
Galileon inflation evades the no-go for PBH formation in the
single-field framework

Sayantan Choudhury ID 1,∗ Sudhakar Panda ID 2,3,† and M. Sami ID 1,4,5‡
1Centre For Cosmology and Science Popularization (CCSP),

SGT University, Gurugram, Delhi- NCR, Haryana- 122505, India,
2School of Physical Sciences, National Institute of Science Education and Research, Bhubaneswar, Odisha - 752050, India,

3 Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai - 400085, India,
4Center for Theoretical Physics, Eurasian National University, Astana 010008, Kazakhstan. and

5Chinese Academy of Sciences,52 Sanlihe Rd, Xicheng District, Beijing.

We consider Galileon inflation in the Effective Field Theory (EFT) framework and examine the
possibility for PBH formation during slow roll (SR) to ultra slow roll (USR) transitions. We show
that loop corrections to the power spectrum, in this case, do not impose additional constraints
on the masses of PBHs produced. We indicate that the remarkable non-renormalization property
of Galileans due to generalized shift symmetry dubbed as Galilean symmetry is responsible for
protecting PBH formation from quantum loop corrections.
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I. Introduction

Galileon field theory came into the limelight thanks to massive gravity, known as dRGT in 2010 [1, 2]. In fact,
the first attempt to assign mass to graviton was made by Pauli-Firz as early as 1939 [3]. It was pointed out in 1970
that the Fierz-Pauli theory suffers from the vDVZ discontinuity [4, 5], namely, that its predictions do not reduce
to those of the Einstein theory when the graviton mass is turned zero. Vainshtein demonstrated in 1972 [6] that
the puzzle could be resolved by promoting the theory to a non-linear background. The latter, however, inevitably
leads to the Boulware-Deser ghost [7] and massive gravity was almost forgotten until 2010. Indeed, in 2008, based
upon generalized shift symmetry dubbed Galileon symmetry, Nicolis et al. [8] constructed a higher-order derivative
scalar field Lagrangian with a unique structure in Minkowski space-time that gives rise to second order equations of
motion free from Ostrogradsky instabilities. The framework was readily generalized to curved space-time in ref. [9].
In an attempt to get rid of the Boulware-Deser ghost in dRGT in 2010, the authors constructed the mass term for
graviton keeping in mind the covariant Galileon construct such that in the decoupling limit, relevant to local gravity
constraints, the longitudinal part of the spin-2 field (scalar field ϕ) was a Galileon field, which gets successfully screened
out by the Vainstein mechanism adhering to local gravity constraints. Let us note that the historic motivation a la
Fierz-Pauli was related to the construction of a consistent relativistic equation for the massive spin-2 field, whereas
the contemporary reason for assigning a tiny mass of the order of H0 ∼ 10−33eV to graviton has been to account for
the late-time acceleration. Interestingly, the resulting setup is ghost free and does not suffer from vDVZ discontinuity.
Unfortunately, FLRW cosmology is absent from this framework. Efforts were then made to address the issue by
invoking the non-trivial fiducial metric both fixed and dynamical (bi-gravity), in place of the flat Minkowski metric
used in dRGT. The latter, however, brings in the Higuchi ghost 1 [10], making the scenario, in particular, unsuited to
late-time cosmology, apart from several other theoretical issues associated with massive gravity. Perhaps, the graviton
mass is strictly zero, or it is too challenging to build a consistent theory of massive gravity. Some authors have pointed
out that the situation might be remedied in Lorentz-violating framework of massive gravity theories, see Refs. [11–16]
for details.

Nonetheless, irrespective of massive gravity, the Galileon field is promising in its own right from a phenomenological
point of view. However, the lowest non-trivial Galileon Lagrangian that includes L3 ∼ (∂ϕ)2(2ϕ), is not relevant to
late time acceleration [17]. It was first demonstrated in ref. [8] followed by ref. [9] that the inclusion of higher order
terms L4 and/or L5 (built from first and second order differential operators using four and five ϕ fields respectively)
in the Galileon Lagrangian 2 gives rise to a stable de-Sitter solution relevant to late-time cosmology. This work led to
the proliferation of phenomenological applications of Galileon fields to gravity, quantum field theory and cosmology
[18–94]. Interestingly, as early as 1972, Horndeski constructed a general scalar field Lagrangian that gives rise to
second order equations of motion, which is treated to be a generalised Galileon framework [95].

It may be noted that there has been a renewed interest in the study of primordial black holes for various reasons
[96–215]. Indeed, apart from being candidates for super-massive black holes in galaxies, PBHs might be hiding secrets
about unsettled issues of the early universe, such as those related to dark matter and observed baryon asymmetry
in the universe. Leaving aside the late time cosmological relevance, the Galileon field is remarkable from a field
theoretic point of view and might play a distinguished role in settling the puzzle related to PBH formation in the
framework of single field inflation. Indeed, by virtue of Galileon symmetry, the interaction terms in its Lagrangian
should include only derivative terms, which however, in general, is plagued with Ostrogradski instabilities. There
is a specific structure of terms with fewer than two derivatives per field invariant under the said symmetry that
gives rise to equations of motion of second order. It is remarkable that the galileons are not renormalized by self
loops; even other field loops adhere to the same features provided the couplings respect Galileon symmetry. This is a
generic distinguished property of Galileon field theory3 with unitarity at the background. The non-renormalizability
of Galileon field might have an important implications for PBH formation for single field inflation. It may be noted
that PBH formation in the framework of single field inflation is under active scrutiny at present [216–224]. It has
recently been demonstrated that one loop corrections to power spectrum in P (X, ϕ) (where X ≡ −(∂µϕ∂µϕ)/2)
theories severely constrain the mass of PBHs produced during slow roll to ultra-slow role transitions amounting to a
no-go result. Galileon theories due their non-renormalizable property might evade these restrictions and provide an
excellent endeavour for PBH formation in the framework of single field inflation.

The organization of this paper is as follows: In section II we have reviewed the Galileon Effective Field Theory.
Section III is devoted to technical details of inflationary paradigm using Covariantized Galileon Effective Field Theory
(CGEFT). Section III includes explicit discussion of Galileons inflation in the decoupling limiting. Section IV is

1 If Higuchi bound, mg >
√

2H, is violated then it is identified to be a ghost. Here mg represents the graviton mass.
2 Taken together with L1 and L2 represented by a linear term in ϕ and standard kinetic term, makes the complete structure of Galileon

Lagrangian in 3 + 1-space time dimensions.
3 This is true for derivative coupled theories which in general suffer from Ostrogradsky instabilities and lack unitarity at the quantum

level.
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devoted to the computation of the tree level power spectrum from the second order perturbation generated by
comoving curvature perturbation in the underlying CGEFT theoretical set up. Section V includes computation of the
cut-off regularized one-loop 4 power spectrum for comoving curvature perturbation from CGEFT set up. Numerical
results are given in section VI. Our main findings are summarized in section VII.

II. Galileon Effective Field Theory: A old wine in a new glass

A. Non-Covarinat Galileon Effective Field Theory (NCGEFT)

The Galileon action first constructed in [8], is a higher derivative scalar field framework that gives rise to second-order
equations of motion in Minkowski space-time. Later in Ref.[9] the authors constructed a ghost-free and unitarity-
preserving version of the Galileon theory in dynamical space-time by allowing a non-minimal coupling to the gravita-
tional background. Galileon theories are equipped, at least in planar space, with the following symmetry on the scalar
degree of freedom ϕ, in addition to the shift symmetry, which is directly related to the slow-roll feature of inflationary
potential 5:

ϕ → ϕ + c + bµxµ = ϕ + c + b · x =⇒ ∂µϕ → ∂µϕ + bµ, (1)

where c, represents a scalar constant, bµ represents a vector constant and xµ describes the corresponding coordinates
in 3 + 1 space-time dimensions. Here it is important to note that, the last term bµxµ = b · x represents the space-time
translations. Its moniker comes from the fact that it imitates the coordinate transformation between non-relativistic
inertial frames. Any term ∂∂.. ϕ with two or more derivatives is obviously inherently Galilean invariant, at least in flat
space. The Galilean invariant terms that we’ll use in this situation are a particularly unique collection that, among
other things, provides a second order equation of motion. These are frequently discussed in literature and continue to
garner a lot of interest. The number of Galileon terms under discussion is extremely small; there are only five of them
in a four-dimensional space-time environment which is appearing along with the Einstein-Hilbert term in the curved
gravitation background and described by the following non-covariant version of the representative Galielon Effective
Field Theory (NCGEFT) action:

S =
∫

d4x
√

−g

[
M2

pl

2 R − V0 + LNC
ϕ

]
, (2)

where we define:

LNC
ϕ =

5∑
i=1

ciLNC
i . (3)

The explicit expression for the LNC
i ∀i = 1, 2, · · · , 5 is given by the following expressions:

LNC
1 = ϕ, (4)

LNC
2 = −1

2 ∂ϕ · ∂ϕ, (5)

LNC
3 = −1

2 [Πϕ] ∂ϕ · ∂ϕ, (6)

LNC
4 = −1

4

{
[Πϕ]2 ∂ϕ · ∂ϕ − 2 [Πϕ] ∂ϕ · Πϕ · ∂ϕ − [Π2

ϕ] ∂ϕ · ∂ϕ + 2 ∂ϕ · Π2
ϕ · ∂ϕ

}
,

LNC
5 = −1

5

{
[Πϕ]3 ∂ϕ · ∂ϕ − 3[Πϕ]2ϕ ∂ϕ · Πϕ · ∂ϕ − 3[Πϕ][Π2

ϕ] ∂ϕ · ∂ϕ + 6[Πϕ] ∂ϕ · Π2
ϕ · ∂ϕ

+2[Π3
ϕ] ∂ϕ · ∂ϕ + 3[Π2

ϕ] ∂ϕ · Πϕ · ∂ϕ − 6 ∂ϕ · Π3
ϕ · ∂ϕ

}
, (7)

4 For more details regarding the one-loop computation during inflation look at the refs. [225–243] which we believe will be extremely
helpful for the readers.

