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In this paper, we investigate the dynamics of pre-inflation with Hilltop potential in the framework
of loop quantum cosmology. The initial conditions of inflaton field at the quantum bounce is
categorized into two classes, first one is dominated by kinetic energy and second one by potential
energy. In both cases, the physically viable initial values of inflaton field at the bounce are obtained
numerically that generate the desired slow-roll inflation and also sufficient number of e-folds. To be
consistent with observations at least 60 e-folds are required. In case of kinetic energy dominated
(KED) initial conditions of inflaton field at the bounce, the numerical evolution of the background
prior to preheating is divided into three different regions: bouncing, transition and slow-roll inflation
whereas bouncing and transition phases disappear in the potential energy dominated (PED) case
but still slow-roll inflation is achieved. This is true in case of KED (except subset) and PED initial
conditions for p = 4 and v = 1MPl of Hilltop potential. However for other cases, slow-roll inflation
can not be obtained. Moreover, we study the phase space analysis for Hilltop potential and discuss
the phase space trajectories under the chosen parameters.

PACS numbers:

I. INTRODUCTION

The cosmic inflation is an accelerated expansion of space in the early universe. The phase of accelerated expansion
of universe is driven by a scalar field, known as inflaton. Cosmic inflation explains the initial conditions of big bang
theory i.e. it resolves various problems in the standard model of cosmology such as the flatness and horizon problems.
Inflation describes the origin of inhomogeneities in the cosmic microwave background and the structure formation of
the universe [1]. A large variety of inflationary models have been suggested in the literature, namely, Starobinsky,
α−attractor and the chaotic inflation etc. [2–7]. These models are consistent with the current observations. However,
future observations may be narrow down some of the viable models. According to Planck 2018 observations, quadratic
potential is completely disfavored whereas Hilltop, α−attractor and Starobinsky potentials are consistent with data
[8]. In this paper, we shall study the dynamical behavior of pre-inflationary universe with Hilltop potential in the
framework of loop quantum cosmology (LQC), and find out the initial conditions of pre-inflation numerically, at the
quantum bounce. Further, we shall show that the initial conditions of inflaton field at the bounce are compatible with
slow-roll inflation or not. In classical theory of general relativity (GR), all scalar field models of inflation experience
the big bang singularity which is inevitable [9, 10]. To this effect, it is hard to know when and how to impose the
initial conditions. To be compatible with observations, the number of e-folds during inflation should be at least 60.
Meanwhile, in some cases, the number of e-folds is more than 70 [11]. However, in such kind of models the size of
present universe is smaller than the Planck at the starting of inflation. As a result, the semi-classical treatments are
questionable during inflation which is so-called trans-Planckian problem [12, 13].

Above issues can be addressed in the context of LQC that gives viable explanation of inflation and pre-inflation,
simultaneously. In LQC, the big bang singularity is replaced by a non-singular quantum bounce [14–19]. We shall
examine the dynamics of pre-inflation with Hilltop potential in the framework of LQC, and explore whether following
the bounce a desired slow-roll inflation is obtained or not [20–28]. In this work, we are mostly concerned with the
numerical evolution of the background. In particular, we shall show that the numerical evolution of the universe
before preheating can be divided universally into three different phases: bouncing, transition and slow-roll inflation
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in case of the kinetic energy dominated (KED) initial conditions whereas bouncing and transition phases disappear
in potential energy dominated (PED) case.

The paper is organized as follows. In Sec. II, we discuss the background equations with a spatially flat Friedmann-
Lemaitre-Robertson-Walker (FLRW) universe in the context of LQC. Sec. III is devoted to the Hilltop inflation where
we study the spectral index ns and tensor to scalar ratio r for said model. In addition, we investigate the background
evolution for Hilltop potential, and conclude that whether the desired slow-roll inflation with at least 60 e-folds is
achieved or not. The phase space trajectories are demonstrated in Sec. IV, and the results are summarized in Sec. V.

