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In this paper we consider a model of quintessential inflation based upon inverse hyperbolic po-
tential. We employ curvaton mechanism for reheating which is more efficient than gravitational
particle production; the mechanism complies with nucleosynthesis constraint due to relic gravity
waves. We obtain a lower bound on the coupling constant g that governs the interaction of curvaton
with matter fields. We study curvaton decay before domination and decay after domination and
plot the allowed region in the parameter space in both cases.

I. INTRODUCTION

The standard model of the Universe has many prob-
lems which need to be addressed both at early and at
late times. A few examples of the most pertinent prob-
lems are the flatness problem, the monopole problem, the
horizon problem and the age crisis of the Universe.These
problems can be solved by introducing an early phase
of accelerated expansion, called inflation, together with
late time cosmic acceleration. Recent data obtained from
type Ia supernovae, CMB background and galaxy clus-
tering suggest late time cosmic acceleration. [1–3].

Both inflation and late time acceleration are often
studied separately but if we build a theory in which both
the above phenomena are implemented by using a single
scalar field then a unique cause could drive both. This
is known as ”quintessential inflation” and its advantage
is that it is efficient as it provides a common theoretical
framework[4–7]. In order to achieve this unification the
field must first evolve very slowly in order to drive infla-
tion, then it should roll very quickly in order to exit from
inflation. Then comes a time when the scalar field kind
of disappears from the scene and its evolution no longer
plays a prominent role in the history of the Universe. It
then reemerges to play a key role in driving late time
cosmic acceleration. Thus inflation is reborn as late time
cosmic acceleration.

In order to model the desired behaviour of the scalar
field, we usually describe the dynamics of the scalar field
with the help of a potential V (φ) which is unknown so
far and whose functional form is highly debatable [8].
But the potential should have certain characteristics in
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order to achieve the desired result. It should be shallow
at early times in order for slow roll to commence. For
inflation to end the shallow behaviour should be followed
by the potential falling off steeply. A scaling solution is
thus obtained where the energy density of field changes in
exactly the same way as that of the background. The po-
tential should then have certain late time characteristics
giving rise to scaling behaviour. Most generic potentials
do not change their shape frequently enough to be shal-
low early on, then steep and then again shallow at late
times. They are either shallow at early times and steep
thereafter or vice versa. The first class of models could
give rise to a viable scenario of quintessential inflation if a
suitable mechanism was constructed in order to exit from
the scaling regime in order to obtain late time accelera-
tion. The second class requires extra damping at early
times in order to facilitate inflation but fails as it predicts
a high tensor to scalar ratio of perturbations and hence
these models do not satisfy observational constraints.

We stick to the first case thus. In this case we exit
from the scaling regime and obtain late time accelera-
tion by coupling the field non minimally to matter, gen-
erally neutrinos as they become non relativistic at late
times. This creates a minimum in the field potential at
late times without destroying the matter phase.

Such a model with inverse hyperbolic type potential
was recently studied and it was shown that coupling to
massive neutrino matter led to late time acceleration [1]
. The instant preheating mechanism with Yukawa inter-
action was considered and bounds on the coupling con-
stants were obtained using the nucleosynthesis constraint
on relic gravity waves produced during inflation. Bounds
on the reheating temperature were also obtained.

In this paper the curvaton mechanism is used to reheat
the Universe and generate the large -scale curvature per-
turbations in our Universe, which is the dominant cause
of structure in the Universe.
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In the curvaton mechanism, the inflaton field only
drives inflation. During the inflationary era the energy
density of the curvaton field is sub-dominant and is not
diluted by the expansion. After horizon exit, the quan-
tum fluctuations of the curvaton field get converted into
classical perturbations with a flat spectrum. This cor-
responds to isocurvature perturbations. The moment
inflation ends the energy density of the curvaton field
becomes (pre) dominant. Then the isocurvature pertur-
bations are converted into adiabatic yielding curvature
perturbations which are fairly large in size. The cur-
vaton then decays into conventional matter forcing the
perturbations to stay adiabatic. The curvaton is thus re-
sponsible for all the present material in the Universe and
also for the Large Scale Structure of the Universe [9–19].
The advantages of curvaton reheating is that it is

efficient unlike gravitational particle production and it
solves many problems that are associated with various
methods of reheating, like instant preheating, fermion
preheating or those based on inflaton decay [20–27]. One
such problem in literature is the famous η - problem
[28, 29]. Introducing the curvaton makes it easier to con-
struct sensible models of slow - roll inflation. With curva-
ton reheating a higher reheating temperature can be ob-
tained. Curvaton models predict a small value of tensor-
to-scalar ratio [30]. Also in this scenario gravitational
waves of smaller wavelength do not have a larger ampli-
tude than desired and hence such waves do not dominate.
Curvaton models can also predict the duration of the in-
flationary period [31].
In this paper the same model with inverse hyperbolic

type potential as discussed above is considered with cur-
vaton as reheating mechanism.

