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This study investigates the dynamics of a spatially homogeneous and anisotropic LRS Bianchi type-
I universe with viscous fluid in the framework of f (Q) symmetric teleparallel gravity. We assume a
linear form for f (Q) and introduce hypotheses regarding the relationship between the expansion and
shear scalars, as well as the Hubble parameter and bulk viscous coefficient. The model is constrained
using three observational datasets: the Hubble dataset (31 data points), the Pantheon SN dataset (1048
data points), and the BAO dataset (6 data points). The calculated cosmological parameters indicate
expected behavior for matter-energy density and bulk viscous pressure, supporting the universe’s
accelerating expansion. Diagnostic tests suggest that the model aligns with a ΛCDM model in the far
future and resides in the quintessence region. These findings are consistent with recent observational
data and contribute to our understanding of cosmic evolution within the context of modified gravity
and bulk viscosity.
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I. INTRODUCTION

The visible Universe, including the Earth, Sun, stars,
and galaxies, is primarily composed of protons, neu-
trons, and electrons, collectively known as ordinary
matter or baryonic matter. This baryonic matter ac-
counts for less than 5% of the total density of the Uni-
verse. In contrast, the remaining 95% of the Universe,
as indicated by studies involving high-redshift Super-
novae (SNe) [1–3], Wilkinson Microwave Anisotropy
Probe (WMAP) data [4, 5], Cosmic Microwave Back-
ground (CMB) peaks [6], and Baryon Acoustic Oscil-
lations (BAOs) [7], is comprised of other forms of en-
ergy and matter. These forms are currently unidentified
and are referred to as Dark Energy (DE) and Dark Mat-
ter (DM). DE is an enigmatic component responsible for
the observed accelerating expansion of the Universe. It
possesses a positive energy density and negative pres-
sure, manifesting as a large-scale repulsive force capable
of counteracting the gravitational force that binds the
various constituents of the Universe. One explanation
for DE is that it corresponds to the cosmological con-
stant Λ that Einstein introduced into his General Rela-
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tivity (GR) equations to achieve a stable Universe. How-
ever, this idea gave rise to other issues, such as the cos-
mic coincidence problem and the fine-tuning problem
[8, 9]. Consequently, more appealing dynamical mod-
els have emerged based on the concept of modifying the
matter content of the Universe. These models include
quintessence, k-essence, Chapylygin gas, holographic
DE, running vacuum models, and others [10–18].

Recently, with a growing interest among researchers
in addressing the issue of cosmic acceleration, various
alternative approaches have emerged under the um-
brella of modified theories of gravity (MTG). These the-
ories seek to amend the standard Einstein-Hilbert ac-
tion by replacing the Ricci scalar curvature, denoted as
R, with arbitrary functions of this scalar, such as f (R)
[19, 20]. In addition, researchers have explored alterna-
tive theories involving other physical quantities, such as
f (R, T ) gravity (where R is the Ricci scalar and T rep-
resents the trace of the energy-momentum tensor) [21–
23], f (G) gravity (where G signifies the Gauss-Bonnet
invariant) [24–26], f (T) gravity (where T corresponds to
the torsion scalar) [27–29], and f (Q) gravity (where Q is
the non-metricity scalar), among others. In this study,
we will investigate a cosmological model aimed at ex-
plaining cosmic acceleration within the framework of
f (Q) symmetric teleparallel gravity (STG), as originally
proposed by Jiménez et al. [30]. In this theory, the non-
metricity scalar Q plays a crucial role in governing grav-
itational interactions. Various aspects related to this the-
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ory have been explored by researchers, including energy
conditions [31], cosmography [32], spherically symmet-
ric configurations [33], the signature of f (Q) gravity
[34], the growth index of matter perturbations [35], cou-
pling with matter [36], quantum cosmology for a poly-
nomial f (Q) model [37], the geodesic deviation equa-
tion [38], and the isotropization of LRS Bianchi-I Uni-
verses [39]. Furthermore, several researchers have con-
tributed to discussions on these topics within the frame-
work of f (Q) gravity [40–48].

In cosmology, many researchers have used perfect flu-
ids in models to tackle scientific puzzles like cosmic ac-
celeration, DE, DM, and primordial singularities. Re-
cent observations hint that cosmic acceleration might be
due to exotic energy with negative pressure. Building
on this, our paper aims to develop a cosmological model
without invoking DE. Instead, we use a more realistic
approach by incorporating a viscous fluid. Previously,
in the study of the inflationary epoch in the early uni-
verse, bulk viscosity has been proposed in the literature
as a mechanism that does not require DE [49–52]. There-
fore, it is reasonable to consider that bulk viscosity could
be responsible for the current accelerated expansion of
the universe. In recent times, several authors have at-
tempted to explain late-time acceleration using bulk vis-
cosity without the need for DE or a cosmological con-
stant [53–55]. Theoretically, deviations from local ther-
modynamic stability can give rise to bulk viscosity, but
a detailed mechanism for its formation remains elusive
[49]. In cosmology, when the matter content of the uni-
verse expands or contracts too rapidly as a cosmologi-
cal fluid, an effective pressure is generated to restore the
system to thermal stability. Bulk viscosity is the mani-
festation of this effective pressure [56, 57]. Recently, Ren
et al. [58] proposed a viscosity coefficient that depends
on velocity and acceleration to achieve an accelerating
expanding Universe, given by

ζ = ζ0 + ζ1

( .
a
a

)
+ ζ2

( ..
a
.
a

)
= ζ0 + ζ1H+ ζ2

 .
H
H

+ H

 .