5 Galilean symmetry is the extended version of the usual shift symmetry ϕ → ϕ + c, which helps to incorporate any type of derivative
interactions. This symmetry in principle cannot commute with the Poincaré group generated generators, which allows to incorporate
mixing of the derivative contributions in the different orders. Consequently, within the description of Effective Field Theory (EFT) it
must be realized non-linearly in terms of the non-factorizable extended version of the Poincaré group.
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where we use the following short-hand notation for our purpose:

(∂µ∂νπ)n ≡ [Πn
ϕ]. (8)

In this context, the brackets [...] stands for the trace operator and ′′̇ represents the standard Lorentz invariant
contraction of space-time indices. For an example, one can write the following:

[Πϕ] ∂ϕ · ∂ϕ ≡ 2ϕ ∂µϕ∂µϕ. (9)

Also, in this context ci are the generic coefficients which mimics the role of Wilson coefficients within the framework of
EFT. One may consider more terms in the NCGEFT Lagrangian. But in four space-time dimensions those additional
contributions turn out to be trivial and one can recast all of them as total derivatives.

From the above set of NCGEFT Lagrangian one can write the following equation:

E :≡ δϕLNC
ϕ =

5∑
i=1

ciδϕLNC
i =

5∑
i=1

ciEi = −T µ
µ , (10)

in the present context Ei∀i = 1, 2, · · · , 5 are defined as:

E1 = δϕLNC
1 = 1, (11)

E2 = δϕLNC
2 = 2ϕ, (12)

E3 = δϕLNC
3 = (2ϕ)2 − (∂µ∂νϕ)2, (13)

E4 = δϕLNC
4 = (2ϕ)3 − 32ϕ(∂µ∂νϕ)2 + 2(∂µ∂νϕ)3, (14)

E4 = δϕLNC
5 = (2ϕ)4 − 6(2ϕ)2(∂µ∂νϕ)2 + 82ϕ(∂µ∂νϕ)3 + 3[Π2

ϕ]2 − 6(∂µ∂νϕ)4. (15)

Here it is explicitly appearing that the equation of motion are of the second order, which guarantees that the underlying
theory must be free from the Ostrogradski ghost instability. Also at the quantum mechanical level NCGEFT leads to
a set up where unitarity preserves. Several generalization have been proposed of the mentioned theory using which in
refs. [18–23, 26, 28, 29, 31–38, 40, 41, 43, 44, 46, 47, 50–54, 57–59, 61, 63–65, 67–72, 74, 76–82, 86, 88–91, 93] studied
various cosmological phenomena, where the set up needs to be embedded in curved de Sitter background to serve the
purpose. However, to preserve the unitarity it was found that the non-covariant Lagrangians LNC

i ∀i = 1, 2, · · · , 5
receive large corrections from renormalization in the mentioned curved background geometry.

B. Covarinat Galileon Effective Field Theory (CGEFT)

Now to get an inflationary solution out of the present NCGEFT set up one needs to break the corresponding exact
Galilean symmetry in this context. Now let us talk about the decoupling limit, Mpl → ∞ and 3H2M2

pl = V0 having
H fixed, on which the Galilean shift symmetry is still exact and for this reason, any soft breaking which happened
later is suppressed by the Planck scale in the previously mentioned coefficients. Now it is important to note that,
despite softy breaking the Galilean shift symmetry the kinetic term and the linear potential term, V (ϕ) = V0 − λ3ϕ
with c1 = λ3 for the Galileon do not receive any further large contribution from the renormalization procedure. Hence
we don’t have any unpredictive outcomes out of the present theoretical setup. For the rest of the purpose, we use
the fact that due to having soft breaking of the corresponding symmetry the coupling with the gravitational sector is
strictly bound to be suppressed by the Λ/Mpl contribution, which helps to treat the underlying theory in the realistic
theoretical regimes.

Considering the ghost free theory from Ostrogradski instability at least in the classical regime further improved
version of GEFT was introduced in the curved space background in ref [9]. This version is commonly referred as the
Covariantized Galileon Effective Field Theory (CGEFT). Starting from a five dimensional covering theory in curved
background such CGEFT can be constructed easily and the corresponding action of the theory is given by:

S =
∫

d4x
√

−g

[
M2

pl

2 R − V0 + LC
ϕ

]
, (16)

where we define:

LC
ϕ =

5∑
i=1

ciLC
i . (17)
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The explicit expression for the LC
i ∀i = 1, 2, · · · , 5 is given by the following expressions:

LC
1 = ϕ, (18)

LC
2 = −1

2(∇ϕ)2, (19)

LC
3 = c3

Λ3 (∇ϕ)22ϕ, (20)

LC
4 = − c4

Λ6 (∇ϕ)2
{

(2ϕ)2 − (∇µ∇νϕ)(∇µ∇νϕ) − 1
4R(∇ϕ)2

}
, (21)

LC
5 = c5

Λ9 (∇ϕ)2
{

(2ϕ)3 − 3(2ϕ)(∇µ∇νϕ)(∇µ∇νϕ)

+2(∇µ∇νϕ)(∇ν∇αϕ)(∇α∇µϕ) − 6Gµν∇µ∇αϕ∇νϕ∇αϕ
}

. (22)

Here R and Gµν represent the Ricci scalar and Einstein tensor for the background gravity. It is important to note
that, the CGEFT with curved gravitational background softly break the Galilean symmetry in the present context.
In the above mentioned Lagrangians the coefficients ci play the same role as mentioned before covariantization. Only
one additional thing is to mention here that we have made the construction in such a way that these coefficinets are
always appearing as dimensionless fashion. Also, Λ represents the underlying mass scale of CGEFT which physically
interpreted as the cutoff scale of the EFT set up. Our usual notion tells us that EFT should not be valid beyond
this mentioned cutoff scale. However, it is very important to mention that if the Vainshtein effect is active then the
quantum fluctuations can go beyond the cutoff scale Λ [244]. In the above mentioned covariantized Lagragians, LC

4
and LC

5 , we have incorporated the no-minimal coupling with Gµν and R, which are suppressed by powers of H/Λ
in the corresponding contributions. Although it will turn out that these terms are insignificant in the inflationary
regime of interest, where the Galileon self-interactions dominate nonlinearities, we still keep the nonminmal curvature
couplings needed for covariantization out of thoroughness. Now the careful observation shows that if we fix the
coefficients, c4 = 0 = c5, then one can recover the covariantized version of the DGP model. However, if the Galileon
field ϕ is assumed to be only pertinent during inflation, the coefficients ci are unfixed and ascertained separately from
cosmological observations. The ref. [21] examines various cosmological limits on c2, c3, and c4.

III. Covariantized Galileon Effective Field Theory (CGEFT) inflation

A. Inflation in the decoupling limiting situation

In the previously mentioned decoupling limit let us now consider the inflationary solution in quasi de Sitter back-
ground geometry. Usually this limit is applicable in the present context when the slow variation in the potential ∆V
in the inflationary effective potential during inflationary epoch satisfy the additional constraint, |∆V/V | ≪ 1. In this
decoupling limitnig situation the CGEFT embedded in the quasi de Sitter background is described by the scale factor,
a(t) = exp(Ht), where the Hubble parameter H is not exactly constant and the small deviation from the exact de
Sitter solution is characterized by the first slow-roll parameter ϵ = −Ḣ/H2.

Let us now consider only the Galileon part of the action on which performing integration by parts and removing
the boundary terms during this process we get the following action for the background time dependent homogeneous
Galileon field ϕ̄(t), which can be written as:

S0 =
∫

d4x a3

{
c2

2
˙̄ϕ2
0 + 2c3H

Λ3
˙̄ϕ3
0 + 9c4H2

2Λ6
˙̄ϕ4
0 + 6c5H3

Λ9
˙̄ϕ5
0 + λ3ϕ̄0

}
, (23)

which after defining the following new coupling constant:

Z ≡ H ˙̄ϕ0

Λ3 , (24)

can be further recast in the following simplified form:

S0 =
∫

d4x a3

{
˙̄ϕ2
0

(
c2

2 + 2c3Z + 9c4

2 Z2 + 6c5Z3

)
+ λ3ϕ̄0

}
. (25)



7

This give rise to following solution:

˙̄ϕ0 = Λ3

12H

c2

c3

[
− 1 +

√
1 + 8c3

c2
2

λ3

Λ3

]
=



λ3

3c2H
when Z ≪ 1 (Weakly − coupled solution)

√
Λ3

18c3

λ3

H2 when Z ≫ 1 (Strongly − coupled solution)

(26)

In the weakly coupled regime (Z ≪ 1) the underlying theory approaches to the usual canonical slow-roll inflation.
On the other hand, in the strong coupling regime (Z ≫ 1) the theory approaches to the DGP model. When
Z ≳ 1, the underlying theory interpolates between the weak and strong coupling regime and in that case the Galileon
interactions become significant to serve the purpose of inflation. In such a situation the relative contributions are
controlled compared to the higher derivative to the lower derivative terms due to having positive powers of the
coupling parameter Z in this construction in the decoupling limit. The best possible explanation of this fact is that
is the decoupling limit due to having no interaction with the gravitational sector the non-minimal coupling with the
gravity becomes less important, though we need to take into account the non-linear interactions due to having various
types of derive terms in the Galileon sector. However, in the weakly coupled regime (Z ≪ 1) one cannot neglect the
mixing contribution with the non-minimal gravitational interactions with Galileon, which it is expect to give rise to
significant changes in the features of canonical single-field inflation. We don’t bother about this situation because in
this paper we restrict our interest to the intermediate regime where the coupling parameter Z ≳ 1.

