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A B S T R A C T

This study proposes a novel parametrization approach for the dimensionless Hubble parameter i.e. 𝐸2(𝑧) =
𝐴(𝑧) + 𝛽(1 + 𝛾𝐵(𝑧)) in the context of scalar field dark energy models. The parametrization is characterized by
two functions, 𝐴(𝑧) and 𝐵(𝑧), carefully chosen to capture the behavior of the Hubble parameter at different
redshifts. We explore the evolution of cosmological parameters, including the deceleration parameter, density
parameter, and equation of state parameter. Observational data from Cosmic Chronometers (CC), Baryonic
Acoustic Oscillations (BAO), and the Pantheon+ datasets are analyzed using MCMC methodology to determine
model parameters. The results are compared with the standard 𝛬CDM model using the Planck observations.
Our approach provides a model-independent exploration of dark energy, contributing to a comprehensive
understanding of late-time cosmic acceleration.
Introduction

In the past two decades, significant progress has been made in
observational cosmology, with various observations consistently sup-
porting the notion of an accelerated expansion of the Universe at
late times. Type Ia Supernova (SNe) observations [1,2], Cosmic Mi-
crowave Background (CMB) measurements [3,4], and Baryon Acoustic
Oscillations (BAOs) studies [5,6] have all contributed to reinforcing
this understanding. To explain this accelerated expansion, two main
approaches have been explored in the literature. The first approach
involves introducing an exotic form of matter known as Dark Energy
(DE) [7–9]. DE is characterized by having a large negative pressure
and is postulated to be responsible for driving the observed cosmic ac-
celeration. The second approach considers modifications to the laws of
gravity itself [10]. In this context, various modified gravity models have
been proposed, such as 𝑓 (𝑅) gravity [11–16], 𝑓 (𝑇 ) gravity [17–21], and
𝑓 (𝑄) gravity [22–27]. Furthermore, within the framework of DE mod-
els, several candidates have been studied, including quintessence [28],
k-essence [29], phantom [30–32], and scalar-tensor theories [33], each
with its own distinct features and implications for the evolution of the
Universe.

While the 𝛬CDM model has been remarkably successful in ex-
plaining various observational data, it is not without its theoretical
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challenges [34–36]. One of the major issues with the 𝛬CDM model is
the fine-tuning problem, which arises from the extremely small value
of the cosmological constant (𝛬) required to match observations. This
fine-tuning problem raises questions about the underlying theoretical
framework and why the value of 𝛬 is so precisely fine-tuned to produce
the observed cosmic acceleration [37]. Another theoretical concern
is the cosmic coincidence problem, which refers to the puzzling co-
incidence that DE density and matter density are comparable at the
present epoch, leading to the current accelerated expansion of the
Universe. The 𝛬CDM model does not provide a natural explanation
for this coincidence, and it has been a subject of ongoing debate
and investigation [38]. Furthermore, recent observations [39–42] have
indicated that the 𝛬CDM model may not be the best fit for the most
recent low-redshift cosmological data. While the 𝛬CDM model remains
consistent with a wide range of observations, some data suggests that
dynamical DE models, where the DE density evolves with time, might
provide a more accurate description of the observed Universe. These
theoretical and observational motivations have led researchers to ex-
plore dynamical DE models that can address the limitations of the
𝛬CDM model.

Indeed, while various dynamical DE and modified gravity mod-
els have been proposed to explain late-time cosmic acceleration, it
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remains essential to rigorously analyze and scrutinize these models
using cosmological observations. The need for a detailed analysis arises
from the complexity of the underlying physics governing late-time
acceleration and the ever-increasing precision of observational data. To
perform such analyses, it is crucial to adopt appropriate parametriza-
tions that allow for model-independent descriptions of the late-time
cosmic acceleration [43–46]. Model-independent parametrizations are
particularly valuable because they do not assume a specific theoretical
framework, enabling a more agnostic approach to understanding the
observed data. Recently, Roy et al. [47] investigated the nature of DE
using a novel parametrization of the Hubble parameter. The authors
explored scalar field DE models, including quintessence and phantom,
through a model-independent approach. Pacif et al. [48] presented
an accelerating cosmological model based on a parametrization of the
Hubble parameter. The authors introduced a novel approach to describe
the expansion rate of the Universe, leading to an accelerating phase. In
their study, Koussour et al. [49] proposed a novel parametrization of
the Hubble parameter i.e. 𝐻2 (𝑧) = 𝐻2

0 [(1 − 𝛼) + (1 + 𝑧) (𝛼 + 𝛽𝑧)] within
the framework of 𝑓 (𝑄) gravity. The authors explored the behavior
of the Hubble parameter using this new parametrization, shedding
light on the late-time cosmic acceleration and its implications in 𝑓 (𝑄)
gravity models. Sahni et al. introduced the concept of the statefinder,
a novel geometric tool for diagnosing the nature and behavior of DE,
utilizing a model-independent parametrization of 𝐻(𝑧), i.e. 𝐻2 (𝑧) =
𝐻2

0
[

𝛺𝑚0(1 + 𝑧)3 + 𝐴 + 𝐵(1 + 𝑧) + 𝐶(1 + 𝑧)2
]

[50]. Cunha and Lima con-
ducted an investigation into the concept of the transition redshift,
which signifies the shift from deceleration to acceleration in cosmic
expansion. They presented novel kinematic constraints derived from
supernovae observations, employing two different parameterizations of
the deceleration parameter: 𝑞(𝑧) = 𝑞0 + 𝑞1𝑧 and 𝑞(𝑧) = 𝑞0 + 𝑞1𝑧(1 +
𝑧) − 1. Their analysis revealed a transition redshift value of 𝑧𝑡𝑟 =
.61 [51,52]. Mamon conducted an investigation into the reconstruc-
ion of the interaction rate within the holographic DE model. This study
mployed the Hubble horizon as the infrared cut-off and focused on a
pecific parametrization of the effective EoS parameter: 𝜔𝑒𝑓𝑓 (𝑧) = −1+

𝐴
𝐴+𝐵(1+𝑧)−𝑛 [53]. In the same context, numerous parametrizations have
been proposed for various physical and geometrical parameters [54–
58].