(1)
where ζ0, ζ1, and ζ2 are constants. As seen from the
equation above, the bulk viscosity coefficient comprises
a linear combination of three terms: the first is a con-
stant, the second is proportional to the Hubble parame-
ter
(

H =
.
a
a

)
, indicating its dependence on velocity, and

the third is proportional to
( ..

a.
a

)
, signifying its depen-

dence on acceleration.
Motivated by the preceding discussion and recent

Planck results [59], which revealed defects in the CMB
attributed to quantum fluctuations during the infla-

tionary era, this study delves into the examination of
the spatially homogeneous and anisotropic LRS Bianchi
type-I (B-I) Universe within the framework of STG. To
address the field equations within the context of STG,
we employ the following two hypotheses: (i) establish-
ing a relationship between the directional Hubble pa-
rameters Hx = nHy derived from the proportionality
between the expansion scalar θ and the shear scalar σ,
i.e., θ2 ∝ σ2, and (ii) establishing a relationship be-
tween the average Hubble parameter H and the bulk
viscous coefficient as described in Eq. (1). The study ex-
plores various cosmological parameters, including the
deceleration parameter, equation of state (EoS) parame-
ter, statefinder, and Om(z) diagnostic parameters, in the
context of this model. The structure of this paper is as
follows: In Sec. II, we present the fundamental equa-
tions of f (Q) gravity. Sec. III introduces the B-I Universe
influenced by bulk viscous fluid matter, presenting the
exact solution for the Hubble parameter. Subsequently,
in Sec. IV, we perform an analysis of observational data
to determine the best-fit values for the parameters, uti-
lizing the Hubble dataset with 31 points, the Pantheon
dataset comprising 1048 samples, and the BAO sam-
ple. Sec. V is dedicated to the discussion of various
cosmological parameters, including the deceleration pa-
rameter, EoS parameter, statefinder, and Om(z) diagnos-
tic parameters, analyzing their behavior concerning the
redshift z. The final section provides a summary of the
results and the conclusions drawn from this study.

II. BASIC EQUATIONS OF f (Q) GRAVITY

The action for f (Q) theory of gravity is given by [30]

S =
∫ [ 1

2κ
f (Q) + Lm

]
d4x
√
−g, (2)

where f (Q) represents an arbitrary function of the non-
metricity scalar Q. Here, g denotes the determinant of
the metric tensor gµν, i.e., g = det

(
gµν

)
, and Lm rep-

resents the conventional matter Lagrangian. The non-
metricity scalar Q is determined as

Q = −gµν
(

Lα
βµLβ

να − Lα
βαLβ

µν

)
, (3)

where the deformation tensor Lγ
µν is defined as,

Lγ
µν =

1
2

gγσ
(
−Qµσν − Qνσµ + Qσµν

)
= Lγ

νµ. (4)

The non-metricity tensor is defined in the form:

Qγµν = ∇γgµν. (5)



3

The trace of the non-metricity tensor is obtained as
follows:

Qγ = Qγ
µ

µ and Q̃γ = Qµ
γµ. (6)

In addition, we define the superpotential tensor:

4Pγ
µν = −Qγ

µν + 2Q(µ
γ

ν) + (Qγ − Q̃γ)gµν − δ
γ
(µ

Qν).
(7)

Using this definition, the non-metricity scalar is ex-
pressed as

Q = −QγµνPγµν. (8)

Now, the energy-momentum tensor for matter is de-
fined by the following mathematical relation:

Tµν =
−2√−g

δ
(√−gLm

)
δgµν . (9)

The field equations for f (Q) gravity are obtained by
varying the action (S) in Eq. (2) with respect to the met-
ric tensor gµν,

2√−g
∇γ(

√
−g fQPγ

µν) +
1
2

gµν f

+ fQ(PµγβQν
γβ − 2QγβµPγβ

ν) = −κTµν,
(10)

where fQ = d f
dQ , ∇γ represents the covariant deriva-

tive, and for simplicity, we adopt natural units
(κ = 8πG = 1). In addition, we can also perform a vari-
ation of (2) with respect to the connection, leading to the
following result:

∇µ∇ν(
√
−g fQPµν

γ) = 0. (11)

III. LRS BIANCHI TYPE-I UNIVERSE WITH BULK
VISCOSITY

In the present discussion, our focus is on the spatially
homogeneous and anisotropic LRS B-I Universe. This
cosmological model is a direct generalization of the flat