B. Underlying connection with the good-old Effective Field Theory of inflation

1. Effective action in the Unitary gauge

In ref. [245] the authors has explicitly shown that the underlying properties of Effective Field Theory (EFT) set up
can able to fix the structure and the behaviour of perturbations for an inflationary paradigm in presence of quasi de
Sitter background geometrical construction and for this reason it can be interpreted in a completely model independent
fashion. It can be very easily mapped in terms of the large classes of P (X, ϕ) theories studied in refs. [246–263] .
Such an important theoretical construction in made by implementing broken time diffeomorphism symmetry and
non-linear realization under the Lorentz invariance in this context. In this section our prime objective is to construct
the good old EFT generalized version of CGEFT inflationary action valid for small quantum fluctuations. However,
due to having an additional Galilean symmetry, it is extremely important to know about the modifications and the
corresponding constraints one needs to seriously take care of during such generalization.

In ref. [245] the authors constructed the EFT setup with the help of a single scalar field inflationary paradigm.
Next, the effective action is written in a specific gravitational gauge where the constant time slices overlap with
uniform ϕ slices. Surprisingly, though in ref. [245] have not used any specific form of the effective potential and the
kinetic interactions in terms of the scalar field ϕ. But in the end, the underlying theoretical construction performed
in ref. [245] exactly mimics a general P (X, ϕ) type of theories, which has been recently shown in refs. [219, 222, 253].
To serve our purpose in the present context of the discussion, we consider a unit vector nµ which is defined in the
direction of normal of the constant time slices, and given by the following expression:

nµ = ∂µt√
−gµν∂µt∂νt

=
δ0

µ√
−g00

. (27)

The EFT action for the cosmological perturbations is further constructed in terms of the operators which are invariant
under the spatial diffeomorphism symmetry associated with the reparametrization of the dimension spatially induced
metric, which is given by the following expression:

hµν = gµν + nµnν . (28)

Using the Ricci scalar, time-dependent part of the metric tensor, g00 and the extrinsic curvature tensor Kµν , which
is defined as:

Kµν = hσ
µ∇σnν

=
[

δ0
µ∂νg00 + δ0

ν∂µg00

2(−g00)3/2 +
δ0

µδ0
νg0σ∂σg00

2(−g00)5/2 − g0ρ (∂µgρν + ∂νgρµ − ∂ρgµν)
2(−g00)1/2

]
, (29)
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associated with constant time slices the generalized version of the EFT action can be constructed in the present
context and described by the following form of the representative action:

S =
∫

d4x
√

−g

[
M2

pl

2 R − c(t)g00 − Λ(t) + 1
2M4

2 (t)(g00 + 1)2 + 1
3M4

3 (t)(g00 + 1)3

− M̄3
1 (t)
2 (g00 + 1)δKµ

µ − M̄2
2 (t)
2 (δKµ

µ)2 − M̄2
3 (t)
2 δKµνδKµν

− M̄3
4 (t)
2 (g00 + 1)2δKµ

µ − M̄2
5 (t)
2 (g00 + 1)(δKµ

µ)2 − M̄2
6 (t)
2 (g00 + 1)δKµνδKµν

− M̄7(t)
2 (δKµ

µ)3 − M̄8(t)
2 (δKµ

µ)(δKρσδKρσ) − M̄9(t)
2 δKµνδKνσδKσ

µ + · · ·

]
, (30)

In the above mentioned EFT action we have organized the operators in terms of the following fluctuations around an
unperturbed FLRW background having quasi de Sitter solution, and given by the following expressions:

δg00 =
(
g00 − ḡ00) =

(
g00 + 1

)
, (31)

δKµν =
(
Kµν − a2Hhµν

)
. (32)

Here it is important to note that the time dependent coefficients, c(t) and Λ(t), are precisely non-zero on the quasi de
Sitter cosmological background that we are considering for our present analysis, which in turn fixes these time depen-
dent coefficients in terms of the Hubble parameter H(t) during inflationary epoch. On the other hand, the background
cosmological evolution cannot able to fix the other time dependent coefficients Mi(t)∀i = 2, 3 and M̄4(t)∀i = 1, 2, · · · , 9
and captures the information regarding different models under consideration. This means that for CGEFT set up one
should have very specific choices of these parameters. Because of this fact it is expected that for CGEFT one should
get clearly distinctive features in the present context of discussion.

Now to implement the above mentioned action to describe the cosmological perturbation theory order by order for
scalar modes generated from perturbation, one need to recast this action in a more tractable form. This can be done
by making use of the following unitary gauge transformation, where broken time diffeomorphism is automatically
implemented very clearly:

t −→ t̃ = t − π(t, x). (33)

As an immediate outcome of the above mentioned gauge transformation the equal time hypersurfaces are deformed
by the amount π(t, x), where the deformation parameter is a space-time dependent quantity. This specific parameter
is identified as the Goldstone mode and the corresponding trick implemented in this context is commonly known as
Stückelberg trick. Here lies a very common connection with the SU(N) gauge theory. Under the above mentioned
gauge transformation each of the operators written in the above mentioned generalized EFT action transforms which
contain series of terms containing the spatial, temporal derivatives and space-time mixing contributions of the Gold-
stone modes π(t, x). For more details see the refs. [222, 253, 264], where all of these transformations are explicitly
pointed very clearly. In this fashion, a consistent elegant theoretical description of the underlying physical set up is
built using the tools and techniques of EFT method by making use of the lowest dimensional Wilsonian operators
that are compatible with the underlying symmetries in this context.

2. Decoupling limiting situation

In this subsection we discuss about the implementation of the decoupling limit without which the implementation
of the EFT tools and techniques becomes extremely difficult in the context of cosmological perturbation theory.
Such difficulties arises because of having the mixing contribution of the Goldstone modes with the gravitational sector
through the metric. Now in the presence of large non-linear contributions of the self-interacting terms of the Goldstone
modes implementation of the decoupling limit helps to treat the perturbation theory in a more trustworthy fashion by
neglecting the background gravity. Such limit can be implemented by taking Mpl → ∞ keeping the Hubble parameter
H fixed in the quasi de Sitter cosmological background. We quickly summarise the underlying argument in this case.
The Ricci scalar will provide the most pertinent kinetic term for the measure variation δg00. Therefore, by re-scaling
the fluctuation:

δg00 → δg00
c = Mplδg00, (34)
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we can proceed to canonical normalisation. The nonlinear operator in the EFT action produce the most significant
kinetic term for the Goldstone modes. If it has minimal derivatives, it will take the shape M4π̇2, where M is some
mixture of the coupling parameters Mi or M̄i. In this context the canonically normalized Goldstone modes are given
by the following expression:

πc = M2π. (35)

For wave numbers k that fulfil the following constraint:

k ≳ Emix = M2

Mpl
, (36)

a mixing term such as M4π̇δg00 is insignificant at the quadratic level in contrast to the Goldstone kinetic term. The
same is true for cubic terms, where the leading blending term M4π̇2δg00 is insignificant compared to M4π̇3 under the
same circumstance. Similar justifications can be made if the prime cubic contributions appearing with a physical scale
other than M or if the most significant kinetic term for Goldstone mode has higher derivatives. For our forecasts to be
accurate to a relative inaccuracy of order Emix/H, and the corresponding mixing scale Emix ≪ H in the decoupling
limit. The measure can be assumed to be unperturbed in the limit where we operate in the sections that follow.Since
the unperturbed measure is spatially smooth and can be used as the backdrop of quasi de Sitter geometry, working
in the uniform curvature gauge is the most practical option in this context.

IV. Tree level scalar power spectrum from CGEFT

Here we discuss the second order perturbation generated for comoving curvature perturbation from the underlying
CGEFT theoretical set up. Next we construct the classical equation of motion for the generated comoving curvature
perturbation modes in Fourier space. In the corresponding literature such classical equation of motion is known as
Mukhanov Sasaki (MS) equation which we have derived from the underlying CGEFT set up. Then we have solved the
MS equation in three regions of interest, which are first Slow Roll (SRI) phase, then an Ultra Slow Roll (USR) phase
and finally second Slow Roll (SRII) phase followed by the ending of inflation just after that. To analytically solve
the MS equation in the SRI phase we have used the Bunch Davies quantum initial condition provided in terms of the
specific choices of the Bogoliubov coefficients which satisfy appropriate normalization condition. Once we provide such
information the corresponding mode computed from the SRI phase will going to be automatically fixed in terms of
the provided information. Then with the help of continuity of the modes and its corresponding canonically conjugate
momenta are continuous at the SRI to USR and USR to SRII transition scales one can compute the explicit expressions
for Bogoliubov coefficients in the USR and SRII phases, which in tern fix the structure of the solution of the MS
equations computed in these two mentioned phases. The new structure of the computed Bogoliubov coefficients in
these mentioned two phases confirms that the quantum initial vacuum is shifted from Bunch Davies and basically we
are dealing with non Bunch Davies quantum states in these mentioned two phases. Next, we elaborately discuss the
canonical quantization of the of the comoving curvature perturbation whose corresponding Fourier mode solutions are
obtained in SRI, USR and SRII phases by solving MS equation. Next, we compute the result for the power spectrum
from comoving curvature perturbation at the tree level using the underlying CGEFT set up.

