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Under the main assumption that the axion scalar field mainly composes the dark matter in
the Universe, in this paper we shall extend the formalism of kinetic axion R2 gravity to include
Gauss-Bonnet terms non-minimally coupled to the axion field. As we demonstrate, this non-trivial
Gauss-Bonnet term has dramatic effects on the inflationary phenomenology and on the kinetic axion
scenario. Specifically, in the context of our formalism, the kinetic axion ceases to be kinetically
dominated at the end of the inflationary era, since the condition φ̇ ' 0 naturally emerges in the
theory. Thus, unlike the case of kinetic axion R2 gravity, the Gauss-Bonnet corrected kinetic axion
R2 gravity leads to an inflationary era which is not further extended and the reheating era commences
right after the inflationary era, driven by the R2 fluctuations.

PACS numbers: 04.50.Kd, 95.36.+x, 98.80.-k, 98.80.Cq,11.25.-w

I. INTRODUCTION

Dark matter is still mysterious to date, since no evidence of this elusive dark component of our Universe has been
found to date. The particle nature of dark matter is very well motivated, since evidence of dark matter halos around
spiral galaxies, and cosmic events like the bullet cluster point to a particle nature of dark matter. In the past, many
candidate particle were proposed to describe particle dark matter [1–6], to date no evidence for a dark matter particle
has ever been found. This is probably because earlier studies and experiments focused to Weakly Interacting Massive
Particles (WIMPs), with masses ranging from 100 MeV to hundreds GeV. Thus currently the interest of cosmologists
is turned to light dark matter particle candidates. The prominent candidate for a large amount of phenomenological
reasons is the axion, see Refs. [7–84], for an important stream of articles and reviews, and also [11, 85] for some
recent updated reviews. Some interesting simulations can also be found in [86] which predict a mass for the axion
of the µeV order and in [87] an experimental proposal was introduced. Furthermore, an interesting explanation of
the recent Gamma ray bursts observations [88, 89] can be provided by axion-like particles with masses of the order
ma ∼ O(10−10) eV. Among axion models, the most important and phenomenologically appealing are the ones that
have their primordial Peccei-Quinn U(1) symmetry broken during inflation, unlike in the QCD axion. These belong
to the class of misalignment axion models, with two characteristic candidates, the canonical misalignment model [10]
and the kinetic axion model [17–19]. In both models, the axion is misaligned from the minimum of its potential,
however in the canonical misalignment has no initial kinetic energy, while in the kinetic misalignment it possesses a
large kinetic energy. Hence, this excess in the kinetic energy delays the axion oscillations which start when the axion
reaches its minimum and when the axion mass ma becomes of the same order as the Hubble rate, that is ma ∼ H.

In a previous work [71] we studied the effects of the kinetic axion on the R2 inflation theory. As we showed, although
the axion effects are insignificant during the inflationary era, the kinetic axion dominates the early post-inflationary
era, dominating over the 〈R2〉 fluctuations, which effectively destabilize the quasi-de Sitter vacuum R2 attractor.
Thus post-inflationary the Universe experiences a short stiff era controlled by the axion, before the latter settles in
the minimum of its potential, starting its oscillations and having an energy density redshifting as dark matter. In this
article, we aim to study the effects of string corrections in the kinetic axion R2 Lagrangian, in the form of Einstein-
Gauss-Bonnet corrections. The motivation to have a scalar field and considering modified gravity corrections of the
form of higher curvature invariants comes from the fact that the standard four dimensional vacuum configuration
scalar field Lagrangian,

Sϕ =

∫
d4x
√
−g
(

1

2
Z(ϕ)gµν∂µϕ∂νϕ+ V(ϕ) + h(ϕ)R

)
, (1)
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in which the scalar field must be either conformally or minimally coupled, receives the following one loop quantum
corrections [90, 91]

Seff =

∫
d4x
√
−g
(

Λ1 + Λ2R+ Λ3R2 + Λ4RµνRµν + Λ5RµναβRµναβ + Λ6�R (2)

+ Λ7R�R+ Λ8Rµν�Rµν + Λ9R3 +O(∂8) + ...
)
,

with the parameters Λi, i = 1, 2, ..., 6 being some dimensionful constants, see also the interesting Ref. [92] for extra
Chern-Simons corrections on the quantum action. The above corrections contain fourth order derivatives and the
action is compatible with diffeomorphism invariance. Apparently, in our case the axion scalar field during inflation is
described by Z(ϕ) = −1 and h(ϕ) = 1 in the action (1). Having modified gravity in its various forms [93–97] driving
inflation and possibly the dark energy era, a viable framework is offered in which inflation and the dark energy era
may be described by the same theory [68, 98–105]. Before we proceed, it should be stated that throughout this paper,
a homogeneous and isotropic background shall be considered with the line element being,

ds2 = −dt2 + a2(t)δijdx
idxj , (3)

where a(t) stands for the scale factor. In turn, the axion field is assumed to be homogeneous as well therefore hereafter,
φ = φ(t). This simplifies a lot the subsequent calculations and it is a well motivated assumption.