The issue with most of these parametrizations lies in their behavior
at extreme values of redshift. In the far future, many parametrizations
lead to divergent results for the deceleration parameter, which can
cause inconsistencies in predicting the long-term evolution of the Uni-
verse. On the other hand, some of these parametrizations are restricted
to low redshifts (i.e., 𝑧 ≪ 1) and fail to provide accurate predic-
tions for earlier cosmic epochs [59]. Motivated by the aforementioned
discussions and the need for a robust and versatile parametrization
approach, this study focuses on exploring scalar field DE models using
a general scheme based on the dimensionless Hubble parameter. The
unique aspect of this approach is that it allows us to express the
relevant cosmological parameters in a form that is independent of
the specific nature of the scalar field. By adopting this comprehen-
sive parametrization approach for the dimensionless Hubble parameter
i.e. 𝐸2(𝑧) = 𝐻2(𝑧)

𝐻2
0

= 𝐴(𝑧) + 𝛽(1 + 𝛾𝐵(𝑧)) (where 𝛽, 𝛾 are free parameters,
nd 𝐴(𝑧), 𝐵(𝑧) are functions of the redshift 𝑧), we aim to address
he challenges associated with existing parametrizations that diverge
n the far future or are limited to low redshifts. The dimensionless
ubble parameter plays a central role in understanding the Universe’s
volution, making it a crucial and significant parameter to investigate
n cosmology. The functions 𝐴(𝑧) and 𝐵(𝑧) are chosen in a manner
hat allows the parametrization to capture the behavior of the Hubble
arameter at various redshifts. For this purpose, we use measurements
rom Cosmic Chronometers (CC), BAOs, and Pantheon+, which includes
n expanded dataset of Pantheon from Type Ia SNe. This dataset com-
rises 1701 light curves from 1550 Type Ia SNe, collected from different
2

tudies. The numerical analysis is conducted using MCMC methods. I
urthermore, we compare our parametrization with the 𝛬CDM model
using Planck observations.

This paper is structured as follows: Section ‘‘Cosmological Model’’
presents the fundamental mathematical formulation and the dynam-
ics of the scalar field. It introduces a comprehensive parametrization
approach for the dimensionless Hubble parameter 𝐸(𝑧). Furthermore,
his section derives analytical expressions for various cosmological
arameters associated with this parametrization. Section ‘‘Analysis of
bservational Data and methodology’’ of this paper focuses on the
bservational data obtained from diverse sources, including Cosmic
hronometers, BAO, and the recently released Pantheon+ datasets.
he methodology employed for determining the model parameters is
lso discussed in this section. The summary of the evolution of the
osmological parameters is provided in Section ‘‘Results from data
nalysis’’ . Finally, in Section ‘‘Final remarks and perspectives’’, we
resent a concise summary and draw our conclusions based on the
indings from this study.

osmological model

For a spatially flat, homogeneous, and isotropic Friedmann-Lemaître-
obertson-Walker (FLRW) Universe described by the metric [60]

𝑠2 = 𝑑𝑡2 − 𝑎2(𝑡)[𝑑𝑟2 + 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2𝜃𝑑𝜙2)], (1)

here 𝑎(𝑡) is the scale factor of the Universe as a function of time, we
onsider the presence of two perfect fluids. The first fluid represents
rdinary matter, with negligible pressure, and the second fluid is a
calar field, which is considered as a candidate for DE. In this scenario,
instein’s field equations and the Klein–Gordon equation for the scalar
ield can be written as follows (assuming 8𝜋𝐺 = 𝑐 = 1)

3𝐻2 = 𝜌𝑚 + 𝜌𝜙 = 𝜌𝑚 + 1
2
�̇�2 + 𝑉 (𝜙), (2)

2�̇� + 3𝐻2 = −𝑝𝜙 = −1
2
�̇�2 + 𝑉 (𝜙), (3)

�̈� + 3𝐻�̇� + 𝑑𝑉
𝑑𝜙

= 0. (4)

Here, 𝐻 = �̇�
𝑎 represents the Hubble parameter, which characterizes

the rate of cosmic expansion. The symbols 𝜌𝑚, 𝜌𝜙, and 𝑝𝜙 denote the
energy densities of ordinary matter, the scalar field (DE), and the
pressure associated with the scalar field, respectively. By solving these
equations and imposing suitable initial conditions, one can investigate
the cosmic expansion history and the behavior of the scalar field over
cosmic time.

Further, the energy density for ordinary matter evolves with the
scale factor as

𝜌𝑚 = 𝜌𝑚0𝑎
−3 = 𝜌𝑚0(1 + 𝑧)3, (5)

where 𝜌𝑚0 represents the current value of matter-energy density. In
addition, 𝑧 denotes the redshift parameter, defined as 𝑧 = 1

𝑎(𝑡) − 1. On
he other hand, the energy density for the scalar field can be expressed
𝜌𝜙 = 1

2 �̇�
2 + 𝑉 (𝜙), and the corresponding pressure component as

𝑝𝜙 = 1
2 �̇�

2 − 𝑉 (𝜙) [61,62]. The function 𝑉 (𝜙) represents the potential
ssociated with the scalar field 𝜙.