FLRW Universe and is described by the following metric
form:

ds2 = −dt2 + A2(t)dx2 + B2(t)
(

dy2 + dz2
)

, (12)

Here, t represents cosmic time, and the scale factors A(t)
and B(t) characterize the expansion or contraction of the
Universe in different spatial directions. A flat FLRW
space-time can be achieved by setting A(t) = B(t) =
a(t). This anisotropic LRS B-I Universe provides a valu-
able framework for exploring various cosmological phe-
nomena, offering insights into the behavior of the cos-
mos beyond the simplifications of the homogeneous and
isotropic FLRW models. In the following sections, we
will delve into the dynamics and implications of this
intriguing cosmological scenario within the context of
f (Q) gravity. The corresponding non-metricity scalar is
given by:

Q = −2

 .
B
B

2

− 4

.
A
A

.
B
B

. (13)

The inclusion of viscous effects in the cosmic fluid
content can be interpreted as an effort to enhance the
precision of its description, introducing a departure
from its idealized properties. This viscous contribution
negatively influences the total pressure, playing a role in
propelling the cosmic late-time acceleration [54, 55, 58].
The energy-momentum tensor describing a Universe
filled with viscous content can be expressed as

Tµν =
(
ρ + pv

)
uµuν + pvhµν, (14)

In this context, we introduce the metric tensor hµν =
gµν + uµuν, where ρ is the usual matter energy density
and pv is the pressure of the bulk viscous fluid and is
defined as pv = p − 3ζH. Here, p signifies the pressure
of the perfect fluid, and the coefficient of bulk viscosity,
ζ, is typically a function of the Hubble parameter H and
its derivatives, as indicated in Eq. (1). The four-velocity
vector uµ is assumed to satisfy uµuµ = −1. Currently,
the Universe is primarily composed of non-relativistic
matter (dust), which leads to pv = −3ζH. With the
bulk viscous fluid as the dominant matter component,
the corresponding field equations for the B-I Universe
can be derived as follows [39]:

f
2
+ fQ

4

.
A
A

.
B
B
+ 2

 .
B
B

2
 = ρ, (15)
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f
2
− fQ

−2

.
A
A

.
B
B
− 2

..
B
B
− 2

 .
B
B

2
+ 2

.
B
B

.
Q fQQ = −pv, (16)

f
2
− fQ

−3

.
A
A

.
B
B
−

..
A
A

−
..
B
B
−

 .
B
B

2
+

 .
A
A

+

.
B
B

 .
Q fQQ = −

(
pv + δρ

)
. (17)

Here, δ is referred to as the skewness parameter, quan-
tifying deviations from the EoS parameter along the y
and z directions. In addition, the notation (̇) represents a
derivative with respect to cosmic time t. The field equa-
tions presented in Eq. (8) through Eq. (10) can be ex-
pressed in terms of the mean Hubble parameter and di-
rectional Hubble parameters as follows:

f
2
− Q fQ = ρ, (18)

f
2
+ 2

∂

∂t

[
Hy fQ

]
+ 6H fQ Hy = −pv, (19)

f
2
+

∂

∂t

[
fQ

(
Hx + Hy

)]
+ 3H fQ

(
Hx + Hy

)
= −

(
pv + δρ

)
.

(20)

In the derivation, we utilized ∂
∂t

( .
A
A

)
=

..
A
A −

( .
A
A

)2

and Q = −2H2
y − 4Hx Hy. Here, H =

.
a
a =

1
3

(
Hx + 2Hy

)
represents the average Hubble parame-

ter, while Hx =
.
A
A , Hy = Hz =

.
B
B denote the directional

Hubble parameters along the x, y, and z axes, respec-
tively.

In this paper, inspired by the work presented in [60],
we consider the following linear f (Q) model, which is
characterized by a functional form of the non-metricity
scalar Q given by

f (Q) = αQ, α ̸= 0, (21)

where α is a constant parameter. The choice of a lin-
ear model for f (Q) can be motivated by several consid-
erations within the context of modified gravity theories
[61–63]. Also, the linear model of f (Q) gravity is equiv-
alent to GR with a different gravitational constant.

Upon incorporating the final constraint, the field
equations (18)-(19) form a system of three differential
equations involving five unknowns. Consequently, to
obtain exact solutions for the field equations, an addi-
tional constraint is required. In this context, we impose

the physical condition that the expansion scalar θ is di-
rectly proportional to the shear scalar σ, i.e., θ2 ∝ σ2.
This condition leads to the relation:

Hx = nHy, (22)

where n ( ̸= 0, 1) represents an arbitrary real num-
ber. The physical rationale behind this assumption is
grounded in observations of the velocity-redshift rela-
tion for extragalactic sources, suggesting that the Hub-
ble expansion of the Universe may tend toward isotropy
when the ratio σ

θ remains constant [64]. This condition
has been applied in various studies [39, 43, 44]. Utiliz-
ing Eq. (22), we can derive expressions for the average
Hubble parameter and non-metricity scalar in terms of
Hy as follows:

H =
(n + 2)

3
Hy, (23)

Q = −2 (1 + 2n) H2
y . (24)

Thus, by employing Eqs. (21), (23), and (24), the field
equations take the following form:

α (1 + 2n) H2
y = ρ, (25)

3αH2
y + 2α

.
Hy = −pv, (26)

α
(

n2 + n + 1
)

H2
y + α (n + 1)

.
Hy = −

(
pv + δρ

)
. (27)

By combining Eqs. (1), (23), and the generalized
Friedmann equation (26), we can derive a first-order dif-
ferential equation for the average Hubble parameter H
in the following form:

.
H +

[
9α − (n + 2)2 ζ1

2α (n + 2)

]
H2 − (n + 2) ζ0

2α
H = 0. (28)

It is important to note that, to reduce the number of
model parameters, we made the assumption ζ2 = 0 [63].
Specifically, when the viscosity coefficient depends on
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velocity but not on acceleration. Now, we substitute the
term d

dt with d
d ln(a) using the expression d

dt = H d
d ln(a) ,

resulting in Eq. (28) taking the form:

dH
d ln(a)

+

[
9α − (n + 2)2 ζ1

2α (n + 2)

]
H − (n + 2) ζ0

2α
= 0. (29)

Then, we consider a cosmological source that emits
light, and as a result of cosmic expansion, the emitted

light experiences a redshift. The redshift z due to the
expansion of the Universe is expressed as 1 + z = a0

a(t) ,
where a(t) represents the scale factor at the time when
the object emitted the light reaching us, and a0denotes
the current value of the scale factor, which we take as
a0 = 1. Therefore, the integration of Eq. (29) yields the
following solution for the Hubble parameter in terms of
redshift:

H(z) =

(z + 1)−
ζ1(n+2)

2α

[
H0(z + 1)

9
2(n+2)

(
9α − ζ1(n + 2)2

)
− ζ0(n + 2)2

(
(z + 1)

9
2(n+2) − (z + 1)

ζ1(n+2)
2α

)]
9α − ζ1(n + 2)2 , (30)

where H(0) = H0 represents the current value of the
Hubble parameter. In particular, when ζ0 = ζ1 = 0, and
α = n = 1, the expression for the Hubble parameter
H(z), simplifies to H(z) = H0(1 + z)

3
2 . This specific

configuration corresponds to the non-viscous matter-
dominated Universe. In this scenario, the absence of
bulk viscosity, coupled with specific choices for α and n,
results in the classical evolution where the Hubble pa-
rameter follows the (1 + z)

3
2 scaling.

IV. OBSERVATIONAL LIMITATIONS AND
CONSTRAINTS

To investigate the observational characteristics of our
cosmological model, we leverage the latest cosmic Hub-
ble, SN observations, and BAO. Our dataset includes
31 points from the Hubble dataset, 1048 points from
the Pantheon SN samples, and 6 points from the BAO
dataset. Employing Bayesian analysis, we utilize the
likelihood function and the Markov Chain Monte Carlo
(MCMC) method implemented in the emcee Python li-
brary [65].

A. Hubble dataset

In the field of observational cosmology, the universe’s
expansion can be directly studied through the Hubble
parameter, denoted as H = ȧ

a , where ȧ represents the
derivative of the cosmic scale factor a(t) with respect
to cosmic time t. The Hubble parameter as a func-
tion of redshift can be represented as H(z) = − dz

dt(1+z) .
Given that dz is obtained from a spectroscopic survey,
the model-independent value of the Hubble parameter

can be computed by measuring the quantity dt. We in-
clude a set of 31 data points, measured through the dif-
ferential age approach [66], to avoid additional corre-
lations with BAO data. The mean values of the model
parameters H0, α, n, ζ0, and ζ1 are calculated using the
chi-square function as follows:

χ2
H(H0, α, n, ζ0, ζ1) =

31

∑
k=1

[Hth(H0, α, n, ζ0, ζ1, zk)− Hobs(zk)]
2

σ2
H(zk)

,

(31)
where Hth denotes the predicted Hubble parameter
value from the model, Hobs represents its observed
value, and the standard error in the observed value of
H is denoted by σH(zk).

B. Pantheon dataset

At first, studies of Type Ia SNe, using a key sample of
50 points, suggested that the universe is expanding at an
accelerating rate. Over the last two decades, research in
this area has expanded, incorporating larger and larger
datasets of supernovae. A recent milestone is the release
of a new dataset containing 1048 data points from Type
Ia SNe. Recently, Scolnic et al. [68] compiled the Pan-
theon samples, encompassing 1048 SNe within the red-
shift range 0.01 < z < 2.3. The PanSTARSS1 Medium
Deep Survey, SDSS, SNLS, and various low-z and HST
samples contribute to this dataset. The empirical rela-
tion employed for calculating the distance modulus of
SNeIa from the observation of light curves is expressed
as µ = m∗

B + αX1 − βC − MB + ∆M + ∆B, where X1 and
C denote the stretch and color correction parameters, re-
spectively [68]. Here, m∗