A. Second order perturbation from scalar mode from CGEFT

Following the discussions in the previous section in this section our aim is to study the effect of primordial fluctu-
ations around the quasi de Sitter cosmological background in the decoupling limit. In terms of the Goldstone modes
the second oreder perturbed action in the present context can be described by the following equation:

S(2)
π =

∫
d4x a3

[
A π̇2 − B

a2 (∂π)2

]
=
∫

d4x a3A

[
π̇2 − c2

s

a2 (∂π)2

]
. (37)

Here the effective sound speed cs for the CGEFT set up can be expressed as:

cs =
√

B
A

, (38)
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where the newly defined quantities A and B are the time-dependent coefficients, can be expressed in terms of the
coupling constants of the original CGEFT action by the following expressions:

A : ≡
˙̄ϕ2
0

2

(
c2 + 12c3Z + 54c4Z2 + 120c5Z3

)
, (39)

B : ≡
˙̄ϕ2
0

2

{
c2 + 4c3

(
2Z +

¨̄ϕ0

Λ3

)
+ 2c4

[
13Z2 + 6

Λ6

(
Ḣ ˙̄ϕ2

0 + 2H ˙̄ϕ0
¨̄ϕ0

)]
+ 24c5

Λ9 H ˙̄ϕ2
0

[
2 ˙̄ϕ0

(
H2 + Ḣ

)
+ 3H ¨̄ϕ0

]}

=
˙̄ϕ2
0

2

{
c2 + 4c3

(
2Z − H ˙̄ϕ0

Λ3 η

)
+ 2c4

[
13Z2 − 6

Λ6
˙̄ϕ2
0H2(ϵ + 2η

)]
− 24c5

Λ9 H3 ˙̄ϕ3
0
(
2ϵ + 1

)}
. (40)

Here we have introduced the first and second slow-roll parameter by the following expression:

ϵ = − Ḣ

H2 , η = −
¨̄ϕ0

H ˙̄ϕ0
. (41)

which will be going to be extremely useful for the rest of the analysis performed in this paper. Now from the good-old
Goldstone EFT set up we know that the effective sound speed parameter cs can be expressed in terms of the EFT
coefficient M2, by the following expression:

cs = 1√
1 − 2M4

2
ḢM2

pl

. (42)

Further comparing equation (38) and equation (42), one can express the EFT coefficient M2 in terms of the coefficients
of the CGEFT set up by the following expression:

M4
2

ḢM2
pl

= 1
2

(
1 − A

B

)
. (43)

The point to be noted here that, the spatial component of the metric perturbation is described by the following
equation:

gij ∼ a2(t) [(1 + 2ζ(t, x)) δij ] ∀ i = 1, 2, 3, (44)

where the scale factor is a(t) = exp(Ht), which we have already mentioned before. In this equation the comov-
ing curvature perturbation is described by the symbol ζ(t, x), which plays the most significant role in the present
computational purpose.

Further replacing the Goldstone modes in terms of the comoving curvature perturbation using the following repre-
sentative equation 6:

ζ(t, x) ≈ −Hπ(t, x). (45)

Now, since we we clarly know the underlying connecting relationship between the Goldstone mode and the comoving
curvature perturbation, we can immediately express the second order goldstone mode action in terms of the curvature
perturbation by the following representative equation:

S
(2)
ζ =

∫
d4x a3 A

H2

(
ζ̇2 − c2

s

(∂iζ)2

a2

)
=
∫

d4x a3 B
c2

sH2

(
ζ̇2 − c2

s

(∂iζ)2

a2

)
. (46)

Additionally, for the sake of simplicity, we will now use the conformal time coordinate in place of the physical time
coordinate for the remainder of the calculation, which allows us to express the second-order perturbed action as
follows 7:

S
(2)
ζ =

∫
dτ d3x a2 A

H2

(
ζ

′2 − c2
s (∂iζ)2 ) =

∫
dτ d3x a2 B

c2
sH2

(
ζ

′2 − c2
s (∂iζ)2 )

. (47)

6 More details on this issue can be found in the refs. [33, 219, 222, 245, 253].
7 Here it is important to note that, the conformal time coordinate τ and the physical time coordinate t are related via, dτ = dt/a. Here

in quasi de Sitter background the scale factor in terms of the conformal time coordinate can be expressed as, a(τ) = −1/Hτ , where
−∞ < τ < 0.
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B. Constructing Mukhanov Sasaki equation from CGEFT

Now, a new variable is defined for the purpose of redefining of the comoving curvature perturbation field, and it is
given by:

v(τ, x) = z(τ)ζ(τ, x) with z(τ) = a
√

2A
H2 = a

√
2B

csH2 , (48)

which, in the context of the topic at hand, is usually referred to as the Mukhanov Sasaki (MS) variable. When
written in terms of the MS variable, the second order perturbed action described above has the following canonically
normalised form:

S
(2)
ζ = 1

2

∫
dτ d3x

(
v

′2(τ, x) − c2
s (∂iv(τ, x))2 + z

′′(τ)
z(τ) v2(τ, x)

)
. (49)

Next, we will formulate the aforementioned action in the Fourier space using the ansatz for the Fourier transformation
as follows:

v(τ, x) =
∫

d3k
(2π)3 eik.x vk(τ). (50)

The aforementioned action can also be remade as one of the following scalar modes after being Fourier transformed:

S
(2)
ζ = 1

2

∫
d3k

(2π)3 dτ eik.x
(

|v
′

k(τ)|2 − ω2(k, cs, τ)|vk(τ)|2
)

. (51)

The MS equation for the scalar perturbed modes can then be written by varying the previously specified action,

v
′′

k(τ) + ω2(k, cs, τ)vk(τ) = 0 , (52)

where the following equation provides the expression for the effective time-dependent frequency,

ω2(k, cs, τ) :=
(

c2
sk2 − z

′′(τ)
z(τ)

)
where z

′′(τ)
z(τ) ≈ 2

τ2 . (53)

The normalisation condition given below, which is expressed in terms of the Klein Gordon product for the scalar
perturbed modes, fixes the formal structure of the general answer:(

vk(τ), v
′

k(τ)
)

KG
:=
(

v
′∗
k (τ)vk(τ) − v

′

k(τ)v∗
k(τ)

)
= i. (54)

We will solve the MS equation for a given important physical framework in the next subsection. This will be very
helpful for the remainder of the subject material of this article.

C. Classical solution of Mukhanov Sasaki equation from CGEFT

In this article, we’ll take a look at a physical structure made up of the points-by-point chronological sequence listed
below :

(a) Regime I (SRI): First, we take into account a Slow Roll (SRI) regime that lasts for the conformal time scale
τ < τs. The SRI transitions to an Ultra Slow Roll (USR) region at τ = τs. This entails that SRI terminates at
τ = τs in this design.

(b) Regime II (USR): The Ultra Slow Roll (USR) regime is the next thing we take into consideration. It has a
starting point at the conformal time scale τ = τs and an ending point at scale τ = τe. The second transition
scale τ = τe, where USR to the second Slow Roll (SRII) transition occurs, is handled in this construction as the
structure.

(c) Regime III (SRII): Last but not least, we take into account the second Slow Roll (SRII) regime, which begins
at τ = τe and the inflation stops shortly thereafter at τ = τend.

In the following parts of this article, it is our responsibility to specifically examine the classical answer and its quantum
consequences from each of the three regimes stated.
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1. Region I: First Slow Roll (SRI) region

The general solution of the MS equation for the scalar perturbed mode is given by the following formula, which is
expressly true during the first SR (SRI) phase (τ < τs):

vk(τ) =
α

(1)
k√

2csk

(
1 − i

kcsτ

)
e−ikcsτ +

β
(1)
k√
2csk

(
1 + i

kcsτ

)
eikcsτ , (55)

where choosing the correct initial condition sets the answer in terms of the coefficients α
(1)
k and β

(1)
k , which are shown

in the above equation. As long as the empirical requirements from the CMB for inflation are met within the SR
period, it is theoretically possible to select any starting quantum vacuum state. The most well-known, or Bunch
Davies quantum vacuum state, is the one we ultimately opt for. This is essentially a Euclidean vacuum, and it is
described by the following equation, which in our case fixes the initial state in the first SR (SRI) period.