By manipulating Eqs. (2), (3), and (4), one can derive expressions
or the derivative of the Hubble parameter �̇� and the scalar field
otential 𝑉 (𝜙) as

�̇� = −
𝜌𝑚0
𝑎3

− �̇�2, (6)

and

𝑉 (𝜙) = �̇� + 3𝐻2 −
𝜌𝑚0
2𝑎3

. (7)

By performing further manipulations of Eq. (6) and employing the
standard relation �̇� = 1

2𝑎
𝑑
𝑑𝑎 (𝐻

2), we obtain: 𝑎 𝑑
𝑑𝑎 (𝐻

2) + 𝜌𝑚0
𝑎3

= −𝜖�̇�2.
n addition, we can express �̇� using the previous equations as �̇� =
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. Now, we can find the derivative of the scalar field 𝜙 with
espect to redshift 𝑧 as

𝑑𝜙
𝑑𝑧

=

[

2𝐸 𝑑𝐸
𝑑𝑧 − 3𝛺𝑚0(1 + 𝑧)2

𝐸2(1 + 𝑧)

]

1
2

. (8)

Here, 𝐸 ≡ 𝐸(𝑧) represents the dimensionless Hubble parameter
𝐸(𝑧) = 𝐻(𝑧)

𝐻0
), where 𝐻0 is the present value of Hubble parameter, and

𝛺𝑚0 =
𝜌𝑚0
3𝐻2

0
denotes the present-day density parameter of matter.

Likewise, applying a similar approach, we can express the scalar
ield potential, as given in Eq. (7) in terms of 𝑧 as
𝑉 (𝑧)
3𝐻2

0

= −
(1 + 𝑧)

3
𝐸 𝑑𝐸

𝑑𝑧
+ 𝐸2 − 1

2
𝛺𝑚0(1 + 𝑧)3. (9)

To characterize the nature of the cosmological expansion, whether it
is accelerating or decelerating, we introduce the deceleration parameter
𝑞, which is defined as

𝑞(𝑧) = −1 − �̇�
𝐻2

=
(1 + 𝑧)

𝐸
𝑑𝐸
𝑑𝑧

− 1. (10)

When 𝑞 > 0, this signifies a deceleration in the expansion of
the Universe. For 𝑞 = 0, the expansion maintains a constant rate.
Conversely, when −1 < 𝑞 < 0, it indicates accelerating growth. Notably,
when 𝑞 = −1, the Universe experiences exponential expansion, known
as de Sitter expansion. Moreover, for 𝑞 < −1, the Universe exhibits
super-exponential expansion.

The density parameter for the matter field 𝛺𝑚, and the density
parameter for the scalar field 𝛺𝜙, are crucial cosmological parameters
that offer significant information about the matter composition of the
Universe,

𝛺𝑚(𝑧) =
𝜌𝑚
3𝐻2

=
𝛺𝑚0(1 + 𝑧)3

𝐸2
, (11)

𝜙(𝑧) = 1 −𝛺𝑚(𝑧) = 1 −
𝛺𝑚0(1 + 𝑧)3

𝐸2
, (12)

To gain a deeper understanding of the accelerated period, we intro-
duce the equation of state (EoS) parameter 𝜔𝜙(𝑧), which is defined as

𝜔𝜙(𝑧) =
𝑝𝜙
𝜌𝜙

=
−1 − 2�̇�

3𝐻2

𝛺𝜙
. (13)

Consequently, this leads to

𝜔𝜙(𝑧) =
2
3 (1 + 𝑧)𝐸 𝑑𝐸

𝑑𝑧 − 𝐸2

𝐸2 −𝛺𝑚0(1 + 𝑧)3
, (14)

From Eqs. (2) and (3), we can derive the equation that describes the
cceleration, as mentioned in [63],
..
𝑎
𝑎
= −1

6
(

𝜌𝑚 + 𝜌𝜙 + 3𝑝𝜙
)

. (15)

Therefore, based on the derived expression, the current model
redicts acceleration (

..
𝑎 > 0) only when 𝜔 < − 1

3 . During this ac-
celerated phase of evolution, three distinct periods can be identified,
characterized by the value of 𝜔 [64]:

• −1∕3 < 𝜔 < −1: In this phase, DE behaves like a quintessence
field, with the pressure being greater than − 1

3 but less than −1.
The scalar field associated with DE evolves gradually, leading to
cosmic acceleration.

• 𝜔 = −1: This value represents the cosmological constant in
the 𝛬CDM model, associated with DE. It signifies a constant
negative pressure that remains fixed over time, driving the cosmic
acceleration in the 𝛬CDM model.

• 𝜔 < −1: This signifies the onset of the phantom era, indicating
DE with even stronger negative pressure than the cosmological
constant. The phantom era represents exotic DE characterized
by a rapidly evolving scalar field, resulting in the accelerated
expansion of the Universe.
3

Further, the parametrization of the dimensionless Hubble parameter
𝐸(𝑧) plays a crucial role in characterizing the nature of the Universe’s
expansion rate. In a general setting, 𝐸(𝑧) can be expressed as

𝐸2(𝑧) = 𝐴(𝑧) + 𝛽(1 + 𝛾𝐵(𝑧)), (16)

here 𝛽, 𝛾 are free parameters, and 𝐴(𝑧), 𝐵(𝑧) are functions of the
edshift 𝑧. Indeed, the literature has witnessed the proposal of various
unctional forms for 𝐴(𝑧) and 𝐵(𝑧), aiming to address cosmological
roblems effectively [51–58]. However, as previously mentioned, some
f these parameterizations suffer from a lack of predictive capability
oncerning the future evolution of the Universe, while others are
alid only for low redshift. In Ref. [65], the authors introduced a
arametrization of 𝐸(𝑧) that includes two correction terms associated
ith DE in the context of the 𝛬CDM model. Their goal was to study the
ntire expansion history of the Universe. Notably, they demonstrated
hat this model aligns better with current observational constraints
hen certain restrictions on model parameters are imposed. Despite

hese efforts, the search for an appropriate functional form of 𝐸(𝑧)
hat can adeptly address cosmological challenges remains ongoing.
esearchers continue to explore novel parametrizations that can ac-
ount for the complexities of the Universe’s expansion and offer a
omprehensive understanding of its dynamics.