II. THE INFLATON FIELD

In this section we describe the inflaton field, a real
scalar field denoted by φ. The field does not couple much
to other constituents of the Universe - matter, radiation
and neutrinos. Its dynamics is governed by the potential,

V (φ) =
V0

cosh
(

φn

λn

) =
V0

cosh
[

βn

(

φ
Mpl

)n] (1)

,where V0, λ are free parameters. We consider a flat
FRW background, with a metric,

ds2 = −dt2 + a(t)2δijdx
idxj . (2)

Here λ = αMpl and β = 1
α
, where α and β are dimen-

sionless parameters and n is an integer. The following
action is considered for the resulting dynamical system,

S =

∫

d4x
√
−g

[

M2
pl

2
R− 1

2
∂µφ∂µφ− V (φ)

]

+ Sm

+ Sν + SR. (3)

Sm, Sν , SR represent the actions for standard matter,
massive neutrino matter and radiation respectively and
all three play a pivotal role in the post inflationary era.
The Friedmann equations for the action (3) in flat FRW
geometry reduce to,

3H2M2
pl = ρm + ρr +

1

2
φ̇2 + V (φ), (4)

and
(

2Ḣ + 3H2
)

M2
pl = −1

3
ρr −

1

2
φ̇2 + V (φ). (5)

The equation of motion for the scalar field is,

φ̈+ 3Hφ̇+
dV

dφ
= 0. (6)

The slow roll parameters for a potential V (φ) are defined
as usual [32, 33],

ǫ =
M2

pl

2

(

1

V

dV

dφ

)2

, (7)

and

η =
M2

pl

V

d2V

dφ2
. (8)

The end of inflation is marked by,

ǫ|φ=φend
= 1, (9)

where ”end” represents the value at the end of inflation.
Let us consider a period which begins when the modes
cross the horizon and ends with the end of inflation. Then
the number of e-foldings during this period is given by
[32, 33],

N(k) = M−1
pl

∫ φ

φend

dφ
√

2ǫ(φ)
(10)

=
1

M2
pl

∫ φ

φend

V (φ′)

V ′(φ′)
dφ′. (11)

The tensor to scalar ratio r is given by,

r = 16ǫ, (12)

and the scalar spectral index ns, which is defined as,

ns − 1 =
d(logPR)

d(logk)
, (13)

where PR is the spectrum of curvature perturbations, is
reduced to the form,

ns = 2η − 6ǫ+ 1. (14)

Throughout the rest of the paper we use n = 6 and β =
1. For these values of n and β, the theoretical value of the
spectral index ns is in agreement with the Planck 2015
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data up-to the 1σ confidence level and also the tensor-to-
scalar ratio r satisfies the Planck 2015 data, i.e., r < 0.1
[34].
After inflation ends, the kinetic epoch begins and dur-

ing this era the energy density of the inflaton field falls
as,

ρφ = ρ
(kin)
φ

(akin
a

)6

(15)

Thus the inflaton field describes what is known as ”stiff
matter” during the kinetic epoch. We use ‘kin’ to label
the value of the different quantities at the beginning of
the kinetic epoch.
Introducing dimensionless scalar field χ = φ

Mpl
in equa-

tion 1 one obtains,

V =
V0

cosh (βnχn)
(16)

Now using the following values: χin = 0.44, χend =
0.88 and V0 = 4.64 ∗ 1060GeV 4. Upon calculation we
obtain initially, Vi = Vin = 4.63988× 1060GeV 4 and also
finally Vf = Vend = 4.18098× 1060GeV 4. Further using

the relation, H2
in = Vin

3M2

pl

one obtains,

H2
in = 2.68512× 1023GeV 2 (17)

and hence,

Hin = 5.18181× 1011GeV (18)

