnet coupling is con-

strained to be related to the scalar potential. The scale factor of the 
Universe during the reheating era is assumed to have the general form 
𝑎(𝑡) ∼ 𝑡−1∕𝛽 (assuming that 𝛽 < 0) which results to the relation between 
the Hubble rate and its time derivative �̇� = 𝛽𝐻2. Now the reason for 
this is simple, the total equation of state (EoS) parameter 𝑤𝑒𝑓𝑓 , defined 
as,

𝑤𝑒𝑓𝑓 = −1 − 2�̇�
3𝐻2 , (49)

during the reheating era takes values in the range −1
3 ≤𝑤𝑒𝑓𝑓 ≤ 1

3 , which 
is explained simply because the value 𝑤𝑒𝑓𝑓 = −1

3 corresponds to the 
non-acceleration value exactly at the end of the inflationary era, while 
𝑤𝑒𝑓𝑓 = 1

3 corresponds to the value of a radiation domination era. The 
reheating era though is a vague era for which little are known thus it 
is far from certain what was the total EoS parameter during that era. 
We will thus assume that during the reheating era, the total EoS param-

eter takes various characteristic values, varying from the value nearly 
at the end of the inflationary era, 𝑤𝑒𝑓𝑓 = −1∕3.1 to the value during 
the radiation domination era 𝑤𝑒𝑓𝑓 = 1∕3. Specifically, we assume that 
𝑤𝑒𝑓𝑓 = −1∕3.1 which corresponds to 𝛽 = −1.01613 (which is slightly 
smaller than the end of inflation era value of the EoS 𝑤𝑒𝑓𝑓 = −1∕3), 
6

𝑤𝑒𝑓𝑓 = 0 which corresponds to 𝛽 = −3∕2 and describes a matter dom-
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ination era, and finally 𝑤𝑒𝑓𝑓 = 1∕3 which corresponds to 𝛽 = −2 and 
describes a radiation domination era. One can easily work out this sce-

nario to find the behavior of the Gauss-Bonnet scalar coupling function 
𝜉(𝜙), assuming again that the inequalities of Eq. (11) hold true, so after 
some algebra one gets,

𝐻2 ≃ 𝜅2𝑉

3 + 𝛽
, (50)

�̈� ≃ − 𝛽

3 + 𝛽
𝑉 ′ , (51)

�̇�2 ≃ − 2𝛽
3 + 𝛽

𝑉 , (52)

and finally,

𝜉′(𝜙) ≃
− 3

3+𝛽
𝑉 ′ + 3𝛾𝛿𝑉

𝑉 2 , (53)

with,

𝛾 =

√
− 2𝛽
3 + 𝛽

, 𝛿 =

√
𝜅2

3 + 𝛽
,  = 12(𝛽 + 1)𝜅4

(3 + 𝛽)2
. (54)

One can solve the differential equation (53), given the scalar field poten-

tial, and find the function 𝜉(𝜙) or can have directly 𝜉′(𝜙) and investigate 
the behavior of it as a function of the scalar field. We shall reveal the 
behavior of 𝜉(𝜙) for the three values of 𝛽 we mentioned earlier and for 
some characteristic viable potentials we presented in the previous sec-

tion, using the corresponding values of the free parameters in order to 
see the behavior of 𝜉(𝜙) during the reheating era. Consider first the BI 
potential (41) so by substituting the potential in the differential equa-

tion (53) we obtain the following solution for the scalar Gauss-Bonnet 
coupling function,

𝜉(𝜙) =

𝛽

(
−

√
− 𝛽

𝛽+3 𝛿

𝜙2−𝛿
−
√
2𝛽

√
𝛿

𝛽+3 tanh
−1

(
𝜙√
𝛿

)
+
√
2𝛽

√
1

𝛽+3𝜙

)
4(𝛽 + 1)

(
− 𝛽

𝛽+3

)3∕2
𝑀

.

(55)

Using (𝛿, 𝜆, 𝑀) = (10−3, 10−13, 4.2706 × 10−12) and working again in 
Planck units, we can see the behavior of the Gauss-Bonnet coupling 
function (55) in Fig. 4, for 𝛽 = −1.01613 which corresponds to the 
green curve (nearly the end of inflation era value of the total EoS 
𝑤𝑒𝑓𝑓 = −1∕3), 𝛽 = −3∕2 (matter domination era and red curve) and 
𝛽 = −2 (radiation domination era and blue curve). As it can be seen, as 
the scalar field values increase, the scalar Gauss-Bonnet scalar coupling 
decreases, for all the aforementioned cases, the difference is the mag-

nitude of the function 𝜉(𝜙) for the three distinct scenarios. Now let us 
consider the RDI potential (37) so by substituting the potential in the 
differential equation (53) in this case we obtain the following solution,