B represents the observed ap-
parent magnitude, and MB is the absolute magnitude in
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the B-band for SNe. The parameters α and β serve as
two nuisance parameters characterizing the luminosity
stretch and luminosity color relations, respectively. Fur-
thermore, there is a distance correction factor denoted
by ∆M, and ∆B represents a distance correction based
on anticipated biases from simulations. The nuisance
parameters in the Tripp formula [69] were determined
using a novel technique called BEAMS with Bias Cor-
rections [70, 71]. The observed distance modulus was
then reduced to the difference between the corrected ap-
parent magnitude mB and the absolute magnitude MB,
defined as µ = mB − MB. In our current investigation of
the model, we choose to avoid marginalizing over the
nuisance parameters α and β but instead marginalize
over the Pantheon data for MB. Therefore, we exclude
the values of α and β from the present analysis.

The luminosity distance is expressed as

DL(z) = c(1 + z)
∫ z

0

dz′

H(z′)
, (32)

where c represents the speed of light. Furthermore, the
theoretical distance modulus is

µ(z) = 5log10DL(z) + µ0, (33)

where

µ0 = 5log(1/H0Mpc) + 25. (34)

In the case of the Pantheon dataset, the mean values
for the model parameters H0, α, n, ζ0, and ζ1 are deter-
mined through the chi-square function as follows:

χ2
SN(H0, α, n, ζ0, ζ1) =

1048

∑
k=1

[
µobs(zk)− µth(H0, α, n, ζ0, ζ1, zk)

]2
σ2(zk)

,

(35)
where µth represents the theoretical value of the distance
modulus, µobs denotes the observed value, and σ2(zk)
signifies the standard error in the observed value.

C. BAO dataset

When investigating the early universe, baryons, pho-
tons, and DM form a unified fluid that is tightly cou-
pled through Thomson scattering. Despite the presence
of gravity, this fluid does not collapse; instead, it os-
cillates due to the significant pressure exerted by pho-
tons. BAO is an analytical framework that specifically
addresses these oscillations during the early stages of
the Universe. Here, we use the BAO distance dataset,
which consists of measurements from the 6dFGS, SDSS,
and WiggleZ surveys, providing BAO measurements at

six distinct redshifts. The characteristic scale of BAO is
determined by the sound horizon rs at the epoch of pho-
ton decoupling z∗, as given by the following relation:

rs(z∗) =
c√
3

∫ 1
1+z∗

0

da

a2H(a)
√

1 + (3Ωb0/4Ωγ0)a
. (36)

In this context, Ωb0 and Ωγ0 represent the present
densities of baryons and photons, respectively. In ad-
dition, the BAO measurements utilize the following re-
lations:

△θ =
rs

dA(z)
, (37)

dA(z) =
∫ z

0

dz′

H(z′)
, (38)

△z = H(z)rs, (39)

where △θ signifies the measured angular separation,
dA represents the angular diameter distance, and △z
denotes the measured redshift separation of the BAO
feature in the 2-point correlation function of the galaxy
distribution on the sky along the line of sight. In this
study, we utilize a BAO dataset consisting of six points
for dA(z∗)/DV(zBAO), obtained from the references [72–
77]. Here, the redshift at the epoch of photon decoupling
is considered as z∗ ≈ 1091, and dA(z) represents the co-
moving angular diameter distance along with the dila-

tion scale DV(z) =
[
dA(z)2z/H(z)

]1/3
. The chi-square

function for the BAO dataset is given by [77],

χ2
BAO = XTC−1X , (40)

where the variable X is contingent on the specific sur-
vey under consideration, and C represents the covari-
ance matrix [77].

From the Hubble, Pantheon, and BAO datasets, we
extract the best-fit values for H0, α, n, ζ0, and ζ1 as il-
lustrated by the 1 − σ and 2 − σ contour plots in Fig.
1. The determined best-fit values are presented in Tab.
I. Fig. 2 displays the error bar plot for the considered
model in comparison to the ΛCDM or standard cosmo-
logical model, where the cosmological constant density
parameter is denoted as ΩΛ = 0.685, the matter density
parameter as Ωm0 = 0.315, and H0 = 67.4 km/s/Mpc
[67].

D. Information-based criteria for model selection analysis

To evaluate the effectiveness of our MCMC study,
we need to conduct a statistical assessment using the
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Akaike Information Criterion (AIC) and Bayesian Infor-
mation Criterion (BIC). The AIC can be formulated as
[78]

AIC = χ2
min + 2d, (41)

where d represents the count of independent parame-
ters in the model under consideration. Moreover, BIC is
determined by

BIC = χ2
min + d ln N. (42)

Here, N represents the number of data points utilized
in MCMC. For comparing our outcomes with the stan-
dard ΛCDM model, we utilize the AIC difference be-
tween our model and the standard cosmological model,

∆AIC = AICΛCDM − AICModel. (43)

In this context, when the difference (∆AIC and/or
∆BIC) is below 2, it suggests ”consistency” between the
compared models. A difference in the range of 2 to
6 indicates ”positive evidence” in favor of the model
with the smaller ∆AIC and/or ∆BIC value. Differences
falling within 6 to 10 suggest ”strong evidence” in fa-
vor of the chosen model. If the difference exceeds 10,
it is considered ”very strong evidence” in favor of the
model [79]. Consequently, we have compiled the χ2

min,
AIC, and ∆AIC data for our model in Tab. II. Upon re-
viewing the values, we observe that the data provides
moderate support for our model. Specifically, a result of
1.5 (Hubble) indicates consistency rather than support,
as does a result of 1.8 (SN), while a result of 2.5 (BAO)
would only mildly support the model.