α
(1)
k = 1, (56)

β
(1)
k = 0. (57)

Such an initial condition will be very helpful for the subsequent calculations carried out in the remainder of the
document. The scalar mode function can be stated in terms of the simplest abbreviation in the first SR (SRI) area
after applying the aforementioned starting condition:

vk(τ) = 1√
2csk

(
1 − i

kcsτ

)
e−ikcsτ . (58)

One can further write down the formula for the comoving curvature perturbation in terms of the conformal time,
effective sound speed parameter cs, and momentum scale by making use of the previously mentioned solution of MS
equation in the first SR regime, τ < τs:

ζk(τ) = −Hπk(τ) = vk(τ)
z

=
(

iH2

2
√

A

)
1

(csk)3/2 (1 + ikcsτ) e−ikcsτ

=
(

icsH2

2
√

B

)
1

(csk)3/2 (1 + ikcsτ) e−ikcsτ . (59)

Although ϵ changes very slowly with time in the SRI area, it is roughly a constant value.

2. Region II: Ultra Slow Roll (USR) region

The conformal time scale window τs ⩽ τ ⩽ τe, which contains the region where the associated scalar modes are
valid, can be used to visualise the Ultra Slow Roll (USR) regime. The crossover scale from the first SR (SRI) to USR
is denoted in this definition by τs. On the other hand, the time scale τe describes the conclusion of the USR regime
as well as the inflationary paradigm. The time dependence of the first slow-roll parameter, which can be stated in
terms of the first SR component as follows, can be explicitly written down in the USR regime:

ϵ(τ) = ϵ

(
a(τs)
a(τ)

)6
= ϵ

(
τ

τs

)6
where τs ⩽ τ ⩽ τe. (60)

In this instance, ϵ is the first slow-roll parameter in the SR region that we specifically specified in the first part of the
discussion. The aforementioned mathematical form demonstrates that this parameter is roughly a constant amount
at the point where the first SR (SRI) to USR shift occurs, i.e. at τ = τs where we have ϵ(τs) = ϵ, which actually
corresponds to the first SR (SRI) regime. The first SR (SRI) to USR transition, which occurs at the scale τ > τs, is
when the departure from the constant pattern first manifests. The fact that we explicitly took into account an abrupt
shift from the first SR (SRI) to the USR region for the current computational purpose is essential to note because it
will be highly helpful information for the remainder of the article. The solution of the MS equation in USR period
for the comoving curvature perturbation can be stated by the following shortened formula:

ζk(τ) = −Hπk(τ) = vk(τ)
z

=
(

iH2

2
√

A

)(τs

τ

)3 1
(csk)3/2 ×

[
α

(2)
k (1 + ikcsτ) e−ikcsτ − β

(2)
k (1 − ikcsτ) eikcsτ

]
=
(

icsH2

2
√

B

)(τs

τ

)3 1
(csk)3/2 ×

[
α

(2)
k (1 + ikcsτ) e−ikcsτ − β

(2)
k (1 − ikcsτ) eikcsτ

]
, (61)
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It is crucial to note that, the coefficients α
(2)
k and β

(2)
k in the aforementioned solution, obtained in the USR region,

can all be expressed in terms of the initial condition fixed in terms of Bunch Davies vacuum in the first SR (SRI)
region via Bogoliubov transformations. This further suggests that the underlying structure of the vacuum state alters
in the USR regime compared to the Bunch Davies initial state. Our goal is to find these Bogoliubov coefficients in
the USR regime, α

(2)
k and β

(2)
k . It is possible to achieve this by using the following two boundary conditions, which,

in theoretical framework, can be understood as the Israel junction condition that we must apply at the first SR (SRI)
to USR transition scale, τ = τs and are provided by the following expressions:

(a) [ζk(τ)]SRI,τ=τs
= [ζk(τ)]USR,τ=τs

, i.e. the continuity of the modes obtained from SRI and USR at the crossover
point τ = τs.

(b)
[
ζ

′

k(τ)
]

SRI,τ=τs
=
[
ζ

′

k(τ)
]

USR,τ=τs
, i.e. the continuity of the conjugate momenta obtained from SRI and USR

at the crossover point τ = τs.

The following closed version of the Bogoliubov coefficients, α
(2)
k and β

(2)
k is obtained by solving the above two con-

straints that result from applying the aforementioned junction conditions:

α
(2)
k = 1 − 3

2ik3c3
sτ3

s

(
1 + k2c2

sτ2
s

)
, (62)

β
(2)
k = − 3

2ik3c3
sτ3

s

(1 + ikcsτs)2
e−2ikcsτs . (63)

The changed structure of the quantum vacuum state is fixed because the structure of the Bogoliubov coefficients is
now fixed at the first SR (SRI) to USR transition point τ = τs. For the analysis carried out in the remaining sections
of the document, this knowledge will be of utmost value.

3. Region III: Second Slow Roll (SRII) region

The conformal time scale window τe ⩽ τ ⩽ τend, which can be seen in the second Slow Roll (SRII) regime, will now
be the centre of our attention. The temporal scale, τe, is used in this definition to identify the scale at which the USR
and SRII transition from one another. The time scales, τe and τend, on the other hand, characterise the conclusion
of the USR era as well as the inflationary paradigm. The first slow-roll parameter can be stated directly in terms of
the first SR (SRI) parameter in the SRII regime as follows:

ϵ(τ) = ϵ

(
a(τs)
a(τe)

)6
= ϵ

(
τe

τs

)6
where τe ⩽ τ ⩽ τend. (64)

The first slow-roll parameter in the SRI region, ϵ, is present here and was clearly stated in the first part of the
talk. The mathematical form noted above demonstrates that this parameter is roughly a non-constant number at the
transition of the USR to SRII scale, which is at τ = τe, which is actually at the end of the USR regime. Although this
number won’t change between the time intervals τe < τ < τend, the deviation from the constant behaviour persists
up to the time scale equivalent to the end of inflation which appears at τ = τend. Here, we examine a sudden change
at the temporal scale τ = τe. The solution of the MS equation alters appropriately in the current situation when this
particular time-dependent behaviour and the non-constancy of the first slow-roll parameter are taken into account.
As previously mentioned, we must take into account a second transition from the USR to the second SR (SRII) region,
which is anticipated to take place at the transition point τ = τe. In the region τ > τe, the SR features continue with
the non-constant value of the first slow-roll parameter. Therefore, the following equation can be used to describe the
solution of the MS equation in terms of the scalar modes in the regime τe ⩽ τ ⩽ τend:

ζk(τ) = −Hπk(τ) = vk(τ)
z

=
(

iH2

2
√

A

)(
τs

τe

)3 1
(csk)3/2 ×

[
α

(3)
k (1 + ikcsτ) e−ikcsτ − β

(3)
k (1 − ikcsτ) eikcsτ

]
=
(

icsH2

2
√

B

)(
τs

τe

)3 1
(csk)3/2 ×

[
α

(3)
k (1 + ikcsτ) e−ikcsτ − β

(3)
k (1 − ikcsτ) eikcsτ

]
, (65)

It is important to note that, in the aforementioned solution obtained in the second SR region (SRII), the Bogoliubov
coefficients α

(3)
k and β

(3)
k can be expressed in terms of the boundary condition fixed in terms of new modified vacuum

in the USR region via Bogoliubov transformations. This further suggests that the vacuum state’s underlying structure
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in the second SR (SRII) region differs from the vacuum state earlier computed in the USR region. Our goal is to
directly find the Bogoliubov coefficients α

(3)
k and β

(3)
k in the second SR (SRII) regime. Applying the following two

boundary conditions, which are theoretically equivalent to the Israel junction condition that we must apply at the
USR to the second SR (SRII) transition scale, τ = τe, is one way to achieve this goal:

(a) [ζk(τ)]USR,τ=τs
= [ζk(τ)]SRII,τ=τs

, i.e. the continuity of the modes obtained from USR and SRII at the crossover
point τ = τe.

(b)
[
ζ

′

k(τ)
]

USR,τ=τs
=
[
ζ

′

k(τ)
]

SRII,τ=τs
, i.e. the continuity of the conjugate momenta obtained from USR and SRII

at the crossover point τ = τe.

The following closed version of the Bogoliubov coefficients α
(3)
k and β

(3)
k in the second SR (SRII) regime is obtained

by imposing the aforementioned junction conditions and solving two constraints:

α
(3)
k = − 1

4k6c6
sτ3

s τ3
e

[
9 (kcsτs − i)2 (kcsτe + i)2

e2ikcs(τe−τs)

−
{

k2c2
sτ2

e (2kcsτe − 3i) − 3i
}{

k2c2
sτ2

s (2kcsτs + 3i) + 3i
}]

, (66)

β
(3)
k = 3

4k6c6
sτ3

s τ3
e

[
(kcsτs − i)2 {

k2c2
sτ2

e (3 − 2ikcsτe) + 3
}

e−2ikcsτs

+i (kcsτe − i)2 {3i + k2c2
sτ2

s (2kcsτs + 3i)
}

e−2ikcsτe

]
. (67)

D. Quantization of comoving curvature perturbation from CGEFT

In order to determine the expression for the two-point correlation function and the associated power spectrum in
Fourier space, which are required to compute the cosmological correlations, we must specifically quantize the scalar
modes properly. In order to do this, we must first build the creation operator, â†

k, and the annihilation operator, âk,
which will, respectively, create an excited state from the original Bunch Davies state and annihilate it. As Bunch
Davies’ initial condition, |0⟩ must stick to the following restriction in order for the remainder of the purpose to be
served,

âk|0⟩ = 0 ∀k. (68)

For the quantization purpose the following equal time commutation relations (ETCR) has to be satisfied:[
ζ̂k(τ), ζ̂

′

k′ (τ)
]

ETCR
= i δ3

(
k + k

′
)

,
[
ζ̂k(τ), ζ̂k′ (τ)