II. KINETIC AXION f(R) GRAVITY WITH STRING CORRECTIVE TERMS

In the literature, the axion dynamics have been investigated for a plethora of models, since it is a prominent
candidate for non-thermal dark matter. In this paper, based on this assumption, we shall investigate the inflationary
phenomenology of the kinetic axion model in the presence of higher order curvature invariants. In particular, we
shall make use of an f(R) model which is known for producing viable inflationary phenomenology, while furthermore
a non-minimal coupling between the axion and the Gauss-Bonnet density shall be considered, in order to explicitly
have a coupling between the scalar field and curvature. Hence, in order to study the primordial era of our Universe,
the following gravitational action is proposed,

S =

∫
d4x
√
−g
(
f(R)

2κ2
− 1

2
gµν∇µφ∇νφ− V (φ)− ξ(φ)G

)
, (4)

where R is the Ricci scalar, κ = 1
MP

with MP = 1/
√

8πG being the reduced Planck mass, 1
2g
µν∇µφ∇νφ and

V (φ) stand for the kinetic term and the canonical scalar field potential, while ξ(φ) is the arbitrary for the time
being scalar coupling function of the axion to the Gauss-Bonnet invariant, which shall be specified subsequently and
G = RµνρσRµνρσ − 4RµνRµν + R2 is the Gauss-Bonnet invariant with Rµν and Rµνρσ being the Ricci and Riemann
tensor respectively. In this model, there are two tensor degrees of freedom, and an additional scalar mode coming from
the f(R) gravity. Here, it should be stated that in order to have a direct impact of the Gauss-Bonnet density in the
overall phenomenology, a non-trivial coupling is required due to the fact that the model is studied in D = 4, hence the
reason why the arbitrary function ξ(φ) is introduced. This inclusion has a major impact on the overall phenomenology
as we shall showcase explicitly. It should also be stated that recently, an additional approach has been considered
where by working initially in D dimensions and introducing the Gauss-Bonnet density in the gravitational action
without a non-trivial coupling but with a constant factor scaling as α

D−4 , it is possible to keep such contribution in

the limit D → 4 as it was shown in Ref. [106], however this approach, although worthy of being mentioned, shall not
be considered here. This is because the non-minimal coupling between the scalar field and the Gauss-Bonnet density
in this case affects the continuity equation of the scalar field compared to the case of [71], and thus a completely new
territory is explored. Before we proceed with the equations of motion and the inflationary phenomenology, a quick
statement on the Gauss-Bonnet term and its impact on tensor perturbations should be made.

By including the Gauss-Bonnet density in Eq. (4), the continuity equation of the scalar field, and in consequence
the scalar perturbations, are not the only objects that are affected. This inclusion is known for being a subclass
of Horndeski’s theory and thus the propagation velocity of tensor perturbations is also influenced by such term.
According to Ref. [107], one can show that the deviation of the propagation speed of tensor perturbations from the
speed of light is quantified by the following expression,

c2T = 1− Qf
Qt

, (5)
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where Qf = 8(ξ̈ − Hξ̇) and Qt = 1
κ2

df
dR − 8ξ̇H are auxiliary parameters. Recently, the GW170817 event indicated

explicitly that gravitational waves propagate throughout spacetime with the velocity of light, therefore theories which
predict a different result have been excluded. In this case however, one can postulate that the arbitrary Gauss-Bonnet
scalar coupling function is not so arbitrary but it needs to satisfy the differential equation,

ξ̈ = Hξ̇ , (6)

which in turn implies that the auxiliary parameter Qf in Eq. (5) vanishes identically. As a result, the Gauss-Bonnet
models that respect this constraint can actually be in agreement with the latest observations. At this point, one may
argue that the constraint is not necessarily needed because the behavior of φ, and in consequence ξ(φ) differs between
early and late-time. It could be the case that while primordially the scalar field has a dynamical evolution that in
consequence predicts c2T < 1, the scalar field freezes at late times, resulting in the conditions ξ̇ = 0 = ξ̈ and thus being
in agreement with the GW170817 event in the late-time era only. But it hard to see how this statement could be
realized in the standard cosmological evolution of the Universe post-inflationary. There is no fundamental reasoning
emanating from particle physics that could allow the graviton to be massive initially and only at late times it becomes
massless. Thus in the present article we shall avoid this argument and focus solely on the inflationary phenomenology
of the constrained Gauss-Bonnet model. The Gauss-Bonnet model is a string inspired model and serves as a low-energy
effective theory, so during and after inflation, the gravitons should be massless. Hence our massless graviton approach
is well justified. Thus the constraint on the velocity of tensor perturbations shall be implemented in order to predict
massless gravitons throughout the evolution of the Universe. Therefore, the constraint (6) will have a major impact
on the continuity equation and in turn, it will influence the evolution of the scalar field. In Ref. [108], it was proved
that the constraint decreases the overall degrees of freedom and one can treat the continuity equation of the scalar
field as a differential equation from which a scalar function, either the potential or the Gauss-Bonnet scalar coupling
function, are specified. Here, since we know the behaviour of the kinetic axion model, the usual approach shall be
considered where the derivative of the scalar field is specified from the continuity equation once the Gauss-Bonnet
scalar coupling function is designated. This is possible due to the fact that Eq. (6) can be rewritten by making use

of the chain rule ξ̇ = ξ′φ̇ as,

φ̈ = Hφ̇

[
1− ξ′′

Hξ′
φ̇

]
, (7)