II. EQUATIONS OF MOTION IN LQC

In this section, we study the evolution equations with a spatially flat FLRW background in the framework of LQC.
The quantum corrected Friedmann equation and the Klein-Gordon equation for a single scalar field are written as
[29]

H2 =
8π

3m2
Pl

ρ
(

1− ρ

ρc

)
, (1)

φ̈+ 3Hφ̇+
dV (φ)

dφ
= 0. (2)

where H = ȧ/a designates the Hubble parameter, the dot denotes a derivative with respect to the cosmic time t and

mPl is the Planck mass. The energy density of the inflaton field is ρ = φ̇2/2+V (φ), and V (φ) represents the potential
of the field. The correction term −ρ2/ρc comes due to the quantum geometric effects. In classical limit, the critical
energy density ρc → ∞, and one can recover the original Friedmann equation as given by GR. The value of critical
energy density is provided as ρc ' 0.41m4

Pl [29] which is maximum value of energy density in LQC. It is remarkable
to see that the correction term has negative sign that permits the quantum bounce without the violation of energy
condition unlike GR. Following equation (1), we conclude that H = 0 at ρ = ρc this means that bounce occurs when
ρ reaches ρc. In the literature, the extensive work has been studied with the bouncing phase by using the background
equations of motion. One of the vital result is that one can obtain the desired slow-roll inflation [21–23, 30–37]. In
continuation to this, we shall examine “bounce and slow-roll inflation” with the Hilltop potential (see Sec. III).

Before moving to the specific potential (Hilltop), let us first explore the background equations for a general potential

V (φ). We solve Eqs.(1) and (2) numerically with the initial values of a(t), φ(t) and φ̇(t) given at a specific time. One
of the possibility of time is at the bounce (t = tB), for which we have

ρ =
1

2
φ̇2(tB) + V (φ(tB)) = ρc,

ȧ(tB) = 0, (3)

from which we get the inflaton velocity as

φ̇(tB) = ±
√

2
(
ρc − V (φ(tB))

)
. (4)

In this paper, we shall use positive sign of equation (4) to solve the background equations. However, one can also work
with negative inflaton velocity (NIV) to get similar results. Therefore, we restrict ourselves to choose the positive
inflaton velocity (PIV) in sections II and III. Though, both positive and negative signs of inflaton velocity will be
used in Sec. IV to show the phase space trajectories in whole phase space. Without loss of the generality, we can
always pick

a(tB) = 1. (5)

For the sake of simplicity, we shall denote φ(tB) and φ̇(tB) by φB and φ̇B in the subsequent sections. It is clear
from Eq.(4), the initial values will be given by φB only for a given potential. Second, let us define some important
quantities that are essential for this paper such as the equation of state w(φ), the slow-roll parameter εH and the
number of e-folds Ninf , and are given as [30, 31, 33]

w(φ) =
φ̇2/2− V (φ)

φ̇2/2 + V (φ)
, (6)

εH = − Ḣ

H2
. (7)
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FIG. 1: The figure is schematically presented for Hilltop potential (11) with even (left panel) and odd (right panel) p′s. For
even p, it has maximum value at φ/v = 0 whereas minimum value at φ/v = ±1. For φ/v = ±1, the potential is bounded below
by zero while unbounded for φ/v → ±∞. For odd values of p, the potential has similar properties as in case of even p except
one minimum at φ/v = +1.

During the slow-roll inflation, w(φ) ' −1 and εH � 1. Looking at eq. (6), we notice

w(φ)
∣∣∣
φ=φB

=


> 0 for KE > PE,

= 0 for KE = PE,

< 0 for KE < PE.