Also using, H2
end = Vend

2M2

pl

, we calculate,

H2
end = 3.62932× 1023GeV 2 (19)

and hence,

Hend = 6.02438× 1011GeV (20)

The amplitude of gravitational waves h2
GW is given by,

h2
GW =

H2
in

8πM2
pl

= 5.82139× 10−15 (21)

Gravitational waves behave as spin-less fields having no
mass and then their amplitude remains constant during
inflation. During the kinetic epoch, the energy density
of gravitational waves evolves as,

ρg =
64

3π
h2
GWρφ

( a

akin

)2

(22)

During the moment when the energy density of the stiff
scalar matter equals the energy density of the radiation
the energy density of the gravitational waves is given by,
(ρφ = ρr) is,

ρg
ρr

∣

∣

∣

a=aeq

=
64

3π
h2
GW

[ aeq
akin

]2

(23)

III. THE CURVATON FIELD

The curvaton, denoted by σ, is a real scalar field whose
dynamics is governed by the potential -

U(σ) =
m2

σσ
2

2
(24)

and obeys the Klein Gordan equation,

σ̈ + 3Hσ̇ +m2
σσ = 0 (25)

Here mσ is the curvaton mass. During the inflationary
period the curvaton field stays massless, m ≪ Hf and
it can be shown mathematically that under these con-
ditions the curvaton field remains constant during the
inflationary era, σf ≃ σi and also σ̇f = 0. Then we have,

Uf =
1

2
m2

σσ
2
f =

1

2
m2

σσ
2
i (26)

The subscripts i and f denote the values of the quan-
tities at the beginning and end of inflation.
When inflation ends, the kinetic regime begins, and it

is during this era that the curvaton acquires a mass. This
happens at a time when m ≃ H . We then get,

m

Hkin

=
a3kin
a3m

(27)

Quantities labelled by the subscript m indicate that
they were evaluated at exactly the same moment when
the curvaton acquired a mass. Till this point, the curva-
ton field stayed massless and then, σm ≃ σi. We do not
desire a period where the curvaton field drives inflation
and for this to occur the the scalar stiff-matter should
dominate the Universe. Thus the energy of the curvaton
field must be much less than that of stiff matter. This
leads to the equation,

σ2
i ≪ 3

4π
m2

pl (28)

where σi is the initial value of the curvaton field.

IV. CONSTRAINING THE REHEATING

TEMPERATURE

A. The Curvaton Reheating Mechanism

If the Curvaton field, denoted by σ, decays into two
fermions f and f̄ during Curvaton Reheating then the
Curvaton Reheating is governed by the reaction:

σ → f f̄
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If the Lagrangian that governs this reaction is charac-
terized by the coupling constant g, then the decay width
of this reaction is given by,

Γ =
g2mσ

8π
(29)

The reheating temperature is thus given by,

Trh ≈ 0.78 g
− 1

4

∗

√

MplΓ (30)

Using equations (29) and (30) ,

Trh ≈ 0.78 g
− 1

4

∗

√

mσMpl

8π
× g (31)

The curvaton field decays at a time when Γσ = H and
then

Γσ

Hkin

=
a3kin
a3d

⇒ akin
ad

= 3

√

Γσ

Hkin

(32)

B. Obtaining the Constraint

We now derive the bound on the reheating temperature
that is consistent with the nucleosynthesis constraint us-
ing this mechanism. This reduces to finding those values
of the coupling constant g for which the desired reheating
temperature is obtained. These values of g are obtained
by deriving a bound on g and it gives us the permissible
values of the coupling constant g for our model. While
deriving the bound in equation (28) only the properties
of the Curvaton field was used. The properties of the in-
flaton field have not been considered so far. Thus apart
from the Curvaton model this result is model indepen-
dent. We can thus apply it to our model of Quintessential
Inflation. The above bound combined with the fact that
the curvaton energy should also be sub-dominant at the
end of inflation compared with the energy of the inflaton
field gives us a bound on the curvaton mass mσ. This
then combined with the required reheating temperature
gives us a bound on g where we use equation (31).
We have from equation (26),

Uf =
1

2
m2

σσ
2
i (33)

and from equation (16)

Vf =
V0

cosh
(

βnχn
f

) (34)