where for simplicity, differentiation with respect to the scalar field is denoted with the “prime”. This equation is of
paramount importance, since not only does it facilitate the derivation of φ̇ from the continuity equation, but it is
also connected to one of the slow-roll indices that we are interested in, as we shall showcase in the following. Now
at this stage, a few comments on the kinetic axion and canonical misalignment axion models should be made. We
shall mainly focus on the kinetic axion model, but it is worth presenting both the kinetic and canonical misalignment
axion models for completeness. Both the canonical misalignment and kinetic axion models belong to the class of
misalignment axion models [10, 17], in which case the pre-inflationary Peccei-Quinn U(1) symmetry is basically
broken during the inflationary era and the axion field has an initial misalignment from the minimum of its potential.
In this misalignment position, its vacuum expectation value is quite large φi ∼ θfa, with fa being the axion decay
constant, with fa > 109 GeV, and θ is the misalignment angle, taking values in the range 0 < θ < 1. The general
axion potential, after the breaking of the primordial Peccei-Quinn U(1) symmetry has the form,

Va(φ) = m2
af

2
a

(
1− cos

(
φ

fa

))
. (8)

When φ/fa < 1, we can approximate the misalignment axion potential in the following way,

Va(φ) ' 1

2
m2
aφ

2 . (9)

Now regarding the initial kinetic energy of the axion, there are two mainstream models, the canonical misalignment
axion [10] and the kinetic axion model [17]. In the former case, the axion rolls from its misalignment position towards
the minimum of the potential with zero kinetic energy, and in the latter scenario the axion has a large kinetic energy.
In the canonical misalignment model, when the axion reaches the potential minimum, and exactly when the Hubble
rate satisfies H ∼ ma, the axion commences oscillations and its energy density ρa redshifts as cold dark matter
ρa ∼ a−3. In the kinetic axion case, the oscillations era starts at a much more later time compared to the canonical
misalignment because the kinetic energy of the axion allows it to surpass the potential minimum and climbs up the
potential, as it is shown in Fig. 1. In this case, the inflationary era lasts for more e-foldings [70, 71] and the reheating
temperature must be smaller compared to the canonical misalignment one. Since the constraint on the propagation
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FIG. 1. The canonical and kinetic misalignment models.

velocity of gravitational waves and the mechanism for the kinetic axion have been briefly discussed, let us proceed
with the inflationary phenomenology. According to the gravitational action (4) and the constraint (6), the equations
of motion read,

3FH2

κ2
=

1

2
φ̇2 + V + 24ξ̇H3 +

FR− f
2κ2

− 3HḞ

κ2
, (10)

− 2FḢ

κ2
= φ̇2 − 16ξ̇HḢ +

F̈ −HḞ
κ2

, (11)

φ̈+ 3Hφ̇+ V ′ + ξ′G = 0 , (12)

where for simplicity we introduced the notation, F = df
dR . In order to simplify the analysis, we introduce two

dimensionless auxiliary variables x = κ2φ̇2

6FH2 and y = − 4κ2ξ̇H
F which participate in the first two equations. In order

to proceed, and by following [71], the aforementioned parameters have a negligible contribution compared to the rest
terms and, due to the fact that the axion mass is quite small and the potential and kinetic terms of the axion are
inferior to the modified gravity terms. Thus, one finds that the background field equations can be approximated as,

3FH2 ' FR− f
2

− 3HḞ , (13)

− 2FḢ ' F̈ −HḞ , (14)

φ̈+ 3Hφ̇+ 24ξ′H4

(
1 +

Ḣ

H2

)
' 0 . (15)

In order to proceed, the f(R) gravity shall be chosen to be a popular model, namely the well-known R2 model,

f(R) = R+
R2

6M2
, (16)

where M is an arbitrary mass scale determined by standard phenomenology to be M = 1.5× 10−5
(
N
50

)−1
MP [109],

therefore for N ∼ 60, M is of the order M ' 3.04375 × 1022eV. The above simplifications in the background field
equations are well justified, since, 〈φ〉 = fa ' O(109)GeV and we shall take approximately ma ' O(10−10)eV. Thus,
the potential term is of the order κ2V (φi) ∼ O(8.41897 × 10−30)eV2, and the terms R and R2 are of the order,
R ∼ 1.2×O(1045)eV2 and also R2/M2 ∼ O(1.55× 1045)eV2 for a low-scale inflationary scenario HI ∼ O(1013) GeV.
As the Friedmann and Raychaudhuri equations suggest, the f(R) gravity term dominate and thus these determine
the Hubble rate. Additional inclusions that dominate in the limit R → 0, and thus unify both early and late time,
are also plausible scenarios [68] but we shall not consider these here. In consequence, the Hubble rate expansion, due
to the fact that inflation is described by a quasi-de Sitter expansion, it should scale linearly with time and thus the
Hubble rate reads,

H(t) = HI −
M2

6
t , (17)
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where HI is the dominant part of the Hubble rate, the scale of inflation basically, and is assumed to be of order
HI ∼ O(1013) GeV, so we assume a low-scale inflationary scenario. Concerning the scalar field, it becomes clear that
its evolution is affected by the Gauss-Bonnet density. Let us see how one can study inflation. We define the slow-roll
indices [107],