(8)

Ninf = ln
(aend
ai

)
=

∫ tend

ti

H(t)dt =

∫ φend

φi

H

φ̇
dφ '

∫ φi

φend

V

V ′(φ)
dφ. (9)

where KE (PE) stands for kinetic energy (potential energy). The ai is the expansion factor at the onset of inflation
and aend when inflation ends, i.e. ä(ti) & 0 and w(φend) = −1/3. Moreover, the analytical expression of the expansion
factor is given as [34]

a(t) = aB

(
1 + δ

t2

t2Pl

)1/6

. (10)

where aB = a(tB) ≡ 1, tPl is the Planck time, and δ = 24πρc/m
4
Pl represents a dimensionless parameter. Equation

(10) is only valid in the bouncing regime of the KED bounce. In the following section, we shall examine the initial

conditions of pre-inflation with Hilltop potential by choosing the PIV (φ̇B > 0) at the quantum bounce.

III. HILLTOP POTENTIAL

The Hilltop inflation model is supported by the CMB observation, and has compelling connection to particle physics
where a phase transition at high energies occurs [38, 39]. Consider a simple realization of Hilltop Potential as [40]

V (φ) = V0

(
1− φp

vp

)2

. (11)

where v ≤ MPl and V0 is constant that is constrained by CMB observations. The illustration of Hilltop potential
(11) is shown in Fig. 1 for even and odd values of p. Such potentials are highly asymmetric around the minimum.
From left panel (even p) of Fig. 1, one can see that the potential has a local maximum at φ = 0 whereas it has global
minima at φ/v = ±1. For odd p, it has one minimum at φ/v = +1, see right panel of Fig. 1. In this paper, we shall
work with φ > 0. The potential has inflection point towards the plateau for φ < v and exhibits steeper behavior than
quadratic for φ > v. The initial conditions of inflaton field generate the inflation when the potential at φ = 0 moves
slowly towards the minimum of the potential (φ = +v), and inflation ends when the potential gains large curvature.
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FIG. 2: This figure shows the evolution of spectral index ns and tensor to scalar ratio r versus number of e-folds (Ninf ) for
different values of p.

Inflation ends at the following value of the inflation field

φe =

(
vp

2p(p− 1)M2
Pl

) 1
p−2

when η(φe) = M2
Pl

V ′′(φ)

V (φ)
' −1. (12)

The scalar field value at the Horizon crossing φ = φ∗ can be found as

φ∗ =

(
2pM2

Pl

vp

(
(p− 2)Ninf + (p− 1)

)) 1
2−p

. (13)

where Ninf is the number of e-folds between horizon exist and the end of inflation. The predictions for the spectral
index ns and tensor to scalar ratio r are given by

ns ' 1− 6ε(φ∗) + 2η(φ∗) ' 1 + 2η(φ∗), (14)

r ' 16ε(φ∗), (15)

where ε(φ∗) =
M2
Pl

2

(
V ′(φ)

V (φ)

)2 ∣∣∣
φ=φ∗

, (16)

η(φ∗) =
1− p

(p− 2)Ninf + (p− 1)
. (17)

The spectral index ns and tensor to scalar ratio r vs Ninf for different values of p are displayed in Fig. 2. According
to Planck 2018 results, the bound on ns and r are ns = 0.9649 ± 0.0042 and r < 0.11 [8]. Let us see how to fix the
value of V0 from the observation of CMB by using the observed value of scalar amplitude As ' 2.09× 10−9 [8].

V0 = 24π2ε(φ∗)AsM
4
Pl '

48p2π2AsM
2p+4
Pl

v2p

 vp

2pMp
P l

(
(p− 2)Ninf + (p− 1)

)


2(p−1)
p−2

. (18)