60 70 80
H0

0.0

0.5

1.0

1

0

50

100

0

0.0

0.5

1.0

1.5

2.0

n

0.0

0.5

1.0

1.5

2.0
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1
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FIG. 1. Contour plot: Joint likelihood function for model parameters H0, α, n, ζ0, and ζ1 using Hubble, SN, and BAO data with
1 − σ and 2 − σ confidence levels.
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FIG. 2. Comparison between the model and ΛCDM for the Hubble parameter H(z) as a function of redshift z. The Model curve
is depicted by the green line, while the ΛCDM model is represented by the black dotted line. The green dots with error bars
correspond to the 31 Hubble sample points.

Datasets H0 (km/s/Mpc) α n ζ0 ζ1

Priors (60, 80) (0, 2) (0, 2) (0, 100) (0, 1)
Hubble 67.5+1.7

−1.7 1.35+0.66
−0.77 0.50+0.81

−0.55 61+40
−50 0.37+0.53

−0.38
SN 67.3+2.5

−2.5 1.40+0.63
−0.73 0.60+0.88

−0.63 57+40
−50 0.40+0.53

−0.40
BAO 69+10

−8 1.25+0.69
−0.69 0.34+0.44

−0.35 74+30
−40 0.32+0.54

−0.34

TABLE I. The marginalized constraints for the parameters H0, α, n, ζ0, and ζ1 are presented for various data samples at 68% and
95% confidence levels.

Model χ2
min AIC ∆AIC

Hubble
ΛCDM 22.028 26.028 0

f (Q) gravity 14.739 24.739 1.3
SN

ΛCDM 1049.785 1053.785 0
f (Q) gravity 1041.996 1051.996 1.8

BAO
ΛCDM 10.711 14.711 0

f (Q) gravity 2.190 12.190 2.5

TABLE II. The χ2
min values for each model are provided for every sample, as well as the AIC for the investigated cosmological

models. Also, the differences ∆AIC = AICΛCDM − AICModel are included.

V. COSMOLOGICAL PARAMETERS

A. Deceleration parameter (DP)

According to recent observations in cosmology, our
Universe is presently undergoing a transition from an

early decelerating phase to the current accelerating
stage. Understanding the expansion of the Universe in-
volves investigating the behavior of the Deceleration Pa-
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rameter (DP), defined as

q = −1 −
.

H
H2 . (44)

This parameter is positive (q > 0) when the Uni-
verse’s expansion decelerates over time, signifying a
phase of slowing cosmic expansion. Conversely, it is
negative (q < 0) when the Universe undergoes accel-
eration, indicating an epoch where the rate of expan-
sion increases. In the limiting case where all distances
in the Universe evolve linearly with time, the parame-
ter takes on a value of zero, representing a critical state
where the expansion neither decelerates nor accelerates.
Fig. 3 illustrates the behavior of the DP as a function of
redshift, z, considering the Hubble, Pantheon, and BAO
datasets. The plot demonstrates that our model aligns
well with the expected evolution of the Universe, show-
casing an early decelerating phase followed by late-time
cosmic acceleration. The current value of the DP de-
noted as q0, is determined to be q0 = −0.38, q0 = −0.43,
and q0 = −0.37 for the Hubble, Pantheon, and BAO
datasets, respectively. When considering the numerical
values of H0 and Ωm0 obtained from the latest Planck
data for the standard ΛCDM model [67], the current
value of the DP is q0 = −0.53, and the value predicted
by our model is close to this reference value.

Hubble

SN

BAO

-1 0 1 2 3 4 5

-1.0

-0.5

0.0

0.5

z

q
(z
)

FIG. 3. Deceleration parameter (q) versus redshift (z) plot for
constrained parameter values from Hubble, Pantheon (SN),
and BAO datasets.