𝜉(𝜙) =
(𝛽 + 3)

(√
2(𝛽+3)

√
−𝛽𝜙3

𝛽+3 −
√
2
√
−𝛽(𝛽+3)𝑑𝜙
𝛽+3 + 𝑑

)
4(𝛽 + 1)𝑀𝜙2 . (56)

Using (𝑑, 𝜆, 𝑀) = (3, 10−13, 2.583 × 10−10) in Planck units, we plot the 
Gauss-Bonnet coupling function (56) as a function of the scalar field in 
Fig. 5. Contrary to the previous model, in this case the scalar Gauss-

Bonnet coupling function increases as the scalar field values increase. 
The behavior for the three distinct values of 𝛽 we used is qualitatively 
similar and the only difference among the three cases for the potential 
under study is, as in the previous case, the magnitude of the Gauss-

Bonnet coupling function. In conclusion, the behavior of the scalar 
Gauss-Bonnet coupling during the reheating era for the Einstein-Gauss-

Bonnet models we considered in this paper strongly depends on the 
scalar potential. Thus it cannot be predicted how 𝜉(𝜙) will behave and 

its behavior is more or less model dependent. Now a crucial comment 
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Fig. 4. The scalar Gauss-Bonnet coupling function 𝜉(𝜙) during the reheating era as a function of the scalar field in Planck units, for the scalar potential (41). We 
used three distinct values for 𝛽, namely 𝛽 = −1.01613 which corresponds to the green curve (nearly the end of inflation era value of the total EoS 𝑤𝑒𝑓𝑓 = −1∕3), 
𝛽 = −3∕2 (matter domination era and red curve) and 𝛽 = −2 (radiation domination era and blue curve).

Fig. 5. The scalar Gauss-Bonnet coupling function 𝜉(𝜙) during the reheating era as a function of the scalar field in Planck units, for the scalar potential (37). We 
used three distinct values for 𝛽, namely 𝛽 = −1.01613 which corresponds to the green curve (nearly the end of inflation era value of the total EoS 𝑤𝑒𝑓𝑓 = −1∕3), 
7

𝛽 = −3∕2 (matter domination era and red curve) and 𝛽 = −2 (radiation domination era and blue curve).
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would be, whether the constrained form of the scalar Gauss-Bonnet cou-

pling function obtained during the reheating, can be the same during the 
inflationary era. This is hard to decide because this constraint was ob-

tained for a constant-roll-like evolution of the form �̇� = 𝛽𝐻2, and this 
would imply that the inflationary era would be a power-law evolution. 
The whole formalism should change though and we did not address this 
issue in this paper, since it would be out of context. We aim to address 
this research topic in a future work though.

5. Concluding remarks

In this work we developed the inflationary framework of Einstein-

Gauss-Bonnet theories that produce a propagating speed of tensor per-

turbations that respect the constraint imposed by the GW170817 event, 
namely |||𝑐2𝑇 − 1||| < 6 ×10−15 in natural units. In general, in these theories 
the scalar Gauss-Bonnet coupling function 𝜉(𝜙) can be chosen freely and 
there is no imposed direct relation between the 𝜉(𝜙) and the scalar po-

tential. We developed the inflationary formalism assuming only a slow-

roll era for the scalar field and also imposing the GW170817 constraints 
on the propagating speed of tensor perturbations which constrain the 
scalar Gauss-Bonnet coupling function 𝜉(𝜙). We applied the formalism 
using an interesting class of models and for several potentials that pro-

duce a viable inflationary era compatible with the Planck constraints 
and also respect the GW170817 constraints. Also we considered the 
reheating era in the context of Einstein-Gauss-Bonnet gravitational the-

ories, in which case the Hubble rate obeys a constant-roll-like evolution 
relation �̇� = 𝛿𝐻2. Assuming that the GW170817 constraints also hold 
true, it proves that the scalar Gauss-Bonnet coupling function 𝜉(𝜙) and 
the scalar potential obey a differential equation. Therefore, given the 
potential, one finds the scalar Gauss-Bonnet coupling function, which 
is different from the one during the inflationary era. We considered 
two examples and we examined the behavior of the scalar Gauss-Bonnet 
coupling function during the reheating era. An issue which we did not 
address is to examine the inflationary phenomenology of Einstein-Gauss-

Bonnet theories for which the Hubble rate obeys a constant-roll-like 
evolution during the inflationary era. This would produce a power-law 
inflationary era, thus the formalism and field equations of the corre-

sponding Einstein-Gauss-Bonnet theory would be different compared to 
the one we developed here. There is strong motivation for such constant-

roll inflationary conditions, which were firstly introduced in [68], for ex-

ample primordial black hole formation and induced gravitational waves 
[69,70]. We aim to address this constant-roll inflationary era research 
task in a future work.
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