In this paper, we shall work with p = 4 and 5 with v = 0.1MPl and 1MPl, respectively. Therefore, the corresponding
values of V0 can be found by equation (18). The units of equation (18) are given in reduced Planck mass MPl, and
the Friedmann equation (1) is written in Planck mass mPl. Therefore, we shall convert equation (18) in Planck mass

through the relation MPl = mPl/
√

8π, and work in the mPl unit throughout the paper. The model parameters that
will be used in the paper are given as

p = 4, v = 0.1MPl = 0.019mPl and V0 = 2.632× 10−21m4
Pl,

v = 1.0MPl = 0.19 mPl and V0 = 2.632× 10−17m4
Pl,

p = 5, v = 0.1MPl = 0.019mPl and V0 = 3.577× 10−20m4
Pl,

v = 1.0MPl = 0.19 mPl and V0 = 7.708× 10−17m4
Pl. (19)
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TABLE I: The table shows the range of v with SR and NSR inflation for KED and PED initial conditions of inflaton field at
the bounce.

p v/MPl Slow-roll inflation depends on the range of φB

KED (SR) Existence of KED PED (SR)
(except subset) subset (NSR)

4 0 < v ≤ 0.1 No Yes No
0.1 < v ≤ 1 Yes Yes Yes

5 0 < v ≤ 1 No No No
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FIG. 3: The figure represents the results for Hilltop potential (11) with p = 4 and φ̇B > 0. The numerical evolution of a(t),
w(φ) and εH is exhibited for the same set of KED (upper panels) and PED (lower panels) initial conditions of inflaton field at
the bounce with v = 0.019mPl and V0 = 2.632 × 10−21m4

Pl. The analytical solution of a(t) (10) is also displayed in order to
compare it with the numerical results.

In Table I, we display the range of v (depends on φB) having slow-roll (SR) and non slow-roll (NSR) inflation for
potential (11) with p = 4 and 5. In the continuation, we choose v = 0.1MPl and 1MPl in each case of p, and draw
the figures for various initial conditions of inflaton field. Moreover, the corresponding ranges of inflaton field at the
bounce for SR and NSR inflation is shown in Table II.

Let us first evolve the background equations (1) and (2) with Hilltop potential (11) numerically for p = 4, v =
0.019mPl and V0 = 2.632×10−21m4

Pl. In the top (bottom) panels of Fig. 3, we show the numerical results for a set of
KED (upper panels) and PED (lower panels) initial conditions where the behavior of expansion factor a(t), equation
of state w(φ) and slow-roll parameter εH are depicted. From this figure, one can conclude that the scale factor is not
consistent with the analytical solution (10) and does not provide the exponential expansion. Similarly, by looking the
middle panels of Fig. 3, the equation of state does not give the slow-roll inflation. Therefore, in this case, neither
KED nor PED initial conditions generate the slow-roll inflation.

Next, we choose p = 4, v = 0.19mPl and V0 = 2.632 × 10−17m4
Pl. Further, we numerically evolve background

equations (1) and (2) with Hilltop potential (11). The results of numerical evolution for KED (top and middle panels)
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FIG. 4: The figure shows the evolution of a(t), w(φ) and εH for potential (11) with φ̇B > 0. We choose p = 4, v = 0.19mPl

and V0 = 2.632× 10−17m4
Pl when plotting out the figure. Top and middle panels correspond to the KED initial conditions of

inflaton field at the quantum bounce with SR and NSR, respectively whereas bottom panels are for PED initial conditions. In
this figure, we get the desired slow-roll inflation for both KED (except small subset) and PED initial conditions.