Dividing (33) by (34),

Uf

Vf

=
1

2

m2
σ

V0
cosh

(

βnχn
f

)

σ2
i (35)

Now using the bound on σi given by equation (28) in
equation (35) one can obtain,

Uf

Vf

≪ 3

8π

m2
σm

2
pl

V0
cosh

(

βnχn
f

)

(36)

Now
Uf

Vf
≪ 1 implies the strong condition that,

3

8π

m2
σm

2
pl

V0
cosh

(

βnχn
f

)

≪ 1 (37)

Then,

m
1

2

σ ≪
[8π

3

1

m2
pl

V0

cosh
(

βnχn
f

)

]
1

4

(38)

We have now obtained the bound on the mass of the
curvaton field. Using equation (38) in equation (31),

Trh ≪ 0.78g
−1

4

∗ g
1

3
1

4

1

(8π)
1

2

[ V0

cosh
(

βnχn
f

)

]
1

4

(39)

We have,

Trh ≥ 2.2× 1012GeV (40)

Combining equations (39) and (40),

2.2× 1012GeV ≤ Trh ≪ 0.78g
−1

4

∗ g
1

3
1

4

1

(8π)
1

2

[ V0

cosh
(

βnχn
f

)

]
1

4

(41)
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Now using the constraints on the inflaton field, n = 6,
β = 1, V0 = 4.64 × 1060GeV, χf = 0.88 together with
the value of g∗, g∗ = 140, one obtains

2.2× 1012GeV ≤ Trh ≪ 4.91577× 1013g GeV (42)

We thus obtain the following bound on g,

g ≫ 0.0447539 (43)

V. EXPLORING THE PARAMETER SPACE

We study here two cases -

1. curvaton decays before domination

2. curvaton decays after domination

A. Curvaton Decay before Domination

Dashed  : Decay after Dom ination

Dotted  (Th ick) : Cu rvaton  not Massless

Dotted  : Gravity Waves Dom ination

DotDashed  : Pertu rbations Non  Gaussian

Th ick : Decay after Nucleosyn thesis
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FIG. 1: Curvaton constraints for the case in which the
curvaton field decays before domination, using N = 60

in Eqs. (56), (57), (58), (61), (67), (70), (72) The
regions excluded by each constraint is shaded, and the

allowed region is unshaded.

We now study the case of curvaton decay before dom-
ination as applied to the same inverse hyperbolic cosine
potential. There comes a time when the energy density
of the stiff scalar matter equals the energy density of the
curvaton matter. During this moment,

ρσ
ρφ

∣

∣

∣

a=aeq

=
4π

3

m2σ2
i

m2
plH

2
kin

a3m
a3kin

a3eq
a3kin

= 1 (44)

This is an equation that is model independent in the
sense that it only depends on the properties of the cur-
vaton field and not of the inflaton field. This means that

we can use this equation for our potential directly. Using
the above equation one obtains,

Heq = Hkin

a3kin
a3eq

=
4π

3

σ2
i

m2
pl

m (45)

Now in order that the curvaton field should not dom-
inate the expansion history of the Universe and that
it should decay after it becomes massive the constraint
Heq < Γσ < m needs to be satisfied and thus from equa-
tion (45),

4π

3

σ2
i

m2
pl

m < Γσ < m (46)

Just like equation (44), equation (46) can also be ap-
plied to our potential directly.
The Bardeen parameter in this case is given by,

Pζ =
r2d

36π2

H2
i

σ2
i

(47)

The normalization factor indicates that the dominant
component at that time is the scalar stiff matter. Unlike
in equation (44) the energy density of the curvaton field
does not equal that of stiff scalar matter and rd represents
the ratio of these two densities at the exact moment when
the curvaton decays. Here rd is given by,

rd =
ρσ
ρφ

∣

∣

∣

a=ad

=
4π

3

m

Γσ

σ2
i

m2
pl

(48)

Combining equations (47) and (48),

σ2
i

m2
pl

=
81

4
Pζ

m2
pl

H2
i

Γ2
σ

m2
(49)

Now substituting equation (49) in (46),

(

27πPζ

m2
pl

H2
i

Γ2
σ

m2

)

m < Γσ < m (50)

Define,

A = 27πPζ

m2
pl

H2
i

= 27πPζ

m2
pl

H2
in

(51)