In our study, the chosen dimensionless parametrization in Eq. (16)
s favored for its flexibility in characterizing the Hubble parameter’s
ehavior across various redshifts. The choice of parametrization is mo-
ivated by the need to understand the late-time cosmic acceleration and
he nature of DE without being tied to a specific theoretical framework.
he functions 𝐴(𝑧) and 𝐵(𝑧) are chosen in a manner that allows the
arametrization to capture the behavior of the Hubble parameter at
arious redshifts. By adjusting the value of the free parameters 𝛽, 𝛾,
nd the functional forms of 𝐴(𝑧) and 𝐵(𝑧), this parametrization can
ccommodate different cosmological models and allow for compar-
sons with observational data. To obtain the 𝛬CDM model using this
arametrization, we need to set the appropriate values for 𝛽, 𝛾, and
(𝑧). The 𝛬CDM model is a specific case of this parametrization, and

he values are chosen as follows: 𝛽 = 𝛺𝛬, 𝛾 = 0, 𝐴(𝑧) = 𝛺𝑚0(1 + 𝑧)3.
ased on these considerations, in this current study, we introduce a
ovel parametrization of the dimensionless Hubble parameter. This
arametrization includes correction terms associated with DE in the
ontext of the 𝛬CDM model, and it can be expressed as 𝐴(𝑧) = 𝛼(1+𝑧)3
nd 𝐵(𝑧) = 𝑧

1+𝑧 , where 𝛼 = 𝛺𝑚0 when 𝛾 = 0. Since 𝐵(𝑧 = 0) = 0,
it imposes an additional constraint on the parameters of the model,
reducing their number and leading to the relationship 𝛼 + 𝛽 = 1.

Considering the specific choice of 𝐸(𝑧) as given in Eq. (16), Eqs. (10),
(11), (12), and (14) can be expressed as

𝑞(𝑧) =
3𝛼(1 + 𝑧)3 + (1 − 𝛼) 𝛾

(1+𝑧)
[

𝛼(1 + 𝑧)3 + (1 − 𝛼)
(

1 + 𝛾𝑧
1+𝑧

)]1∕2
− 1, (17)

𝛺𝑚(𝑧) =
𝛺𝑚0(1 + 𝑧)3

𝛼(1 + 𝑧)3 + (1 − 𝛼)
(

1 + 𝛾𝑧
1+𝑧

) , (18)

𝛺𝜙(𝑧) = 1 −
𝛺𝑚0(1 + 𝑧)3

𝛼(1 + 𝑧)3 + (1 − 𝛼)
(

1 + 𝛾𝑧
1+𝑧

) , (19)

nd

𝜙(𝑧) =
𝛼 (1 + 𝑧)2 (𝛼 (1 + 𝑧) − 1) + (1 − 𝛼)

(

1 + 𝛾(1+3𝑧)
3(1+𝑧)

)

[

𝛼 (1 + 𝑧)3 + (1 − 𝛼)
(

1 + 𝛾𝑧
1+𝑧

)]

−𝛺𝑚0(1 + 𝑧)3
. (20)

To ensure comprehensiveness, by substituting Eq. (16) into Eqs. (8)
and (9), we have derived the expressions for the potential 𝜙(𝑧) and 𝑉 (𝜙)
specific to this particular selection of 𝐸(𝑧),

𝜙(𝑧) = ∫

⎡

⎢

⎢

⎢

3𝛼 (1 + 𝑧) + (1 − 𝛼) 𝛾
(1+𝑧)3

− 6𝛺𝑚0 (1 + 𝑧)

2
[

𝛼 (1 + 𝑧)3 + (1 − 𝛼)
(

1 + 𝛾𝑧
)]

⎤

⎥

⎥

⎥

1
2

𝑑𝑧, (21)
⎣
1+𝑧

⎦
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𝑉 (𝑧)
3𝐻2

0

= −
3𝛼 (1 + 𝑧)2 + (1 − 𝛼) 𝛾

1+𝑧
6

+

[

𝛼 (1 + 𝑧)3 + (1 − 𝛼)
(

1 +
𝛾𝑧

1 + 𝑧

)]

− 1
2
𝛺𝑚0(1 + 𝑧)3.

(22)

In the next section, a statistical analysis was conducted to con-
strain the parameters (𝐻0, 𝛼, 𝛾) of the model. Using the best-fit val-
ues obtained for these parameters, the evolution of various relevant
cosmological parameters was thoroughly investigated.

Analysis of observational data and methodology

Observational cosmology is characterized by the crucial task of
constructing optimal cosmological models. To achieve this, it is essen-
tial to rigorously constrain the model parameters, namely 𝛼, 𝛾, and
the present value of the Hubble parameter 𝐻0, through meticulous
analysis of observational data. In this study, we use a diverse array of
observational datasets, which include CC, BAO, and the latest Pantheon
sample known as Pantheon+, obtained from observations of SNe.

Hz dataset: CC

The CC method constitutes a valuable technique utilized to deter-
mine the Hubble rate by studying the characteristics of the most ancient
and passively evolving galaxies. These galaxies are meticulously chosen
based on a narrow redshift interval, enabling the application of the
differential aging method. The Hubble rate 𝐻(𝑧) defined within the
FLRW metric, is given by the expression: 𝐻 = − 1

1+𝑧
𝑑𝑧
𝑑𝑡 . The provided

elationship enables us to deduce the rate of the Universe’s expansion
t various time points. A significant advantage of the CC method lies in
ts capability to measure the Hubble parameter 𝐻(𝑧) without being de-

pendent on specific cosmological assumptions. This feature makes the
CC method a valuable tool for testing and critically examining different
cosmological models. Notably, Jimenez and Loeb [66] introduced a
procedure that directly obtains Hubble parameter data by calculating
the rate of redshift change 𝑑𝑧∕𝑑𝑡, at a precise value of 𝑧. This direct ap-
proach enhances the precision of the Hubble parameter measurements
and contributes to a more robust analysis of the Universe’s expansion
history.