ε1 = − Ḣ

H2
, ε2 =

φ̈

Hφ̇
, ε3 =

Ḟ

2HF
, ε4 =

Ė

2HE
, ε5 =

Q̇t
2HQt

, (18)

where E = F
κ2

[
1 + 3(Ḟ+κ2Qa)

2

2κ4Qtφ̇2

]
, Qa = −8ξ̇H and Qt = F

κ2 + Qa
H are auxiliary parameters. In principle, the afore-

mentioned indices should not be labelled as slow-roll indices given that their numerical value is not necessarily of
order O(10−3) and below. As an example, consider the case of a linear Gauss-Bonnet scalar coupling function [110].
By imposing the constraint on the propagation velocity of tensor perturbations (6), it can easily be inferred that the
second index becomes identically equal to unity. In a sense, the large value is not an issue, provided that compatible
with the observations results can indeed be extracted. Now obviously, one can see that indices ε1 and ε3 are affected
solely by the f(R) part whereas the rest carry information about string corrections. Indeed, by following the standard
approach for the R2 model, one can easily see that during the first horizon crossing in which we are interested in,

ε1 =
1

2N + 1
, ε3 = −ε1 + 3ε21 , (19)

where N denotes the e-foldings number and is considered to be near N ∼ 60. For the second index, by combining
equations (7) and (15), it turns out that,

ε2 = −1 + 2
√

1 + 6ξ′′H2(1− ε1) , (20)

where we can see that it depends both on the f(R) part, due to the fact that the Hubble rate expansion carries
information about the mass scaleM , and also on the choice of the Gauss-Bonnet scalar coupling function. Furthermore,
while the aforementioned index has no issue with the choice of the linear coupling, this does not apply to the solution
of φ̇ which in this case reads,

φ̇ =
2Hξ′

ξ′′

[
1−

√
1 + 6ξ′′H2(1− ε1)

]
. (21)

The linear coupling is a special case and will be studied on its own in the following however no matter the coupling,
the gravitational wave constraint reduces the degrees of freedom and now the continuity equation is altered to a first
order differential equation. This expression is quite interesting in the kinetic axion model as it implies that at the
end of the inflationary era, φ̇ = 0 regardless of the coupling which is used, therefore the axion dynamics are greatly
affected. Regarding the rest indices, one can easily show that without performing any approximations, they can be

written with respect to the previously defined parameters x = κ2φ̇2

6FH2 and y = κ2Qa
2FH as well as the rest indices as,

ε4 = ε3 +

[
1− x(1 + 2y)

x(1 + 2y) + (ε3 + y)2

][
−ε1ε3 + y(1− 2ε1)

ε3 + y
− ε2 − ε5

]
, (22)

and,

ε5 =
ε3 + y(1− ε1)

1 + 2y
. (23)

As a check, one can show that in the limit of y → 0, meaning that when string corrections are neglected, the respective
expressions match the results of Ref [71]. As a final note, we mention that the observed indices that we are interested
in, namely the scalar and tensor spectral indices of primordial curvature perturbations along with the tensor-to-scalar
ratio, they can be computed by making use of the numerical value of the εi indices during the first horizon crossing.
In the end, we find that from their definition [107], the observed indices can be written as,

nS = 1− 2(2ε1 + ε2 − ε3 + ε4)

1− ε1
, r = 16

∣∣∣∣(3ε1 + 2y

)
ε1c

3
A

1 + 2y

∣∣∣∣ , nT = −2(ε1 + ε5)

1− ε1
, (24)

where cA stands for the propagation velocity of scalar perturbations and in this approach is equal to,

c2A = 1− 4yε1(ε3 + y)

3(x(1 + 2y) + (ε3 + y)2)
, (25)
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where due to the fact that ε1 � 1, ε3 � 1 and y � 1, it is expected that the sound wave velocity is approximately
equal to unity. Here, due to the fact that index ε5 participates in the tensor spectral index, it could be possible to
obtain a blue-tilted tensor spectral index once the condition ε5 < −ε1 is satisfied. In reality, this is impossible for the
model at hand due to the fact that index ε5 carries information about strings through the dimensionless parameter y.
Such parameter was already encountered in the background equations (10)-(11) where, by making the assumption that
is inferior compared to the f(R) contribution, it was neglected. In turn, this implies that the overall phenomenology
is viable if y � ε3 but if that is the case, then no matter the choice of Gauss-Bonnet coupling, the tensor spectral
index and the tensor-to-scalar ratio should be identical to the results of the vacuum R2. Hence, the kinetic axion
model in the presence of a Gauss-Bonnet term can only affect the scalar spectral index at best provided that the
second index is of order O(1). Indeed we shall showcase this explicitly in the following models. In total, a blue tilted
tensor spectral index could be generated if the following conditions are met,

y ≤ − 3ε21
1 + ε1

, 1 + 2y > 0 , (26)

but the dominance of the f(R) will never allow this conditions to be true since F suppresses y. This is because for
N ∼ 60, 3ε21 ∼ O(10−4) however if 1 > −y > O(10−4), it should participate in the simplified background equations
(13)-(14) therefore, in this context, a viable inflationary era manages to manifest only red-tilted tensor spectral indices.
If however, the scalar field were to be more dominant than the f(R) part, something which may be feasible for quite
large mass scales M , then the results could differ. This case shall not be studied here.