Fitting our model now, H2
in = 2.68512 × 1023GeV 2,

mpl = 1.220910× 1019GeV and as observed from COBE
Pζ = 2.3× 10−9, one obtains

A = 1.08304× 108 (52)
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From equation (50), we have three constraints for this
model.

m
mpl

> A Γσ

mpl
(53)

m
mpl

>
√
A Γσ

mpl
(54)

m
mpl

> Γσ

mpl
(55)

Thus the first three constraints for our model are,

m
mpl

>
(

1.08304× 108
)

Γσ

mpl
(56)

m
mpl

>
(

1.04069× 104
)

Γσ

mpl
(57)

m
mpl

> Γσ

mpl
(58)

where we have used equation (52).
Now from equation (36),

Uf

Vf

≪ 3

8π

m2m2
pl

V0
cosh

(

βnχn
f

)

≪ 1 (59)

which gives us,

m

mpl

≪ 1

m2
pl

[8π

3

( V0

cosh
(

βnχn
f

)

)]
1

2

(60)

Fitting our model,

m

mpl

≪ 3.97037× 10−8 (61)

This is the fourth constraint for our model.

Radiation equals the stiff scalar matter
(

ρ
(σ)
r = ρφ

)

at

a time given by,

4π

3

m2σ2
i

m2
plH

2
kin

a3m
a3kin

a2eq
a2kin

ad
akin

= 1 (62)

Then using equations (23), (27), (32), (62),

ρg
ρr

∣

∣

∣

a=aeq

=
16

π2
h2
GW

3

√

Γσ

Hkin

m

Hkin

m2
pl

σ2
i

× H2
kin

m2
(63)

We have,

ρg
ρr

∣

∣

∣

a=aeq

=
16

π2
h2
GW

3

√

Γσ

Hkin

m2
pl

σ2
i

× Hkin

m
≪ 1 (64)

Now upon using equation (49),

64

81π2Pζ

h2
GW

Γ
1

3

σ

H
1

3

kin

H2
i

m2
pl

m2

Γ2
σ

× Hkin

m
≪ 1 (65)

Simplifying and using Hkin ≈ Hend,

m

mpl

≪ 81π2Pζ

64h2
GW

(Hend

H2
i

)2

×
( mpl

Hend

)
8

3 ×
( Γσ

mpl

)
5

3

(66)

Also using , Pζ = 2.3× 10−9, h2
GW = 5.82139× 10−15,

mpl = 1.220910 × 1019GeV , Hin = 5.18181 × 1011GeV
and Hend = 6.02438× 1011GeV we obtain the 5th con-
straint for the model,

m

mpl

≪ 2.03652× 1026
( Γσ

mpl

)
5

3

(67)

The curvaton perturbations should satisfy the Gaus-
sianity condition. This condition does not hold auto-
matically. By imposing this condition we restrict the
amplitude of the perturbations which are then negligible
compared to the mean value of the curvaton field,

σ2
i ≫ H2

i

4π2
(68)

We now divide by m2
pl, use equation (49) and simplify

to obtain,

m

mpl

≪ 9π
√

Pζ ×
m2

pl

H2
i

( Γσ

mpl

)

(69)

Now Pζ = 2.3× 10−9, mpl = 1.220910× 1019GeV and
Hin = 5.18181× 1011GeV

m

mpl

≪
(

7.52766× 1011
) Γσ

mpl

(70)

We thus obtain the sixth constraint for our model. At
nucleosynthesis things should now proceed according to
the standard Big Bang scenario and hence we also have
a seventh constraint for our model,

Γσ > 10−40mpl (71)

or

Γσ

mpl

> 10−40 (72)

We plot the allowed region in parameter space as per-
mitted by these constraints in Fig.1. While plotting this
figure we take the number of e foldings, N = 60, n = 6
β = 1, V0 = 4.64 × 1060GeV and χf = 0.88, which are
constraints on the inflaton field. Out of the constraints
given by equations. (56 − 58) only the strongest one is
shown in the figure whereas the remaining are automat-
ically satisfied. We then plot the constraints given by
equations. (61), (67), (70) and (72).
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FIG. 2: Curvaton constraints for the case in which the
curvaton field decays after domination, using N = 60 in
Eqs. (73), (74), (76), (80), (85) The regions excluded by

each constraint is shaded, and the allowed region is
unshaded.