For this investigation, a meticulous compilation of a comprehensive
dataset comprising 31 data points has been undertaken from a variety
of reputable surveys (readers may refer to Table 3 in [67]). These data
points are obtained using the CC method and encompass a wide range
of redshift values, spanning from 0.1 to 2. The subsequent analysis em-
ploys the Markov Chain Monte Carlo (MCMC) technique, incorporating
the use of the 𝜒2 function to analyze cosmic chronometers. The 𝜒2

function is expressed as:

𝜒2
𝐻(𝑧)(𝐻0, 𝛼, 𝛾) =

31
∑

𝑘=1

[

(𝐻𝑡ℎ(𝑧𝑘,𝐻0, 𝛼, 𝛾) −𝐻𝑜𝑏𝑠(𝑧𝑘))2

𝜎2𝐻 (𝑧𝑘)

]

. (23)

Here, 𝐻𝑡ℎ represents the theoretical estimation of the Hubble pa-
rameter for a specific model, characterized by model parameters 𝐻0,
𝛼, and 𝛾. 𝐻𝑜𝑏𝑠 denotes the observed values of the Hubble parameter,
and 𝜎𝐻 represents the associated error in the estimation.

𝐵𝐴𝑂 Dataset

BAOs manifest as fluctuations in the density of baryonic matter
throughout the Universe, originating from acoustic density waves in
the primordial plasma during its early stages. These oscillations offer
valuable insights as they can be harnessed to extract significant cosmo-
logical parameters related to DE. In this study, we include the dataset
from BAOs, which has been collected from various surveys, including
the 6dFGS, the SDSS, and the LOWZ samples of the BOSS [68–73].
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These surveys have yielded exceptionally accurate measurements of the
positions of BAO peaks in galaxy clustering across different redshifts.
The characteristic scale of BAO, represented by the sound horizon 𝑟𝑠 at
the epoch of photon decoupling with redshift 𝑧𝑑𝑒𝑐 , is related through
the following equation:

𝑟𝑠(𝑧∗) =
𝑐
√

3 ∫

1
1+𝑧∗

0

𝑑𝑎
𝑎2𝐻(𝑎)

√

1 + (3𝛺𝑏,0∕4𝛺𝛾,0)𝑎
, (24)

here 𝛺𝑏,0 and 𝛺𝛾,0 represent the present density values of baryons and
hotons, respectively. The BAO dataset used in this study comprises
ix data points for the ratio 𝑑𝐴(𝑧∗)∕𝐷𝑉 (𝑧𝐵𝐴𝑂). These data points were
btained from the sources cited in Refs. [68–73]. Here, 𝑧∗ ≈ 1091 repre-
ents the redshift value for photon decoupling, and 𝑑𝐴(𝑧∗) = 𝑐 ∫ 𝑧

0
𝑑𝑧′

𝐻(𝑧′)
represents the comoving angular diameter distance at decoupling. In
addition, we have the dilation scale 𝐷𝑉 (𝑧) =

[

𝑐𝑧𝑑2𝐴(𝑧)∕𝐻(𝑧)
]1∕3.

The chi-square function, introduced in [73], is used to evaluate the
AO dataset, and it can be expressed as
2
𝐵𝐴𝑂 = 𝑋𝑇𝐶−1

𝐵𝐴𝑂𝑋, (25)

here

=

⎛
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, (26)

and 𝐶−1
𝐵𝐴𝑂 represents the inverse of the covariance matrix [73].

SNe dataset: Pantheon+

The Pantheon+ analysis goes beyond the original Pantheon analysis
by incorporating an extended dataset of SNe that includes those with
measured Cepheid distances to galaxies. This comprehensive dataset
consists of 1701 light curves from 1550 SNe, covering a redshift range
of 0.001 ≤ 𝑧 ≤ 2.2613, and has been collected from a total of 18
distinct studies [74–77]. Among the 1701 light curves present in the
dataset, 77 of them are linked to galaxies that contain Cepheids. The
Pantheon+ compilation, in comparison to the original Pantheon com-
pilation by [78], brings substantial enhancements and improvements.
Mainly, the Pantheon+ compilation showcases an enlarged sample size,
with a notable increase in the number of SNe at redshifts below 0.01.
Moreover, substantial enhancements have been made to address and
mitigate systematic uncertainties related to redshifts, intrinsic scatter
models, photometric calibration, and peculiar velocities of SNe. It is
essential to note that, due to specific selection criteria, not all SNe
from the original Pantheon compilation are included in the improved
Pantheon+ compilation.

Pantheon+ presents an additional advantage by enabling the con-
straint of the Hubble constant (𝐻0) alongside model parameters. To
obtain the best fits for the free parameters, the optimization of the 𝜒2

function is necessary, as expressed below:

𝜒2
𝑆𝑁𝑒 = 𝛥𝜇𝑇 (𝐶−1

𝑆𝑦𝑠+𝑆𝑡𝑎𝑡)𝛥𝜇. (27)

In this context, 𝐶𝑆𝑦𝑠+𝑆𝑡𝑎𝑡 corresponds to the covariance matrix of
he Pantheon+ dataset, encompassing both systematic and statistical
ncertainties.