]
ETCR

= 0,
[
ζ̂

′

k(τ), ζ̂
′

k′ (τ)
]

ETCR
= 0. (69)

Once we promote the previously computed classical results of the comoving curvature perturbation and its canonically
conjugate momenta as a quantum mechanical operator to pursue the quantization purpose, can be expressed by the
following expressions:

ζ̂k(τ) =
[
ζk(τ)âk + ζ∗

k(τ)â†
−k

]
= −H

[
πk(τ)âk + π∗

k(τ)â†
−k

]
= 1

a
√

2A

[
vk(τ)âk + v∗

k(τ)â†
−k

]
= cs

a
√

2B

[
vk(τ)âk + v∗

k(τ)â†
−k

]
, (70)

ζ̂
′

k(τ) =
[
ζ

′

k(τ)âk + ζ∗′

k (τ)â†
−k

]
= −H

[
π

′

k(τ)âk + π∗′

k (τ)â†
−k

]
− H

′
[
πk(τ)âk + π∗

k(τ)â†
−k

]
= 1

a
√

2A

[
v

′

k(τ)âk + v∗′

k (τ)â†
−k

]
− 1

2Aa2

(
a
√

2A
)′[

vk(τ)âk + v∗
k(τ)â†

−k

]
= 1

a
√

2A

[
v

′

k(τ)âk + v∗′

k (τ)â†
−k

]
− 1

2Aa2

(
a
√

2A
)′[

vk(τ)âk + v∗
k(τ)â†

−k

]
. (71)
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which will be very beneficial when we execute the one loop calculation using the in-in formalism in the following part.
This can also be written as any possible commutation relation between the creation and destruction operators, as

shown above: [
âk, â†

k′

]
ETCR

= δ3
(

k + k
′
)

, [âk, âk′ ]ETCR = 0,
[
â†

k, â†
k′

]
ETCR

= 0. (72)

E. Tree level power spectrum from comoving curvature perturbation from CGEFT

Since we are aware that the co-moving curvature disturbance happens at a late time scale, τ → 0, the appropriate
tree-level input to the two-point cosmological correlation function can be shown as follows:

⟨ζ̂kζ̂k′ ⟩Tree = H2⟨π̂kπ̂k′ ⟩Tree = (2π)3 δ3
(

k + k
′
) 2π2

k3 ∆2
ζ,Tree(k), (73)

where the dimensionless form of the tree level power spectrum, which is used in the observational probe is given by
the following expression in the Fourier space:

∆2
ζ,Tree(k) = k3

2π2 ⟨⟨ζ̂kζ̂−k⟩⟩(0,0) = k3

2π2 [ζk(τ)ζ−k(τ)]τ→0 = k3

2π2 |ζk(τ)|2τ→0 = k3H2

2π2 |πk(τ)|2τ→0. (74)

As of right now, we already know from the analysis that we have done that the first SR (SRI), USR, and second
SR (SRII) regions, which we have directly estimated in this work, have distinct solutions to the modes for the scalar
cosmological perturbations. With the aid of computed scalar modes from the first SR (SRI), USR, and second SR
(SRII) regions, the dimensionless power spectrum can be calculated here at the tree level as follows:

∆2
ζ,Tree(k) =

(
H4

8π2Ac3
s

)
∗

×

(
1 + k2c2

sτ2) when k ⩽ ks (SRI)

(
ke

ks

)6
×
∣∣∣α(2)

k (1 + ikcsτ) e−ikcsτ − β
(2)
k (1 − ikcsτ) eikcsτ

∣∣∣2 when ks ⩽ k ⩽ ke (USR)

(
ke

ks

)6
×
∣∣∣α(3)

k (1 + ikcsτ) e−ikcsτ − β
(3)
k (1 − ikcsτ) eikcsτ

∣∣∣2 when ke ⩽ k ⩽ kend (SRII)

(75)

Here we need to use the following facts at the horizon crossing point:

−kscsτs = 1, −kecsτe = 1, −kscsτend = 1, (76)

which will going to be extremely helpful for the rest of the computation performed in this paper. The Bogoliubov
coefficients for the USR (α(2), β(2)) and the second SR (α(3), β(3)) regions are shown here. These coefficients are
deduced directly in equations (62), (63), (66), and (67), respectively. According to equations (56) and (57), the
Bunch Davies initial condition fixes the Bogoliubov coefficients (α(1), β(1)) for the first SR region (SRI). The current
calculation should also take into account the wave numbers ke and ks that relate to the time scales τe and τs. The
pivot scale where CMB monitoring is conducted is represented by the sign ∗. From the above structure, it is possible
to identify the specific contributions made by the first SR region (SRI), the USR region, and the second SR region
(SRII) in the current debate context. Further, using the information provided at the horizon-crossing point the total
contribution in the tree-level primordial power spectrum can be expressed as:[

∆2
ζ,Tree(k)

]
Total

=
[

∆2
ζ,Tree(k ⩽ ks)

]
SRI

+
[

∆2
ζ,Tree(ks ⩽ k ⩽ ke)

]
USR

+
[

∆2
ζ,Tree(ke ⩽ k ⩽ kend)

]
SRII

=
[

∆2
ζ,Tree(k)

]
SRI

+
[

∆2
ζ,Tree(k)

]
USR

Θ(k − ks) +
[

∆2
ζ,Tree(k)

]
SRII

Θ(k − ke)

≈

[
∆2

ζ,Tree(k)
]

SRI

{
1 +

(
ke

ks

)6
[

Σ(k)Θ(k − ks) + Υ(k)Θ(k − ke)
]}

. (77)
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where the power spectrum in the SRI region can be recast in the following tractable form:[
∆2

ζ,Tree(k)
]

SRI

=
(

H4

8π2Ac3
s

)
∗

{
1 +

(
k

ks

)2}
=
(

H4

8π2Bcs

)
∗

{
1 +

(
k

ks

)2}
. (78)

Additionally, we have introduced a momentum dependent factor Υ(k) in the SRII region, which is defined as:

Σ(k) :=
∣∣∣α(2)

k − β
(2)
k

∣∣∣2 , Υ(k) :=
∣∣∣α(3)

k − β
(3)
k

∣∣∣2 , (79)

where the individual Bogoliubov coefficients in the SRII region at the horizon crossing point is further simplified as:

α
(2)
k = 1 + 3

2i

(
ks

k

)3
(

1 +
(

k

ks

)2
)

, (80)

β
(2)
k = 3

2i

(
ks

k

)3(
1 − i

(
k

ks

))2
e−2i( k

ks
), (81)

α
(3)
k = −1

4

(
ks

k

)3(
ke

k

)3
[

9
((

k

ks

)
+ i

)2((
k

ke

)
+ i

)2
e−2i( k

ke
− k

ks
)

+
{(

k

ke

)2(
2
(

k

ke

)
+ 3i

)
+ 3i

}{(
k

ks

)2(
−2
(

k

ks

)
+ 3i

)
+ 3i

}]
, (82)

β
(3)
k = 3

4

(
ks

k

)3(
ke

k

)3
[((

k

ks

)
+ i

)2
{(

k

ke

)2(
3 + 2i

(
k

ke

))
+ 3
}

e2i( k
ks

)

+i

((
k

ke

)
+ i

)2
{

3i +
(

k

ks

)2(
−2
(

k

ks

)
+ 3i

)}
e2i( k

ke
)
]

. (83)

Here we have introduced two distinctive Heaviside Theta functions to join the individual contributions in the overall
amplitude of the tree-level primordial power spectrum from different regions at the transition points τ = τs (SRI to
USR) and τ = τe (USR to SRII) smoothly, and these functions are defined as:

Θ(k − ks) =


0 when k < ks (SRI)

1 when ks ⩽ k < ke (USR)

(84)

Θ(k − ke) =


0 when ks < k < ke (USR)

1 when ke ⩽ k ⩽ kend (SRII)

(85)

V. Cut-off regularized one-loop power spectrum for comoving curvature perturbation from CGEFT

In this section, we discuss the crucial role of the very mild breaking of the Galilean symmetry to remove the
harmful contributions from the third-order action, due to the presence of which quantum loop corrections are large
and comparable to the tree-level counterpart as appearing in the case of good-old EFT of inflation and P (X, ϕ) models
of inflation. In the present Galileon, inflation due to the absence of such terms quantum loop effects become suppressed
and can be treated as a subdominant correction to the tree-level counterpart of the corresponding spectrum. Next,
we discuss the in-in formalism ad its explicit role in the computation of the one-loop contributions in the SRI, USR,
and SRII phases respectively. Further, we explicitly compute the cut-off regularized one-loop corrections from SRI,
USR, and SRII phases. After that, we have written the full expression for the one-loop corrected power spectrum for
comoving curvature perturbation adding all the tree level as well as one loop corrections computed from SRI, USR
and SRII phases respectively.
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A. Third order perturbation from comoving curvature perturbation

The next phase of our study will involve calculating the one-loop contributions to the power spectrum directly
using the comoving curvature perturbation as input. Now before going to the technical details of the computations
of the one-loop effects in the present context let us first mention how exactly Galilean symmetry is going to affect
the comoving curvature perturbation, which will be going to provide extremely important information in the present
context in terms of the fact that which terms are allowed and which terms are not allowed by such symmetry.