As a final note regarding the expressions of the spectral indices, one may argue that having quite large values
for the indices ε2 and in turn ε4 may be an issue with these expressions, since they were derived by making certain
assumptions. While this is indeed the case, the above expressions can be used without any problem, because in order
to derive such formulas, the following inequalities must be respected,

−ε1 − 2(ε2 − ε3 + ε4) ≤ 3 , ε1 − 2ε3 ≤ 3 , (27)

which, due to the fact that ε2 + ε4 is quite small and ε1, ε3 scale with 1
N , the inequalities are indeed respected.

Another issue that needs to be addressed is the condition ε̇i = 0 which was assumed in order to derive the spectral
indices. While the second index satisfies this identically in the case of a linear Gauss-Bonnet scalar coupling function,
since in this case ε2 = 1, the rest indices evolve dynamically. In Ref. [111] it was shown that the condition ε̇i = 0 is
not actually needed but it is required so that the derivative varies slowly, something which is indeed the case since
ε̇1
Hε1

= 2ε1 and the rest can be derived based on this. This applies to the case of an arbitrary Gauss-Bonnet scalar
coupling function as well.

III. INFLATIONARY PHENOMENOLOGY AND COSMOLOGICAL VIABILITY OF SPECIFIC
MODELS

In this section we shall briefly showcase the results that are produced for two models of interest. The reason why
these models were selected is because in the absence of an f(R) gravity, it was explicitly shown that the constraint on
the propagation velocity of tensor perturbations and these models, are at variance as the results produced were not
in agreement with observations. Therefore, it is reasonable to return to these models and try to see whether these
can be rectified by the inclusion of an R2 term that dominates the cosmic evolution.

A. The Choice of a Linear non-minimal Gauss-Bonnet Coupling Function

We commence by studying the inflationary dynamics of the linear non-minimal Gauss-Bonnet coupling,

ξ(φ) =
φ

f
, (28)

where f is an arbitrary parameter with eV mass dimensions, not to be confused with the axion decay constant. As
mentioned before, this is an interesting model, due to the fact that it predicts that under the assumption c2T = 1, the
constant-roll condition ε2 = 1 emerges naturally. In Ref. [110], it was shown that the constant-roll condition is in
fact so dominant that it spoils the viability of the scalar spectral index, however in the present context, the inclusion
of the f(R) gravity results in a smooth cancellation of the dominant ε2 terms, thus rendering the model viable. Now
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for a linear coupling, Eq. (15) suggests that,

φ̇ = −6H3(1− ε1)

f
. (29)

This is the general solution assuming that the contribution from the scalar potential is subleading. It is interesting to
note that while the axion has a superior kinetic term at first, when inflation ceases and ε1 becomes equal to unity, it
can easily be inferred that φ̇ = 0. Now this implies that the potential dominates and therefore, due to the inclusion of
the Gauss-Bonnet density, no stiff matter is predicted. This is a major outcome of the present work because the stiff
kination era present in the kinetic f(R) gravity case, is absent once the non-minimal string originating Gauss-Bonnet

term is absent. In fact, even if one were to keep the potential, the contribution at ε1 = 1 would be φ̇ = −m
2
αφ

4H and

FIG. 2. Scalar spectral index as a function parameter f and mass scale M .

since H � mα initially, the kinetic term becomes inferior at that point. This is in the antipode of the result obtained
in Ref. [71], and this behavior occurs only because the continuity equation can be solved algebraically with respect

to φ̇ in the case at hand, due to the inclusion of the Gauss-Bonnet density and the constraint (6). We shall leave this
issue for the time being and focus on the inflationary era only.

Since φ̇ has been extracted, a simple designation of the free parameters of the model suffices in order to derive
results. In particular, since the Hubble rate expansion in the first horizon crossing is given by the relation,

H =
M√

6

√
2N + 1 , (30)

we find that,

φ̇ = −
2M3(N + 1

2 )
3
2

f
√

3
, (31)

therefore parameters x y, εi and in consequence the observed indices are completely specified by N , f and M .
From a numerical standpoint, for N = 60, M = 1.25 × 10−5MP and f = 10−5MP , one finds that nS = 0.96686,
nT = −0.000413283 and r = 0.00327847 which is in agreement with the latest Planck data [112]. As expected, the
results do not differ so much from the vacuum R2 model exactly because string corrections and the scalar field were
assumed to be inferior to the f(R) part. This can also be seen in Fig. 3 where we confront the linear model at hand
with the latest Planck likelihood curves and the pure R2 model results are also included. This can be inferred from
the numerical values of x and y which read 7× 10−9 and 3× 10−8 respectively, therefore neglecting the kinetic term
and the string corrections in the background equations, this is justified. It is also interesting to mention that the
above results are independent of the initial value φi of the scalar field, and thus the results are valid for a plethora
of values for φi and fα. The only condition in order for the approximation in (9) to be valid is to demand that

φi ≤ fα
10 , therefore if f in the above model is identified as the axion decay constant such that fα ∼ O(1013)GeV then

φi ≤ O(1012)GeV. According to Fig. 2, f cannot be decreased any further since the scalar spectral index becomes
incompatible with observations.