The term 𝛥𝜇 signifies the distance residual and is defined as follows:

𝜇𝑘 = 𝜇𝑘 − 𝜇𝑡ℎ(𝑧𝑘). (28)

Here, 𝜇𝑘 represents the distance modulus of the 𝑘th SNe. It is crucial
o note that 𝜇 is calculated as 𝜇 = 𝑚 −𝑀 , where 𝑚 corresponds
𝑘 𝑘 𝐵𝑘 𝐵𝑘
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Fig. 1. Likelihood contour for Hz, 𝐻𝑧 + 𝐵𝐴𝑂, and 𝐻𝑧 + 𝐵𝐴𝑂 + 𝑆𝑁𝑒 datasets with 1 − 𝜎 and 2 − 𝜎 confidence levels.
Table 1
Summary of MCMC analysis results for parameters 𝐻0, 𝛼, and 𝛾.
𝐷𝑎𝑡𝑎𝑠𝑒𝑡 𝐻0 𝛼 = 𝛺𝑚0 𝛾

Hz 67.8 ± 1.8 0.33 ± 0.11 −0.2 ± 1.8

𝐻𝑧 + 𝐵𝐴𝑂 67.9+1.8−1.7 0.310+0.042−0.038 0.10+0.94−0.90

𝐻𝑧 + 𝐵𝐴𝑂 + 𝑆𝑁𝑒 68.0+1.6−1.5 0.309+0.041−0.038 0.01+0.70−0.71

to the apparent magnitude of the 𝑘th SNe and 𝑀 denotes the fiducial
magnitude of a SNe.

The theoretical distance modulus 𝜇𝑡ℎ is calculated using the follow-
ing expression:

𝜇𝑡ℎ(𝑧,𝐻0, 𝛼, 𝛾) = 5 log10

(

𝑑𝐿(𝑧,𝐻0, 𝛼, 𝛾)
1 Mpc

)

+ 25, (29)

where 𝑑𝐿 represents the luminosity distance in Mpc, which is model-
based and given by:

𝑑𝐿(𝑧,𝐻0, 𝛼, 𝛾) =
𝑐(1 + 𝑧)
𝐻0 ∫

𝑧

0

𝑑𝑦
𝐸(𝑦)

, (30)

where 𝑐 represents the speed of light. Furthermore, the parameters 𝑀
and 𝐻0 display degeneracy, particularly in the analysis of SNe, but
considering the recent SH0ES results relaxes these constraints. As a
result, the distance residual can be expressed as:

𝛥�̄� =

{

𝜇𝑘 − 𝜇𝑐𝑑
𝑘 , if 𝑘 is in Cepheid hosts

𝜇𝑘 − 𝜇𝑡ℎ(𝑧𝑘), otherwise,
(31)

where 𝜇𝑐𝑑
𝑘 represents the Cepheid host-galaxy distance released by

SH0ES. When calculating the covariance matrix for the Cepheid host-
galaxy, it can be combined with the covariance matrix for SNe. The
resulting combined covariance matrix, denoted as 𝐶𝑆𝑁𝑒

𝑆𝑦𝑠+𝑆𝑡𝑎𝑡 +𝐶𝑐𝑑
𝑆𝑦𝑠+𝑆𝑡𝑎𝑡,

ncorporates both statistical and systematic uncertainties from the Pan-
theon+ dataset and Cepheid host-galaxy data. Thus, the 𝜒2 function for
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the combined covariance matrix used to constrain cosmological models
in the analysis is given by

𝜒2
𝑆𝑁𝑒+ = 𝛥�̄�(𝐶𝑆𝑁𝑒

𝑆𝑦𝑠+𝑆𝑡𝑎𝑡 + 𝐶𝑐𝑑
𝑆𝑦𝑠+𝑆𝑡𝑎𝑡)

−1𝛥�̄�𝑇 . (32)

Joint analysis

Finally, we explore various combinations of the aforementioned
observational datasets. The following combinations will be employed
for our study:

𝐻𝑧 + 𝐵𝐴𝑂, (33)
𝐻𝑧 + 𝐵𝐴𝑂 + 𝑆𝑁𝑒. (34)

The model parameters are constrained by minimizing their re-
spective 𝜒2 values, which are related to the likelihood through  ∝
exp

(

− 𝜒2

2

)

, using the Markov Chain Monte Carlo (MCMC) sampling
technique and the emcee library. The obtained results are summarized
in Table 1. Fig. 1 depicts the 1 − 𝜎 and 2 − 𝜎 contour plots for Hz,
𝐻𝑧 + 𝐵𝐴𝑂, and 𝐻𝑧 + 𝐵𝐴𝑂 + 𝑆𝑁𝑒, respectively.

Results from data analysis

In the preceding section, we analyzed the observational constraints
on the parameters 𝐻0, 𝛼, and 𝛾. Now, let us explore the evolution of
the cosmological parameters based on these constraints. In our analysis,
we specifically concentrate on three datasets: Hz, 𝐻𝑧 + 𝐵𝐴𝑂, and
𝐻𝑧 + 𝐵𝐴𝑂 + 𝑆𝑁𝑒. Using the best-fit values of 𝐻0, 𝛼, and 𝛾 ( Table 1),
we reconstruct the deceleration parameter 𝑞(𝑧), and the results are
presented in Fig. 2. The plot clearly shows that 𝑞(𝑧) indicates past decel-
eration (𝑞 > 0) and recent acceleration (𝑞 < 0) of the Universe. This is
crucial for understanding the structure formation of the Universe. The
present values of 𝑞(𝑧) are found to be 𝑞0 = −0.57+0.46−0.46, 𝑞0 = −0.50+0.36−0.35,
and 𝑞0 = −0.53+0.29−0.29 for Hz, 𝐻𝑧+𝐵𝐴𝑂, and 𝐻𝑧+𝐵𝐴𝑂 +𝑆𝑁𝑒 datasets,
respectively. In addition, the best-fit values for the transition redshift
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Fig. 2. This figure shows the evolution the deceleration parameter 𝑞(𝑧) against 𝑧 for
constrained values from Hz, 𝐻𝑧 + 𝐵𝐴𝑂, and 𝐻𝑧 + 𝐵𝐴𝑂 + 𝑆𝑁𝑒 datasets. In additon,
we include a comparison to the 𝛬CDM model using the parameter values from Planck
observations [83].