It should be noted that the non-renormalization8 theorem in a general field theoretic setup implies that the couplings
of the underlying theory do not receive any radiative corrections. Interestingly, this property linked to Galileon
symmetry is stronger in this case compared to the other theories, for example, mild breaking of the symmetry
preserves the said property. A mild breaking of Galileon symmetry is accomplished by going from the de Sitter to
the quasi-de Sitter regime. Secondly, the Galileon operators are not renormalized even if coupled to heavy external
fields provided the Galilean symmetry is respected (See refs.[33, 265]for details).

Let us firs mention the underlying reason for the absence of radiative corrections to the power spectrum; the
technical supporting details would then follow. In case of standard single field inflation 9, the third-order action for
comoving curvature perturbation contains ζ

′
ζ2 operator(with coefficient proportional to η′ which is large during a

sharp transition) which is responsible for significant one-loop contribution to the power spectrum (other terms in
the action give insignificant contribution[218, 219, 222]). The mentioned operator is absent in single-field Galileon
inflation with soft Galilean symmetry breaking for which the non-renormalization theorem is respected. Thus loop
corrections, in this case, are insignificant. Indeed, under Galilean symmetry as written in terms of the field in equation
(1), the comoving curvature perturbation is transformed by the following expression:

ζ → ζ − H
˙̄ϕ0

(b · δx) , (87)

using which the time and spatial derivatives of the curvature perturbation can be transformed as:

ζ
′

→ ζ
′
− H

˙̄ϕ0
b0, ∂iζ → ∂iζ − H

˙̄ϕ0
bi, ∂2ζ → ∂2ζ. (88)

which appears in all contributions in the third-order action. Here one can clearly observe that in ζ, ζ
′ and in ∂iζ the

Galilean symmetry is softly broken which is necessarily needed to implement the inflationary paradigm in the present
context of discussion. On the other hand, we can also observe that the term ∂2ζ is fully Galilean symmetry protected.
For this reason, such contribution has to couple with some other contributions which break the Galilean symmetry
softly. Due to having this transformation properties at the level of curvature perturbation, its spatial and temporal
derivatives it is quite obvious that to allow very small breaking of the Galilean symmetry to perform inflation some
of the terms can be absorbed using field redefinition, some of them can be expressed as the total derivative terms
and vanish at the boundary. These contributions are, ζ

′2ζ, (∂iζ)2
ζ, ζ

′ (∂iζ)
(

∂i∂
−2
(

ϵζ
′
))

, ζ
(

∂i∂j∂−2
(

ϵζ
′
))2

,
ζ∂τ (∂iζ)2 and ζ

′
ζ2, which are absent in the third order action due to having very soft breaking of the Galilean

symmetry. Out of all of these contributions, the last term, ζ
′
ζ2 is most significant in the USR period as its coefficient

∂τ

(
η/c2

s

)
contributes huge amount in the SRI to USR and USR to SRII transition points. Though the contribution

in SRI to USR transition is extremely larger compared to the contribution appearing in USR to SRII transition.
Such contributions are extremely harmful for PBH production due to having large one-loop effects that recently
have been shown in refs. [218, 219, 222]. Now since this contribution is absent in the presence of soft breaking of
Galilean symmetry it is important to emphasize for the same. Under the aforementioned transformation the term
ζ

′
ζ2 transforms as follows:

ζ
′
ζ2 →

(
ζ

′
− H

˙̄ϕ0
b0

)(
ζ − H

˙̄ϕ0
(b · δx)

)2
∼ 1

3 (b · δx) ∂τ

(
ζ2) ∼ 0 (at boundary). (89)

8 Non-renormalization â la non-renormalization theorem should not be confused with the non-renormalizability of a theory. The former
implies that couplings in the underlying theory are stable under radiative corrections, they do not run, whereas, in a theory that is
not renormalizable, the number of counter terms required in the process of renormalization is not finite; four Fermi-theory serves as an
example. On the other hand, in a renormalizable theory, the structure of divergences that occurs in lower orders of perturbation theory
keeps repeating in higher orders, such that a finite number of counter terms suffices.

9 The third order action for standard single field inflation can be expressed as [218, 219, 222]:

S
(3)
ζ

=
∫

dτ d3x M2
pla

2
((

3
(

c2
s − 1

)
ϵ + ϵ2

)
ζ

′2ζ +
ϵ

c2
s

(
ϵ + 1 − c2

s

)
(∂iζ)2 ζ −

2ϵ

c2
s

ζ
′

(∂iζ)
(

∂i∂
−2
(

ϵζ
′

c2
s

))
−

1
aH

(
1 −

1
c2

s

)
ϵ

(
ζ

′3 + ζ
′
(∂iζ)2

)
+

1
2

ϵζ

(
∂i∂j∂−2

(
ϵζ

′

c2
s

))2

+
1

2c2
s

ϵ∂τ

(
η

c2
s

)
ζ

′
ζ2︸ ︷︷ ︸+ · · ·

)
, (86)

where the last highlighted term in the above expression is solely responsible for significant one loop contribution to the power spectrum
for the scalar modes. In the case of Galileon due to having softly broken Galilean symmetry, such a contribution is strictly absent, and
hence the power spectrum is protected from the radiative corrections. In this article and the rest of the paper, we have discussed this
issue in detail.
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Here the contributions,
(

H
˙̄ϕ0

)2
(b · δx) ζ

′ ,
(

H
˙̄ϕ0

)3
b0 (b · δx)2,

(
H
˙̄ϕ0

)2
b0 (b · δx),

(
H
˙̄ϕ0

)
(b · δx) ζ

′ are not going to con-
tribute in the third order action. Now using field redefinition as well as dumping some of the contributions at the
boundary one can immediately either absorb them in the coefficients of the second-order perturbed action or make
them completely zero due to having a total derivative structure at the boundary. So the contributions, that will
survive due to having the small amount of soft Galilean symmetry break are given by, ζ

′3, ζ
′2 (∂2ζ

)
, ζ

′ (∂iζ)2 and
(∂iζ)2 (

∂2ζ
)
, which are physically interpreted as the bulk self-interactions of the Galileon in terms of the scalar curva-

ture perturbation. For all of these mentioned surviving contributions, some additional terms appear after performing
the aforementioned transformation, out of which some of them can be thrown due to having a total derivative structure
at the boundary, and some of them can be absorbed by making use of field redefinition and rest of the contributions
which are proportional to the quadratic or cubic in the amount of small breaking of Galilean symmetry can easily be
neglected in this construction. Using such contributions one needs to construct the third-order action by performing
the cosmological perturbation theory in detail. For more on these aspects see ref. [33], where the authors have con-
structed the third-order action in detail by allowing a small amount of soft breaking of Galilean symmetry. Assuming
that the curvature perturbation expands the CGEFT action in the third order, the following computation will be
done in the present context. For the same, the third-order action can be represented by the following expression:

S
(3)
ζ =

∫
dτ d3x

a2

H3

[
G1

a
ζ

′3 + G2

a2 ζ
′2 (∂2ζ

)
+ G3

a
ζ

′
(∂iζ)2 + G4

a2 (∂iζ)2 (
∂2ζ
) ]

, (90)

where the term ζ ′ζ2 is absent if the Galileon symmetry is softly broken; its presence would signal the absence of the
underlying Galileon symmetry itself and the violation of non-renormalization theorem.

Here the coupling parameters Gi∀i = 1, 2, 3, 4 as appearing in the third order perturbed action are given by the
following expressions:

G1 : ≡ 2H ˙̄ϕ3
0

Λ3

(
c3 + 9c4Z + 30c5Z2

)
, (91)

G2 : ≡ −2 ˙̄ϕ3
0

Λ3

(
c3 + 6c4Z + 18c5Z2

)
, (92)

G3 : ≡ −2H ˙̄ϕ3
0

Λ3

(
c3 + 7c4Z + 18c5Z2

)
+ 2 ˙̄ϕ2

0
¨̄ϕ0

Λ3

(
c3 + 6c4Z + 18c5Z2

)

= −2H ˙̄ϕ3
0

Λ3

(
c3 + 7c4Z + 18c5Z2

)
− 2 ˙̄ϕ3

0Hη

Λ3

(
c3 + 6c4Z + 18c5Z2

)
, (93)

G4 : ≡
˙̄ϕ3
0

Λ3

{
c3 + 3c4Z + 6c5

[
Z2 + Ḣ ˙̄ϕ2

0
Λ6

]}
+ 3 ˙̄ϕ3

0
¨̄ϕ0

Λ6

{
c4 + 4c5Z

}
=

˙̄ϕ3
0

Λ3

{
c3 + 3c4Z + 6c5

[
Z2 + Ḣ ˙̄ϕ2

0
Λ6

]}
− 3 ˙̄ϕ4

0Hη

Λ6

{
c4 + 4c5Z

}
, (94)

where the factor Z is already defined earlier in equation (24). To implement the fact that the Galileon self couplings
dominates over all other contributions, and also to neglect the mixing contributions with the gravitational background
in the decoupling limit one should look at the region where Z ≳ 1. In this work we restrict our analysis by considering
Z ∼ 1, where the nonlinear Galileon interactions are present but not harmful for the rest of the computations performed
in this paper. This means in the regime Z ∼ 1 one can able to control such contributions at the perturbative level of
computation. Though we are interested to compute the effect one-loop contribution from the third order action for
the comoving curvature perturbation in the rest part of the paper, using the same action it might be really interesting
to perform the computations for Bispectrum as well as Trispectrum from SRI, USR and SRII phases and comment
on the primordial non-Gaussian [80, 266–287] features in the present context.