and PED (bottom Panels) initial conditions are displayed in Fig. 4. First, let us discuss the set of KED initial values
(only for top panels) in the bouncing phase, the behavior of numerical evolution of a(t) is universal because it neither
depends on the initial values of inflaton field nor on the potential, and is in good agreement with the analytical solution
(10). This happens mainly due to the fact that the contribution of potential is very small as compared to the kinetic
one in the entire bouncing regime. As a result, it shows negligible effects on the evolution of background. By looking
on the evolution of equation of state w(φ) (top panel), one can infer that the evolution of background is categorized
into three different phases such as bouncing, transition and slow-roll inflation. On comparison with the period of three
regimes, the transition phase has a very small period in contrast with the bouncing and slow-roll phases. During the
bouncing regime, w(φ) ' +1, in the transition regime, it reduces from +1 (t/tPl ≈ tB) to −1 (t/tPl ≈ 10), while in
the slow-roll regime, it is almost −1 until the end of the slow-roll inflation. Similarly, one can infer from the upper
right panel, the slow-roll parameter εH > 1 in the bouncing phase, decreases from εH > 1 to εH ≈ 0 during the
transition regime, and remains εH ≈ 0 untill the end of slow-roll inflation. A subset of KED initial conditions of
inflaton field is also exist that does not provide the SR inflation which is depicted in the middle panels of Fig. (4),
and the range of this subset in terms of φB is shown in Table II.

Second, we discuss the case of PED initial conditions of inflaton field at the quantum bounce (bottom panels),
the numerical evolution of scale factor a(t) shows that the universality is lost, bouncing and transition regimes do
not exist any more. However, the slow-roll inflation can still be achieved, see the bottom panels of Fig. 4. In Table
III, we display the various inflationary parameters, namely, εH , w(φ) and Ninf etc. The desired slow-roll inflation is
produced for different values of φB , and the number of e-folds are obtained. For the successful inflation, at least 60
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TABLE II: Table for SR and NSR inflation for different values of v with φ̇B > 0. The value of V0 for each p and v is given by
equation (19). The symbol ∀ represents for all.

p v/MPl KED (SR) Subset of KED PED (SR)
(except subset) (NSR)

4 0.1 No ∀ φB No
1 5 ≤ φB ≤ 18.3 0 ≤ φB < 5 18.3 < φB ≤ 19.9

5 0.1 No ∀ φB No
1 No ∀ φB No

TABLE III: This table represents the Hilltop potential (11) with p = 4, v = 0.19mPl and V0 = 2.632× 10−17m4
pl. We show the

number of e-foldings Ninf and other important parameters of inflation.

φB/mPl Inflation t/tpl εH w(φ) Ninf

5 start 26.048 0.999 −1/3 56.11
slow-roll 69.294 2.400× 10−5 −1.0
end 1.198× 105 1.000 −1/3

5.22 start 22.847 0.999 −1/3 60.01
slow-roll 61.318 1.612× 10−5 −1.0
end 1.201× 105 0.999 −1/3

7 start 8.928 1.000 −1/3 95.92
slow-roll 25.557 2.171× 10−5 −1.0
end 1.213× 105 0.999 −1/3

10 start 2.608 0.991 −1/3 177.08
slow-roll 8.106 1.145× 10−4 −1.0
end 1.223× 105 1.000 −1/3

e-folds are required that are presented in Table III. From the table, one can notice that Ninf increases as the initial
values of inflaton field grows at the bounce.

Third, we evolve the background equations (1) and (2) with potential (11) for p = 5, v = 0.019mPl and V0 =
3.577 × 10−20m4

Pl. The numerical results are illustrated in Fig. 5. Top panels correspond to KED case whereas
bottom ones are for PED initial conditions. In both the cases, the numerical evolution of scale factor a(t) is not
exponential, the equation of state w(φ) and the slow-roll parameter εH provide oscillatory behavior which are not
favored by the conditions of inflation. Furthermore, we examine the background evolution for p = 5, v = 0.19mPl

and V0 = 7.708× 10−17m4
Pl. The numerical results are depicted in Fig. 6. By looking the evolution of w(φ) and εH ,

the oscillatory behavior is reduced but still we don’t obtain the desired slow-roll inflation.
Finally, we do brief discussion of the model under consideration. We display the shape of the potential (11) as a