(𝑧𝑡𝑟) are determined as 𝑧𝑡𝑟 = 0.59+0.4−0.4, 𝑧𝑡𝑟 = 0.65+0.08−0.06, and 𝑧𝑡𝑟 = 0.65+0.09−0.08
for Hz, 𝐻𝑧+𝐵𝐴𝑂, and 𝐻𝑧+𝐵𝐴𝑂 +𝑆𝑁𝑒 datasets, respectively. These
results are consistent with previous findings by various researchers
using different approaches [79–82]. In Fig. 2, we also compare the
reconstructed plots of 𝑞(𝑧) for our model and the standard 𝛬CDM
model. The plot demonstrates that our model’s evolution of 𝑞(𝑧) is
consistently compatible with the 𝛬CDM model across different datasets.
Furthermore, it is evident that the best-fit values of 𝑞0 and 𝑧𝑡𝑟 align
well with the predictions of the standard 𝛬CDM model. However, as
𝑧 approaches −1, we observe a slight deviation in the evolution of
𝑞(𝑧) from the 𝛬CDM model, particularly for both Hz and 𝐻𝑧 + 𝐵𝐴𝑂
datasets. The observed behavior of 𝑞(𝑧) could potentially be attributed
to the choice of the function 𝐵(𝑧) in Eq. (16). As previously mentioned,
the term 𝐵(𝑧) represents a correction to the 𝛬CDM model and plays a
significant role in shaping the future evolution of the Universe.

Figs. 3 and 4 illustrate the evolution of the density parameters for
matter and the scalar field, respectively. These plots provide important
information on the composition of the Universe. Initially, the Universe
is predominantly dominated by non-relativistic matter, including dark
matter and baryonic matter, while the contribution from the scalar field
density parameter remains negligible. As the Universe expands, the
density parameter for matter gradually decreases due to the expansion
of the Universe. However, with the passage of time, the scalar field’s
density parameter becomes increasingly significant, eventually surpass-
ing the contribution from matter. This shift in dominance leads to the
acceleration of the Universe’s expansion, marking a crucial transition in
cosmic evolution. In addition, the present-day density parameters are
found as 𝛺𝑚0

= 0.33 ± 0.11, 𝛺𝑚0
= 0.310+0.042−0.038, and 𝛺𝑚0

= 0.309+0.041−0.038
for the Hz, 𝐻𝑧+𝐵𝐴𝑂, and 𝐻𝑧+𝐵𝐴𝑂 +𝑆𝑁𝑒 datasets, respectively. In
𝛬CDM model, 𝛺𝑚0

= 0.315± 0.007 [84–87]. It is clearly seen that these
values of our model are consistent with those of 𝛬CDM.

Fig. 5 displays the evolution of the EoS parameter of the scalar
field 𝜔𝜙, which provides crucial insights into the various epochs of
accelerated and decelerated expansion of the Universe, as discussed
previously. It is clear that the Universe has experienced a transition
from quintessence to phantom, and the present EoS of the scalar
field lies in the quintessence region (𝜔𝜙 > −1) for 𝐻𝑧 + 𝐵𝐴𝑂 and
𝐻𝑧 + 𝐵𝐴𝑂 + 𝑆𝑁𝑒 datasets, while in the phantom region (𝜔𝜙 < −1)
for the Hz dataset. At early epochs, the effect of the function 𝐵(𝑧)
on the EoS parameter is not very significant, but its impact becomes
apparent in the future evolution of the Universe. Further, the present
values of 𝜔𝜙(𝑧) are found to be 𝜔0 = −1.07+0.68−0.68, 𝜔0 = −0.97+0.32−0.30, and
𝜔0 = −0.99+0.23−0.23 for Hz, 𝐻𝑧 + 𝐵𝐴𝑂, and 𝐻𝑧 + 𝐵𝐴𝑂 + 𝑆𝑁𝑒 datasets,
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respectively [88,89]. p
Fig. 3. This figure shows the evolution of the density parameter for matter 𝛺𝑚(𝑧)
against 𝑧 for constrained values from Hz, 𝐻𝑧 + 𝐵𝐴𝑂, and 𝐻𝑧 + 𝐵𝐴𝑂 + 𝑆𝑁𝑒 datasets.

Fig. 4. This figure shows the evolution of the density parameter for scalar field 𝛺𝜙(𝑧)
against 𝑧 for constrained values from Hz, 𝐻𝑧 + 𝐵𝐴𝑂, and 𝐻𝑧 + 𝐵𝐴𝑂 + 𝑆𝑁𝑒 datasets.

Fig. 5. This figure shows the evolution of the EoS parameter for scalar field 𝜔𝜙(𝑧)
against 𝑧 for constrained values from Hz, 𝐻𝑧 + 𝐵𝐴𝑂, and 𝐻𝑧 + 𝐵𝐴𝑂 + 𝑆𝑁𝑒 datasets.

Final remarks and perspectives

In the present work, we have conducted an in-depth investigation
of the dynamics of the accelerating scenario within the framework
of scalar field DE models. Our approach is based on a novel and
comprehensive parametrization of the dimensionless Hubble parameter
i.e. 𝐸2(𝑧) = 𝐴(𝑧) + 𝛽(1 + 𝛾𝐵(𝑧)). The functions 𝐴(𝑧) and 𝐵(𝑧) in our
arametrization have been carefully selected to ensure a comprehensive
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representation of the Hubble parameter over a wide range of redshifts,
thereby enhancing the accuracy of our analysis. By employing the
chosen parametrization, we derived analytical solutions for various
cosmological parameters, including the deceleration parameter, density
parameter, and EoS parameter.