As a final note, it should be mentioned that the constant-roll condition for the scalar field φ̈ = Hφ̇, due to
the constraint on the propagation velocity of tensor perturbations, is connected to the production of scalar non-
Gaussianities in the CMB. In principle, a detailed analysis should be made however, due to the fact that the f(R)
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FIG. 3. Comparison of the linear non-minimal Gauss-Bonnet coupling model to the R2 model and the latest Planck likelihood
curves.

part dominates, one can expect that no matter the numerical value of index ε2 during the first horizon crossing where
k = Ha, the equilateral nonlinear term feqNL should be at leading order approximately equal to [113]

feqNL =
5

12
(1− nS) , (32)

where according to the previous results, it should be approximately of order O(10−2). Overall, the kinetic axion scalar
field cannot enhance the vacuum R2 result, as it is subleading.

Now the novel outcome of this model is that the kinetic axion mechanism for the string-corrected R2 gravity model
does not produce a kination era after the end of inflation. As we showed, the condition φ̇ ∼ 0 is imposed by the
physics of the problem in the case at hand, therefore at the end of inflation, the effective equation of state of the
axion is basically a nearly de-Sitter slightly turned to quintessential one. Now the physics in this scenario could be
interesting, since the Universe may be overwhelmed by an early dark energy era caused by the kinetic axion which
behaves as a slow-roll scalar at the end of inflation. This behavior is entirely caused by the extra Gauss-Bonnet term.
One thing is certain for sure, the axion oscillations must be significantly delayed in this model, since the condition
φ̇ ' 0 clearly indicates that the evolution of the axion down to the minimum of its potential is delayed, and the axion
slowly-rolls down to its minimum in a modulated way controlled by the Gauss-Bonnet coupling. The axion in this
scenario is not driving the initial inflationary era, but it seems that it may control the post-f(R) gravity inflation
cosmological era. The vacuum fluctuations of the R2 term may not be able to initiate the reheating era. Therefore,
what we may are facing in this case is basically a second short slow-roll era controlled by the axion prior the Hubble
rate reaches the value ma ∼ H. It is thus a physical situation where the R2 fluctuations are competing a slow-roll
axion, but there is a caveat in this scenario, mainly the fact that the energy density of the axion ρa ∼ a−3(1+w)

for a nearly de-Sitter era is almost constant ρa ∼ const, while in the kinetic axion case ρa ∼ a−6 and for a purely
matter dominated post-inflationary era ρa ∼ a−3. Hence, it is apparent that the contribution of the axion to the R2

reheating process is comparable to κ2ρa ∼ κ2 thus the standard R2 reheating occurs. In this case however, the axion
oscillations are somewhat delayed, but slightly.

B. The Choice of an Exponential non-minimal Gauss-Bonnet Coupling Function

The second model that shall be discussed is the case in which the Gauss-Bonnet coupling has an exponential form,

ξ(φ) = e−
φ
f . (33)

This model was studied in Ref. [108] and as it was shown, the exponential model resulted, depending on the value
of f , to either eternal or no inflation at all. Therefore, it is intriguing to study the exponential model in this case in
order to examine under which circumstances it can result to a viable inflationary era. Now, since the Gauss-Bonnet
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coupling is not linear, the following set of equations need to be used,

φ̇ =
2Hξ′

ξ′′

[
1−

√
1 + 6ξ′′H2(1− ε1)

]
, ε2 = −1 + 2

√
1 + 6ξ′′H2(1− ε1) , (34)

where due to the fact that the factor 1 − ε1 appears, the time derivative at the end of inflation is identically equal
to zero. Similarly as in the previous case, this outcome suggests that the kinetic term is not dominant compared to
the potential, therefore the intermediate stiff matter era that emerged in Ref. [71] is avoided in this model too. In
other words, the inclusion of the Gauss-Bonnet density in Eq. (4) suggests that it cannot result in a reduction of the
tensor-to-scalar ratio due to the fact that the inflationary era cannot be prolonged any further. Even if the potential
is present in the continuity equation, then the solution of (12) accounting for the constraint (6) suggests that,

φ̇ =
2Hξ′

ξ′′

[
1−

√
1 + 6H2ξ′′(1− ε1) +

V ′ξ′′

4ξ′H2

]
, (35)

therefore for ε1 = 1, one can see that the ratio between the kinetic term and the scalar potential of the axion is,

φ̇2

2V
=

(
2ξ′

ξ′′φ

)2(
H

mα

)2[
1−

√
1 +

φξ′′

4ξ′

(
mα

H

)2]2
. (36)

Provided that at the end of inflation, H
mα
� 1, then by performing a Taylor expansion one finds that,

φ̇2

2V
'
(
mα

4H

)2

, (37)

and thus, the kinetic term is inferior therefore the model does not predict any increase in the duration of inflation,
exactly as was the case with the linear Gauss-Bonnet coupling. Therefore, this result is the same regardless of the
coupling chosen. Let us now proceed with the numerical results of the model at hand. By using similar values as in

FIG. 4. Spectral index nS depending on parameters f and N on the left and f and M on the right.