B. Curvaton Decay after Domination

Equation (28) gives our first constraint,

σi

mpl

≪ 0.488603 (73)

Equation (61),

m

mpl

≪ 3.97037× 10−8 (74)

gives us our second constraint.
We desire that the curvaton field should decay before

nucleosynthesis occurs. Then the following inequality
is satisfied, Hnucl = 10−40mpl < Γσ. The curvaton
should also decay after it dominates the expansion of
the Universe, and then we have the following inequality

Γσ < Heq = 4π
3

σ2

i

m2

pl

m. Thus we obtain,

10−40mpl < Γσ <
4π

3

σ2
i

m2
pl

m (75)

This gives us our third constraint,

m

mpl

σ2
i

m2
pl

≫ 3

4π
× 10−40 (76)

We now require that gravity waves do not dominate,

ρg
ρσ

∣

∣

∣

a=aeq

=
64

3π
h2
GW

( 3

4π

m2
pl

σ2
i

Hkin

m

)
2

3 ≪ 1 (77)

When decay occurs after curvaton domination, the pro-
duced perturbation is,

Pζ =
1

9π2

H2
in

σ2
i

(78)

Here Pζ is the spectrum of the Bardeen parameter.

Now using equations (77), (78), h2
GW =

H2

in

8πM2

pl

and

Hkin ≈ Hend, we obtain,

m

mpl

≫
[ (192πPζ)

3

2 × 3×Hend

4πmpl

] σi

mpl

(79)

giving us our fourth constraint,

m

mpl

≫
(

1.9249× 10−17
) σi

mpl

(80)

The fluctuations of the inflaton field are measured by
a quantity called the power spectrum,

Pφ =
(H

2π

)2

(81)

Now the inflaton field fluctuations should be insignifi-
cant compared to those of the curvaton field. Then the
power spectrum Pφ should be less than unity,

Pφ ≪ 1 (82)

Thus,

(

Pφ

)

i
≪ 1 (83)

This gives us,

σi

mpl

≪ 2

3mpl

√

Pζ

(84)

upon using equation (78).
Now using, mpl = 1.220910 × 1019GeV/c2 and Pζ =

2.3× 10−9 we obtain our 5th constraint,

( σi

mpl

)

≪ 1.13857× 10−15 (85)

We plot the allowed region in parameter space as per-
mitted by these constraints in figure 2. While plotting
this figure we take the number of e foldings, N = 60,
n = 6 β = 1, V0 = 4.64× 1060GeV and χf = 0.88, which
are constraints on the inflaton field. We then show the
constraints given by eqns. (73), (74), (76), (80) and (85).
Out of these, two are redundant and we plot the other
three.
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VI. CONCLUSION

We study a single scalar field model of quintessential
inflation with inverse cosh hyperbolic potential where
the reheating temperature is obtained using the curvaton
mechanism. The temperature thus obtained is consistent
with the nucleosynthesis constraint,Trh & 2.2× 1012GeV
due to relic gravity waves. We find that upon im-
plementing this mechanism, 2.2 × 1012GeV ≤ Trh ≪
4.91577 × 1013g GeV. The upper bound on tempera-
ture translates into a bound on the coupling constant g,
namely, g ≫ 0.0447539. The nucleosynthesis constraint
is thus satisfied.
We have studied the cases of curvaton decay before

domination and curvaton decay after domination and
plotted the allowed region in parameter space. The case
for decay before domination is given in Figure 1 and that

for decay after domination is given in Figure 2. While
plotting these figures we take the number of e-foldings,
N = 60, n = 6 β = 1, V0 = 4.64 × 1060GeV and
χf = 0.88, which represent constraints on the inflaton
field. Out of the constraints given by equations. (56 −
58) only the strongest one is shown in the Fig.1 whereas
the remaining two are automatically satisfied. We then
plot the constraints given by Eqs. (61), (67), (70) and
(72). While plotting Fig.2 we show the constraints given
by eqns. (73), (74), (76), (80) and (85). Out of these,
two are redundant and we plot the other three. While
plotting these figures the regions excluded by each con-
straint is shaded, and the allowed region is unshaded.
From Fig. 1 and Fig. 2 it is clear that the allowed region
in parameter space is very small and that real situations
arising in both the cases are severely restricted by many
constraints.
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