B. EoS parameter

In cosmology, the EoS parameter is defined as the
ratio between the pressure and the energy density, ex-
pressed as ω = p

ρ . When dealing with a Universe
filled with a viscous fluid, the EoS parameter becomes

crucial for characterizing its behavior. Notably, in the
context of cosmic acceleration in modified theories of
gravity, the EoS parameter is typically negative. This
characteristic is evident when examining the Friedmann
equations within the standard model; specifically, when
ρ + 3p < 0, it leads to ω < − 1

3 . For instance, in the case
of the cosmological constant (ΛCDM), the EoS param-
eter is ω = −1. In other components of the Universe,
such as radiation, ω = 1

3 , and for non-relativistic matter,
ω = 0. The expressions for the matter-energy density
and the bulk viscous pressure in our model are provided
as follows:

ρ =
9α (1 + 2n)

(n + 2)2 H2, (45)

pv = − 27α

(n + 2)2 H2 − 6α

(n + 2)

.
H. (46)

Thus, we can determine the effective EoS parameter
as

ω = − 3
(1 + 2n)

− 2 (n + 2)
3 (1 + 2n)

.
H
H2 . (47)
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FIG. 4. Matter-energy density (ρ) versus redshift (z) plot for
constrained parameter values from Hubble, Pantheon (SN),
and BAO datasets.

Fig. 4 clearly illustrates that the matter-energy den-
sity is an increasing function of the redshift parameter z
and approaches a small value in the distant future (i.e.,
as z → −1) for all the constrained values of the model
parameters. In contrast, the bulk viscous pressure, as
shown in Fig. 5, is a decreasing function of redshift z
and maintains negative values throughout the cosmic
evolution. It starts with enormous negative values in
the Universe’s early stages and gradually approaches
zero over time. The presence of negative bulk viscous
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FIG. 5. Bulk viscous pressure (pv) versus redshift (z) plot for
constrained parameter values from Hubble, Pantheon (SN),
and BAO datasets.

pressure aligns with the accelerating phase of the Uni-
verse, which is consistent with recent observational ev-
idence, confirming the validity of our model. In Fig. 6,
the behavior of the effective EoS parameter is depicted
as a function of redshift z for the Hubble, Pantheon, and
BAO datasets. Notably, the behavior of the effective EoS
parameter resembles that of the quintessence DE model,
falling within the range −1 < ω < − 1

3 for Hubble
and Pantheon datasets, while for the BAO dataset, it ex-
hibits phantom behavior with ω < −1. Furthermore,
the present value of the effective EoS parameter is de-
termined as ω0 = −0.98, ω0 = −0.92, ω0 = −1.21 for
the Hubble, Pantheon, and BAO datasets, respectively.
These present values of ω are consistent with the results
found in the literature [80–82].

Hubble

SN

BAO
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FIG. 6. Effective EoS parameter (ω) versus redshift (z) plot for
constrained parameter values from Hubble, Pantheon (SN),
and BAO datasets.

C. Skewness parameter

By definition, the skewness parameter quantifies the
degree of anisotropy present in a DE bulk viscous fluid.
It is denoted as δ, and by utilizing Eqs. (25), (26), and
(27), we can express it as follows:

δ = −

(
n2 + n − 2

)
(1 + 2n)

− (n + 2) (n − 1)
3 (1 + 2n)

.
H
H2 . (48)

Fig. 7 illustrates the behavior of the skewness pa-
rameter as a function of the redshift z for the Hubble,
Pantheon, and BAO datasets. It is evident from this fig-
ure that the skewness parameter assumes positive val-
ues both in the past and the future, as well as at the
present epoch. Therefore, we can deduce that our model
exhibits anisotropy throughout the evolution of the Uni-
verse.
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BAO
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FIG. 7. Skewness parameter (δ) versus redshift (z) plot for con-
strained parameter values from Hubble, Pantheon (SN), and
BAO datasets.

D. Statefinder diagnostic

As researchers have increasingly focused on address-
ing the issue of cosmic acceleration and DE, numerous
models of DE have emerged, making it challenging to
navigate and differentiate among them. Sahni et al. [83]
introduced a novel concept known as the statefinder di-
agnostic, denoted as (r, s), which constitutes a geomet-
rical parameter primarily designed to elucidate cosmic
acceleration while distinguishing between various DE
models. The statefinder parameters (r, s) are expressed
in terms of the Hubble parameter and the DP as follows:

r =
...
a

aH3 , s =
r − 1

3
(

q − 1
2

) . (49)
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The statefinder parameters (r, s) are associated with
distinct regions of cosmological interest. When (r, s) =
(1, 1), it corresponds to the standard cold dark matter
(SCDM) limit, while the fixed point (r, s) = (1, 0) cor-
responds to the spatially flat ΛCDM limit. For values
where r < 1 and s > 0, it characterizes regions related
to DE, including quintessence and phantom eras. In this
paper, we illustrate the evolution of the statefinder pa-
rameters (r, s) in Fig. 8 for constrained parameter val-
ues from the Hubble, Pantheon, and BAO datasets. It
is noteworthy that the statefinder parameters (r, s) for
a Universe governed by a bulk viscous fluid initially
exhibit behavior reminiscent of the quintessence model
(r < 1 and s > 0), with a slight deviation from the
quintessence model for the BAO dataset. However, as
time progresses, they tend to approach the characteris-
tics of the ΛCDM model (r = 1 and s = 0) in the future.