To validate our results, we utilized observational data from diverse
sources, such as CC, BAO, and the Pantheon+ datasets. Employing
the MCMC methodology, the best-fit values of the model parameters
(𝐻0, 𝛼, 𝛾), along with the corresponding 1-𝜎 and 2-𝜎 confidence regions,
have been determined and are presented in Table 1 and Fig. 1, re-
spectively. The deceleration parameter 𝑞(𝑧) was examined in Fig. 2 for
various redshift values, indicating the transition between decelerated
and accelerated phases of the Universe. The analysis of the decelera-
tion parameter reveals that the present values are found to be 𝑞0 =
−0.57+0.46−0.46, 𝑞0 = −0.50+0.36−0.35, and 𝑞0 = −0.53+0.29−0.29 for Hz, 𝐻𝑧 + 𝐵𝐴𝑂,
and 𝐻𝑧 + 𝐵𝐴𝑂 + 𝑆𝑁𝑒 datasets, respectively. Furthermore, the best-fit
values for the transition redshift (𝑧𝑡𝑟) are determined as 𝑧𝑡𝑟 = 0.59+0.4−0.4,
𝑧𝑡𝑟 = 0.65+0.08−0.06, and 𝑧𝑡𝑟 = 0.65+0.09−0.08 for Hz, 𝐻𝑧 + 𝐵𝐴𝑂, and 𝐻𝑧 + 𝐵𝐴𝑂 +
𝑆𝑁𝑒 datasets, respectively. In comparing the Hubble constant values
obtained for our model with those of the 𝛬CDM model, a noteworthy
consistency emerges. Our model’s Hubble constant values, derived from
the Hz, 𝐻𝑧+𝐵𝐴𝑂, and 𝐻𝑧+𝐵𝐴𝑂+𝑆𝑁𝑒 datasets, are remarkably close,
with central values of 67.8, 67.9, and 68.0, respectively. On the other
hand, the 𝛬CDM model, as determined by Planck measurements [83],
yields a Hubble constant value of 𝐻0 = 67.4 ± 0.5. The comparison
demonstrated the effectiveness of our parametrization in describing
the late-time cosmic acceleration and its compatibility with the 𝛬CDM
model at different redshifts. We reached a similar conclusion using
the current values of the density parameters of our model and the
𝛬CDM model. We have determined the present-day density parameters
as follows: 𝛺𝑚0

= 0.33 ± 0.11, 𝛺𝑚0
= 0.310+0.042−0.038, and 𝛺𝑚0

= 0.309+0.041−0.038
for the Hz, 𝐻𝑧 + 𝐵𝐴𝑂, and 𝐻𝑧 + 𝐵𝐴𝑂 + 𝑆𝑁𝑒 datasets, respectively.
These values are remarkably close to the corresponding 𝛬CDM’s density
parameter, which is 𝛺𝑚0

= 0.315 ± 0.007. This convergence with the
𝛬CDM model indicates a strong agreement with the observed data and
underscores the robustness of our findings.

Furthermore, we analyzed the density parameter in Figs. 3 and 4,
which provided valuable information about the relative contributions
of different components to the total energy density of the Universe.
This enabled us to understand the dominant energy components dur-
ing different epochs of the Universe’s evolution. In addition, the EoS
parameter for the scalar field was studied (Fig. 5), which is a critical
quantity characterizing the nature of DE. Our results shed light on
whether the DE behaves as quintessence (with EoS greater than −1)
or phantom (with EoS less than −1), indicating whether the Universe’s
expansion is driven by an evolving scalar field or a cosmological
constant, respectively. The present values of EoS are found to be 𝜔0 =
−1.07+0.68−0.68, 𝜔0 = −0.97+0.32−0.30, and 𝜔0 = −0.99+0.23−0.23 for Hz, 𝐻𝑧+𝐵𝐴𝑂, and
𝐻𝑧 + 𝐵𝐴𝑂 + 𝑆𝑁𝑒 datasets, respectively.

In conclusion, the model we consider appears to be compatible with
𝛬CDM in terms of the evolution and present values of dynamic and
kinematic quantities such as the deceleration parameter and density
parameters. Therefore, our model is able to explain the expansion
evolution of the universe in a manner consistent with observations,
without facing the problems that the 𝛬CDM model currently faces,
and moreover, as we have already mentioned above, it offers the
opportunity to analyze in a wider redshift range due to the existence
of the function 𝐵(𝑧) seen in the parametrization (16), which can be
considered as a correction to the 𝛬CDM, and thus providing predictions
about future evolution can be considered as the advantages of our
model over the 𝛬CDM model. Our parametrization of the dimensionless
Hubble parameter offers a versatile approach to exploring scalar field
DE models [80]. The flexibility in choosing the functions 𝐴(𝑧) and
𝐵(𝑧) allows for addressing various concerns and scenarios within the
standard model. In future research, it is valuable to compare our
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parametrization with alternative models, such as the linear model
(𝐵(𝑧) = 𝑧), the sinusoidal model (𝐵(𝑧) = sin(𝑧)), and the logarithmic
model (𝐵(𝑧) = log(𝑧 + 1)), to assess their respective strengths and
weaknesses. These comparative analyses can significantly enrich our
understanding of DE and its role in the late-time Universe evolution.
Moreover, exploring additional parametrization forms beyond these
alternatives offers promising opportunities for achieving a more adapt-
able approach to modeling cosmic expansion. Furthermore, expanding
our analysis to incorporate additional observational datasets and in-
tegrating other cosmological probes, such as the CMB radiation data
from the Planck mission [90], has the potential to yield even more
comprehensive and robust constraints on the model parameters. This
extended approach would enhance the reliability and depth of our
research findings.
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