the linear coupling such as N = 60 and M = 1.25×10−5MP , for the case of f = 10−6MP and φi = 10−10MP one finds
that nS = 0.965791, nT = −0.000413309 and r = 0.00327848 which are obviously in agreement with Planck data. As
expected, since x = 1.5×10−10 and y = 4×10−8, the scalar field is subleading in background equations and the tensor
spectral index and tensor-to-scalar ratio are equivalent to their vacuum R2 counterparts and only the scalar spectral
index is affected to some degree, due to the small value of f . It should be stated that such value increases extremely
the second and fourth index as now ε2 = 273.994 and ε4 = −274.001 however in order to have correct results, we are
interested in their sum and their slow-variation as it was mentioned previously. Obviously, larger values of f decrease
the aforementioned indices but do not influence the scalar spectral index, see Fig.4 for further details on the scalar
spectral index. Finally, since the initial value of the scalar field was assumed to be approximately φi ∼ O(108) GeV,
the approximation on the canonical potential (9) applies if the axion decay constant is fα ≥ O(109)GeV.
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As a general note, the inclusion of additional string terms does not seem to influence the overall phenomenology.
A back-of-the-envelope calculation for the case of an additional string correction,

S =

∫
d4x
√
−g
(
f(R)

2κ2
− 1

2
gµν∇µφ∇νφ− V (φ)− ξ(φ)

(
G + cGµν∇µφ∇νφ

))
, (38)

that also affects tensor perturbations suggests that if the constraint c2T = 1 is once again imposed such that ξ̈ =

Hξ̇− cξφ̇2

4 , the numerical results are not affected for similar set of values for the free parameters and φ̇2(tend)� Vend
once again.

IV. PHASE SPACE ANALYSIS OF THE MODEL

In the last section of this paper we shall briefly discuss the phase space of the proposed kinetic axion f(R) gravity
model. By including perfect matter fluids, including radiation and dark matter fluids, the gravitational action reads,

S =

∫
d4x
√
−g
(
f(R)

2κ2
− 1

2
gµν∇µφ∇νφ− V (φ)− ξ(φ)G + Lmatter

)
, (39)

and in consequence, the background equations (10) and (11) are rewritten as,

3FH2

κ2
= ρ+

FR− f
2κ2

− 3HḞ

κ2
+

1

2
φ̇2 + V , (40)

− 2FḢ

κ2
= ρ+ P +

F̈ −HḞ
κ2

+ φ̇2 , (41)

where ρ and P are the total energy density and pressure of the perfect matter fluids respectively. With regard to the
latter, we shall assume that the axion is the sole dark matter component and that other extra dark matter components
are not present. In order to perform an autonomous dynamical analysis, the Gauss-Bonnet scalar coupling function
shall remain unspecified and the rest functions of the model will follow a power-law form,

f(R) = R+ARn , V (φ) = V0(κφ)m , (42)

for the sake of generality however we shall limit our results in the case of n = 2 = m where in turn A = 1
6M2 and

V0 =
m2
α

2κ2 . In addition, let us define the following dynamical variables,

x =
κ2φ̇2

6FH2
, y =

κ2V

3FH2
, z =

8κ2ξ̇H

F
, u = − Ḟ

HF
, v = − f

6FH2
, w =

R

6H2
, s =

V̇

HV
, p =

κ2ρr
3FH2

, q =
κ2ρm
3FH2

,

(43)

where p and q should not be mistaken with Ωr and Ωm due to the F part in the denominator. In consequence,
equations (40) and (12) are rewritten as,

x+ y + z + u+ v + w + p+ q = 1 , (44)

φ̈

Hφ̇
= −3− s

2

y

x
− z

2x
(w − 1) . (45)

Now by making use of the e-foldings number through the differential equation d
dN = 1

H
d
dt , the following set of

differential equations is produced,

dx

dN
= x

[
− 6− y

x
− z

x
(w − 1) + u− 2(w − 2)

]
, (46)

dy

dN
= y

[
s+ u− 2(w − 2)

]
, (47)
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dz

dN
= z

[
w − 1 + u

]
, (48)

du

dN
= u(u+ 1) + 6x+ 4p+ 3q + 2(w − 2)(1− z − u

2
) , (49)

dv

dN
= v(u− 2(w − 2)) +

uw2

n(v + w)
, (50)

dw

dN
= −w

[
uw

n(v + w)
+ 2(w − 2)

]
, (51)

ds

dN
= s

[
− 3− s

2

y

x
− z

2x
(w − 1)− (u− 2)− s

m

]
, (52)

dp

dN
= p(u− 2w) , (53)

dq

dN
= q(u− 2w + 1) . (54)

Let us study two separate cases. Firstly, we focus on the vacuum R2 kinetic axion model, therefore the parameters y
and s are neglected along with p and q. Therefore, a subsystem comprised of variables x and z, that are connected
to the axion dynamics and the Gauss-Bonnet term, along with u, v and w, connected to the f(R) part, is studied.
This subsystem can be solved relatively straightforward. So as expected, the inclusion of the Gauss-Bonnet produces
a richer phase space. As presented in Table I, there exist four fixed points in total, one of them being a de Sitter fixed
point, another is connected to matter while additionally a third to radiation domination eras and finally, the new
stable fixed point from the Gauss-Bonnet contribution describes acceleration and since ωeff = −1.6667, it predicts a
phantom evolution. This is the case of phantom dark energy that has been covered in Ref. [114]. Now if one includes