function of φ in Fig. 1. For p = 2, 4 and 6 (left panel), we observe that the potential has a plateau around φ ≈ 0
and two minima at φ = ±v. The coefficient p governs the flatness of the plateau and steepness of the potential.
The larger p corresponds to a long pronounced plateau and a more steepness around the minimum. According to
Planck 2018 results [8], the Hilltop model with p < 4 is not fit well with data. The predictions of the spectral index
ns for p = 3 and Ninf = 60 is found to be 0.935484 which is in some tension with the most recent Planck bounds
ns = 0.9649 ± 0.0042 (at 68 % CL) [8]. The predicted value of ns can be larger if φ3/v3 in the potential is replaced
by some higher power φp/vp with p ≥ 4. The values of ns with Ninf = 60 are found as 0.95122, 0.95652 and 0.95918
for p = 4, 5 and 6, respectively.
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FIG. 5: This figure demonstrates the numerical results for Hilltop potential with p = 5, v = 0.019mPl and V0 = 3.577 ×
10−20m4

Pl. The numerical evolution of a(t) does not show exponential expansion, w(φ) and εH are not close to −1 and less
than unity, respectively during the whole evolution. Thereofre, by looking at the evolution of a(t), w(φ) and εH , we conclude
that the slow-roll inflation is not achieved.

IV. PHASE PORTRAIT

In this section, we shall display the phase space trajectories for the Hilltop potential (11) with φ̇B > 0 and φ̇B < 0,

and also for KED and PED initial conditions of inflaton field in the (φ/mPl, φ̇/m
2
Pl) plane. We choose the model

parameters as p = 4, v = 2mPl and V0 = 0.01m4
Pl for the better depiction of Fig. 7. Since ρc is the maximum energy

density that constraints the initial value of φB such as |φ̇B |/m2
Pl < 0.91 and φB/mPl ∈ (−3.3, 3.3) under the chosen

model parameters. Moreover, the initial data surface is totally finite due to the critical energy density ρc which is
represented by the black boundary surface. In the Hilltop potential, the inflaton field rolls away from a local maximum
at φ = 0 to minimum at φ = ±v. Therefore, we have two minima at φ = +v and −v that are exhibited by red and
blue color, respectively in Fig. 7. All the trajectories onset from the surface of bounce (ρ = ρc) and move toward their
respective minima, namely, φ = +v (red color) and φ = −v (blue color) which are the stable points. Regions close to
the boundary belong to the higher energy density where the quantum effects are dominated whereas the lower energy
density is found near the minima in (φ/mPl, φ̇/m

2
Pl) plane.

Let us compare our results with the power law and Starobinsky potentials. In the case of power law, both KED
and PED initial values of inflaton field are consistent with observations in terms of number of e-folds [33] whereas
Starobinsky potential is in good agreement with observations only for KED (except for small subset) initial conditions
and not for PED ones [27]. In the case of Hilltop potential, we obtained the desired slow-roll inflation for both KED
(except small subset) and PED initial conditions with p = 4 and v = 1MPl, and found physically viable initial values
of inflaton field. However, for other values of p and v, the slow-roll inflation can not be achieved.

V. CONCLUSIONS

In this paper, we examined the dynamical behavior of pre-inflation for Hilltop potential (11) in the framework of
LQC. We found physical viable initial conditions of inflaton field at the bounce that produced the desired slow-roll
inflation, and also generated enough number of e-folds. First, we studied the background equations (1) and (2) for
Hilltop potential (11) with p = 4, v = 0.019mPl and V0 = 2.632× 10−21m4

Pl. The numerical results for KED (upper
panels) and PED (lower panels) initial conditions of inflaton field at the bounce are presented in Fig. 3. We noticed
that the evolution of a(t) did not provide the exponential expansion which was required for inflation. Furthermore,
the numerical evolution of w(φ) and εH exhibited oscillatory behavior. In the lower panels of Fig. 3, the numerical
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FIG. 6: The figure displays the numerical results for p = 5, v = 0.19mPl and V0 = 7.708× 10−17m4
Pl. Similar to Fig. 5 in this

case also the slow-roll inflation is not obtained.

evolution of expansion factor is not consistent with the analytical solution (10). Also, w(φ) did not stay pegged at
−1 and εH is not less than unity. Hence, in this case, the slow-roll inflation can not be achieved.