Hubble

SN

BAO

Quintessence

Chaplygin

Gas
ΛCDM

-0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5
0.2
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0.6

0.8

1.0

1.2

s(z)

r(
z)

FIG. 8. Statefinder parameters (r, s) plot for constrained
parameter values from Hubble, Pantheon (SN), and BAO
datasets.

E. Om(z) diagnostic

Besides the statefinder parameters (r, s), another di-
agnostic tool commonly employed in the literature for

distinguishing between DE models and gaining deeper
insights into constructed cosmological models is the
Om(z) diagnostic. This diagnostic is a function of the
Hubble parameter and the redshift z [84]. The Om(z)
diagnostic for a flat Universe is calculated as:

Om (z) =

(
H(z)
H0

)2
− 1

(1 + z)3 − 1
, (50)

where H0 represents the present value of the Hubble
parameter. Similar to the statefinder parameters (r, s),
the Om(z) diagnostic assumes different values depend-
ing on the characteristics of the investigated Dark En-
ergy (DE) model. Consequently, positive, negative, and
constant slopes of Om(z) correspond to the phantom
(ωDE < −1), quintessence (ωDE > −1), and flat ΛCDM
(ωDE = −1) DE models, respectively. In Fig. 9, it
is evident that the Om(z) diagnostic assumes a nega-
tive slope, indicating the similarity of our model to the
quintessence scenario.
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FIG. 9. Om(z) diagnostic versus redshift (z) plot for con-
strained parameter values from Hubble, Pantheon (SN), and
BAO data sets.

VI. CONCLUSIONS

In the context of hydrodynamics, the consideration of
viscous effects in the cosmic fluid is inherently natural,
as the idealization of a perfect fluid is, in reality, an ab-
straction. In astrophysical and cosmological contexts,
real fluids often exhibit non-ideal behavior, and the in-
clusion of bulk viscosity is a plausible extension to cap-
ture more realistic aspects of the cosmic medium. Bulk
viscosity accounts for dissipative effects on large scales,
reflecting the interactions and complexities present in
the cosmic fluid, especially during phases of cosmic
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evolution where deviations from idealized behavior be-
come significant [54, 55, 58]. In this study, we have ex-
plored the dynamics of the LRS B-I Universe in the pres-
ence of non-relativistic bulk viscous matter within the
framework of f (Q) symmetric teleparallel gravity. Uti-
lizing a specific form for the bulk viscous coefficient,
ζ = ζ0 + ζ1H, where H represents the Hubble param-
eter, and ζ0 and ζ1 are constants [55], we derived exact
solutions for the field equations governing the Universe
under the influence of bulk viscosity. We considered
a linear f (Q) = αQ model, where α ̸= 0 serves as a
free parameter, and introduced an additional constraint
Hx = nHy (where n ̸= 0, 1 is an arbitrary real number)
to facilitate the determination of the Hubble parameter.

Moreover, we assessed the validity of the proposed
f (Q) model by incorporating observational datasets,
specifically the Hubble dataset, Pantheon SNe dataset,
and BAO dataset. The resulting best-fit values are as fol-
lows: for the Hubble dataset, H0 = 67.5+1.7

−1.7 km/s/Mpc,
α = 1.35+0.66

−0.77, n = 0.50+0.81
−0.55, ζ0 = 61+40

−50, and ζ1 =

0.37+0.53
−0.38; for the Pantheon dataset, H0 = 67.3+2.5

−2.5
km/s/Mpc, α = 1.40+0.63

−0.73, n = 0.60+0.88
−0.63, ζ0 = 57+40

−50,
and ζ1 = 0.40+0.53

−0.40; and for the BAO dataset, H0 = 69+10
−8

km/s/Mpc, α = 1.25+0.69
−0.69, n = 0.34+0.44

−0.35, ζ0 = 74+30
−40,

and ζ1 = 0.32+0.54
−0.34. The main findings can be summa-

rized as follows: Our model demonstrates a decelerat-

ing phase in the early Universe, transitioning to an ac-
celerating phase in the present epoch, consistent with
recent measurements (see Fig. 3). The matter-energy
density remains positive but decreases over time, while
the viscous pressure takes on negative values, indica-
tive of cosmic acceleration (see Figs. 4 and 5). The
behavior of the effective EoS parameter closely resem-
bles that of the quintessence model for the Hubble and
Pantheon datasets. However, for the BAO dataset, it
exhibits phantom behavior, and its current values (i.e.
ω0 = −0.98, ω0 = −0.92, ω0 = −1.21 for the Hub-
ble, Pantheon, and BAO datasets, respectively) are in
agreement with observational data (see Fig. 6). Further,
the skewness parameter depicted in Fig. 7 supports an
anisotropic evolution of the Universe throughout its en-
tire timeline.

Furthermore, both the statefinder parameter and
the Om(z) diagnostic suggest that our model shares
similarities with the quintessence model in the present
era, with indications of an eventual convergence to-
wards the ΛCDM model in the future (see Figs. 8 and 9).

Data availability All data used in this study are cited
in the references and were obtained from publicly avail-
able sources.
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