Fixed Point (x, z, u, v, w) Eigenvalues Stability q ωeff

P1 (0,0,-4,5,0) (-6,-5,-5,4,0) Non Hyperbolic 1 1
3

P2 (0,0,0,-1,0) (0,-6,1,-3,0) Non Hyperbolic -1 -1

P3 (− 9
4
,0,3,- 1

4
, 1
2
) (6,3,3, 5

2
,- 3

2
) Saddle 1

2
0

P4 (− 3
8
,- 15

16
,-2,- 3

2
,3) (-9.42318,-5.74568,-4,-2,-0.831139) Stable Node -2 - 5

3

TABLE I. Fixed points for the vacuum model with subleading potential.

the potential, along with variable s, it turns out that no additional fixed point emerges since y → 0 and only s can
obtain a non-zero but finite value. This however does not affect the Friedmann constraint neither the stability of
the fixed points, it only suggests how y or in other words φ evolves. Finally, the inclusion of perfect matter fluids
increases the number of fixed points by two, as shown in Table II and surprisingly, these fixed points have nothing to
do with matter or radiation. In fact, the first fixed point is connected to a static universe as ωeff = − 1

3 whereas the

second describes quintessential acceleration with ωeff = − 1
2 . In a sense, the f(R) gravity describes both de-Sitter

and radiation domination eras, while the kinetic term of the axion describes matter domination. This is somewhat
expected since the axion is a dark matter component.

As a final note, it should be stated that under the assumption that c2T = 1, the constraint in Eq. (7) should be
implemented in the continuity equation of the scalar field as well. In consequence, if it is combined with Eq. (45), an
additional equation emerges that needs to be satisfied at all times and reads,

2(4− λ)x+ sy + z(w − 1) = 0 , (55)

where λ = ξ̇′

Hξ′ is an additional auxiliary parameter. This condition is respected by the fixed points which were

previously derived and for a nonzero but finite value of x, which was shown to manifest previously, parameter λ
simply obtains a specific value. The linear Gauss-Bonnet coupling is a special case since it suggests that λ = 0
identically therefore the fixed points P3 through P6 cannot satisfy the aforementioned constraint.

We need to note that in principle, in the context of our model, it is possible to satisfy in a concrete way all the
Swampland criteria, due to the freedom offered by the f(R) sector and the Gauss-Bonnet coupling, something which
is not possible in ordinary scalar field theories [115–117].
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Fixed Point (x, y, z, u, v, w, p, q) Eigenvalues Stability q ωeff

P1 (0,0,0,-4,5,0,0,0) (-6,-5,-5,4,4,-3,0,0) Non Hyperbolic 1 1
3

P2 (0,0,0,0,-1,0,0,0) (0,0,-6,-4,-3,1,-3,0) Non Hyperbolic -1 -1

P3 (− 9
4
,0,0,3,- 1

4
, 1
2
, 0, 0) (6,6,3,3,3, 5

2
,2,- 3

2
) Saddle 1

2
0

P4 (− 3
8
,0,- 15

16
,-2,- 3

2
,3,0,0) (-9.42318,-8,-7,-5.74568,-4,-4,-2,-0.831139) Stable Node -2 - 5

3

P5 (0,0,2,- 1
2
,1,0,- 3

2
,0 ) (4,4,-2.44949,2.44949,-2,2,2,1 ) Saddle 0 − 1

3

P6 (0,0, 3
2
,- 5

8
, 5
4
0,0,- 9

8
) ( -3,3,3,-2.77617,2.02617,1.75,1.5,-1) Saddle − 1

4
− 1

2

TABLE II. Fixed point of the complete model.

V. CONCLUSIONS

In this work we studied the effects of a non-minimal coupling of the kinetic misalignment axion field on the
inflationary era generated by an R2 gravity. In the case of kinetic axion R2 gravity, the inflationary controlled by
the R2 gravity is somewhat prolonged by the kinetic axion, since at the end of inflation, the stiff axion evolution
prevails the evolution, thus the reheating era is delayed. This is due to the fact that the kinetic axion at the end of
the inflationary era dominates over the R2 fluctuations which would start the reheating process, and in effect, the
background equation of state parameter would have value w = 1. In turn, this affects the total number of the e-foldings
and hence the inflationary era is prolonged. Also in the same context, the reheating era is somewhat shortened, thus
the Universe in this scenario would have a lower reheating temperature compared to the canonical misalignment axion
R2 model. However, as we showed in this article, the non-trivial Gauss-Bonnet coupling can have dramatic effects on
the axion itself, imposing the condition φ̇ ' 0 at the end of the inflationary era. In this case it is obvious that the
kinetic evolution of the axion is stopped at the end of inflation, and thus the axion reaches the minimum of its potential
faster. Therefore, it starts its oscillations around its minimum in a standard way when its mass is of the same order
as the Hubble rate, and therefore the R2 fluctuations control the reheating era. Thus in some way, the non-trivial
Gauss-Bonnet coupling of the axion, counteracts on the kination axion mechanism, eliminating the stiff era axion
evolution at the end of the inflationary era. At a phenomenological level, the R2-corrected canonical misalignment
axion model and the kinetic axion R2 inflation model with Gauss-Bonnet corrections are almost indistinguishable.
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