Second, we evolved the potential (11) with the background equations (1) and (2) for p = 4, v = 0.19mPl and
V0 = 2.632 × 10−17m4

Pl. The results are displayed in Fig. 4. In case of KED initial conditions (upper panels), the
behavior of expansion factor a(t) is universal in the bouncing regime, and well approximated by analytical solution
(10). Later, it showed exponential expansion. The contribution of the potential in the bouncing phase was very small
as compared to the kinetic one. Therefore, it showed almost negligible effects on the evolution of background that
gave rise to universal behavior of expansion factor. The evolution of w(φ) (upper middle panel) demonstrated that
the background evolution before preheating was divided into three different phases: bouncing, transition and slow-roll
inflation. In the bouncing regime, w(φ) ' +1, it decreases to −1 during the transition regime whereas in the slow-roll
phase w(φ) is close to −1 untill the end of slow-roll inflation. By looking the evolution of εH (upper right panel), in
the bouncing phase εH > 1 which reduces to εH ≈ 0 during the transition phase, and remains so untill the end of
slow-roll inflation. However, the whole range of φB did not provide the inflationary phase. In other words, a subset of
KED initial values of inflaton field was also present that provide non-inflationary regime, see middle panels of Fig. 4
and Table II. In case of the PED initial conditions (lower panels), the universality of a(t) disappeared, bouncing and
transition phases no longer existed. Though, slow-roll inflation can still be obtained. We also found the number of
e-folds for the desired slow-roll inflation. For successful inflation at least 60 e-folds are required to be compatible with
observation. We displayed important inflationary parameters in Table III for different values of φB . From the table,
one can inferred that the number of e-folds increased as φB grew. Next, we evolved the potential (11) with equations
(1) and (2) for p = 5, v = 0.019mPl, V0 = 3.577 × 10−20m4

Pl and p = 5, v = 0.19mPl and V0 = 7.708 × 10−17m4
Pl.

The results are exhibited in Figs. 5 and 6, respectively. By looking both the figures, we concluded that neither KED
nor PED initial conditions of inflaton field at the bounce generated the desired slow-roll inflation as the behavior of
evolution of w(φ) and εH found to be oscillatory.

Finally, we depicted the phase portrait for Hilltop potential (11) with PIV and NIV, and also for KED and PED

initial conditions of inflaton field in (φ/mPl, φ̇/m
2
Pl) plane, see Fig. 7. For better depiction, we used p = 4, v =

2mPl, V0 = 0.01m4
Pl. The critical energy density ρc restricts the values of φB as the Hilltop potential is unbounded

from the above. Therefore, we got the compact surface at the bounce due to ρc. The finite data surface is denoted
by the black boundary curve in Fig. 7 where |φ̇B |/m2

Pl < 0.91 and φB/mPl = ±3.3 under the chosen parameters.
The potential (11) has a local maximum at φ = 0 and two minimum at φ = ±v. Therefore, the trajectories start
from the bounce (ρ = ρc) and directed toward their respective minimum, namely, φ = +v (red) and −v (blue) which
are the stable points and behaves as the attractor. The quantum geometric effects are dominated at the quantum
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FIG. 7: This figure exhibits the phase portrait for Hilltop potential (11) with both PIV and NIV in the (φ/mPl, φ̇/m
2
Pl) plane.

All trajectories with arrowheads onset from the bounce where ρ = ρc (boundary surface), and end at minimum value of φ,
namely, φ = +v (red) and −v (blue) which are the attractor points. For better depiction, we choose p = 4, v = 2mPl and
V0 = 0.01m4

Pl.

bounce. The regions near the bounce have maximum energy density and near the minima, lower density is found in
(φ/mPl, φ̇/m

2
Pl) plane.
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