Now, in terms of the good-old EFT construction the coefficients appearing in front of the operators can be written
in terms of CGEFT coefficients:

M4
3

H2M2
pl

= 3
4

1
a2H4 (G3 − G1) , (95)

M̄3
1

HM2
pl

= 2
3

[(
1 − 1

c2
s

)
ϵ + 1

a2H4 G3

]
. (96)
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One can similarly fix the other two coefficients, G2 and G4 in terms of the EFT coefficients by comparing term by
term in the third order action.

Now for the purpose of specifically extracting the correction from the one-loop quantum effect, we will make use
of all of the inputs stated above. In the mentioned contributions as appearing in the third order action we have
three possible situation appears on the first and second slow-roll parameters ϵ and η, which need to take care of very
crucially during the computation:

(a) Region I (SRI): In the first slow-roll regime (SRI), the behaviour of the mentioned two slow roll parameters
are given by:

ϵ ∼ Constant, η ∼ 0 where τ < τs. (97)

Here in the conformal time scale τ < τs represents the SRI region, where at τ = τs scale SR to USR transition
occurs.

(b) Region II (USR): In the Ultra slow-roll regime (USR), the behaviour of the mentioned two slow roll parameters
are given by:

ϵ(τ) = ϵ

(
τ

τs

)6
, η ∼ −6 where τs ⩽ τ ⩽ τe. (98)

Here ϵ is the slow-roll parameter as appearing in the phase SRI. Here at the SRI to USR transition point τ = τs

the behaviour is taken care of.

(c) Region III (SRII): In the second slow-roll regime (SRII), the behaviour of the mentioned two slow roll pa-
rameters are given by:

ϵ(τ) = ϵ

(
τe

τs

)6
, η ∼ 0 where τe ⩽ τ ⩽ τend. (99)

Here ϵ is the slow-roll parameter as appearing in the phase SRI as already mentioned earlier. Here at the USR
to SRII transition point τ = τe the behaviour is taken care of.

From this construction of three consecutive phases it is very clear that the first slow-roll parameter ϵ behave smoothly
at the SRI to USR and USR to SRII transition points, at τ = τs and τ = τe respectively. On the other hand, the
second slow-roll parameter η around the mentioned transition points can be parametrized by the following functional
form:

η(τ) = −6 − ∆η [Θ(τ − τs) − Θ(τ − τe)] , (100)

which implies in the SRII region, η ∼ −6 − ∆η = 0, because we have to take ∆η ∼ −6. In the SRI region, where
we have have τ < τs, this parameter gives η ∼ 0, just like SRII region. This parametrization is engineered in such a
way that if we take the time derivative of the second slow-roll parameter η at the transition points then the following
contribution appears:

η
′
(τ) = −∆η [δ(τ − τs) − δ(τ − τe)] . (101)

However, in the previously mentioned third order action such terms are forbidden by the small amount of softly
breaking of Galilean symmetry. This particular term appears in refs. [216–224], where such underlying symmetry was
absent. So in our paper we don’t need take care of the derivative of the second slow-roll parameter η at the transition
points explicitly. But it clear from the construction that the behaviour of the second slow-roll parameter η is not
smooth at the mentioned transition points. For this reason to make our further analysis consistent we have used the
mentioned parametrization of the second slow-roll parameter η at the transition points.

Before going to the further technical details of the one-loop contributions in the SRI, USR and SRII region in
the next subsection it is important to mention the strengths of the four types of the cubic self interactions in the
aforementioned three regions, which will going to be extremely helpful to keep track on the final result and its overall
contribution added with the tree-level result. All of these four interactions are suppressed in the SRI and SRII period
due to having vanishing contribution from the second slow-roll parameter η in both of these phases. Though we will
compute these contributions for the completeness. On the other hand, due to the presence of the second slow-roll
parameter η in the two coupling parameters, G3 and G4, of the last two terms of the representative third order action
in the USR phase thse two terms become dominant compared to the other two terms having the coupling coefficients,
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G1 and G2. In the next subsection we will going to explicitly show that whatever amount of enhancement we have
from the one-loop contribution will be dominated by the last two terms of the third order action appearing in the
USR period. Since we do not have any term involving the time derivative of second slow-roll parameter η, at the
SRI to USR and USR to SRII transition points, the corresponding amount of enhancement of the power spectrum in
the USR period in the one-loop contribution will be sufficiently suppressed compared to the results obtained in the
refs. [] where such type of contribution is present. Though the suppressed contribution in the USR period is much
higher than the one-loop contributions obtained from the SRI and SRII regions. In the next subsection we are going
to investigate all of these possibilities in great detail.

B. The direct In-In formalism for the one-loop corrected two-point function

The second part of the article will be devoted to a detailed analysis of every term that arises as a result of the
CGEFT framework that we used in our research. We make use of the well-known in-in formula to accomplish this.
This leads to the following two-point function at τ → 0, which is given by:

⟨ζ̂pζ̂−p⟩ : =
〈[

T exp
(

i

∫ τ

−∞(1−iϵ)
dτ

′
Hint(τ

′
)
)]

ζ̂p(τ)ζ̂−p(τ)
[
T exp

(
− i

∫ τ

−∞(1+iϵ)
dτ

′′
Hint(τ

′′
)
)]〉

τ→0

. (102)

In the above expression T and T̄ represent time ordering and anti-time ordering of the unitary operators which is
made up of the time integral of the interaction Hamiltonian, which is described by the following expression:

Hint(τ) = −
∫

d3x
a2

H3

[
G1

a
ζ

′3 + G2

a2 ζ
′2 (∂2ζ

)
+ G3

a
ζ

′
(∂iζ)2 + G4

a2 (∂iζ)2 (
∂2ζ
) ]

, (103)

where all of these coefficients Gi∀i = 1, 2, 3, 4 are defined in the previous subsection.
Next expanding equation (102) order by order and collecting the non-trival terms which will contribute to the

one-loop correction of the two point correlation function of comoving curvature perturbation we get the following
simplified expression:

⟨ζ̂pζ̂−p⟩ = ⟨ζ̂pζ̂−p⟩(0,0) + ⟨ζ̂pζ̂−p⟩(0,2) + ⟨ζ̂pζ̂−p⟩†
(0,2) + ⟨ζ̂pζ̂−p⟩(1,1), (104)

where the first terms the tree-level contribution and remaining terms physically represent the one-loop correction to
the tree-level contribution of the primordial two-point correlation function. The first term we have already computed
in the earlier section of this paper. Now our prime objective is to compute the remaining three terms in the above
expression and for the future computational purpose it is good to mention the expressions for these contributions in
terms of the interaction Hamiltonian, which is given by the following expressions:

⟨ζ̂pζ̂−p⟩(0,2) = lim
τ→0

[∫ τ

−∞
dτ1

∫ τ

−∞
dτ1 ⟨ζ̂p(τ)ζ̂−p(τ)Hint(τ1)Hint(τ2)⟩

]
, (105)

⟨ζ̂pζ̂−p⟩†
(0,2) = lim

τ→0

[∫ τ

−∞
dτ1

∫ τ

−∞
dτ1 ⟨ζ̂p(τ)ζ̂−p(τ)Hint(τ1)Hint(τ2)⟩†

]
, (106)

⟨ζ̂pζ̂−p⟩(1,1) = lim
τ→0

[∫ τ

−∞
dτ1

∫ τ

−∞
dτ1 ⟨Hint(τ1)ζ̂p(τ)ζ̂−p(τ)Hint(τ2)⟩

]
. (107)

Further, in terms of the individual cubic self interactions the one-loop contributions to the two-point primordial
cosmological correlation function can be quantified by the following expressions:

⟨ζ̂pζ̂−p⟩(0,2) =
4∑

i=1
Z(1)

i , (108)

⟨ζ̂pζ̂−p⟩†
(0,2) =

4∑
i=1

Z(2)
i , (109)

⟨ζ̂pζ̂−p⟩†
(1,1) =

4∑
i=1

Z(3)
i , (110)
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where the factors Z(1)
i ∀i = 1, 2, 3, 4, Z(2)

i ∀i = 1, 2, 3, 4 and Z(3)
i ∀i = 1, 2, 3, 4 are described by the following expressions:

Z(1)
1 : = lim

τ→0

[∫ 0

−∞
dτ1

a2(τ1)
H3(τ1)

G1(τ1)
a(τ1)

∫ 0

−∞
dτ2

a2(τ2)
H3(τ2)

G1(τ2)
a(τ2)

×
∫

d3k1

(2π)3

∫
d3k2

(2π)3

∫
d3k3

(2π)3

∫
d3k4

(2π)3

∫
d3k5

(2π)3

∫
d3k6

(2π)3

×δ3
(

k1 + k2 + k3

)
δ3
(

k4 + k5 + k6

)
×⟨ζ̂p(τ)ζ̂−p(τ)ζ̂

′

k1
(τ1)ζ̂

′

k2
(τ1)ζ̂

′

k3
(τ1)ζ̂

′

k4
(τ2)ζ̂

′

k5
(τ2)ζ̂

′

k6
(τ2)⟩

]
, (111)

Z(1)
2 : = lim

τ→0

[∫ 0

−∞
dτ1

a2(τ1)
H3(τ1)

G2(τ1)
a2(τ1)

∫ 0

−∞
dτ2

a2(τ2)
H3(τ2)

G2(τ2)
a2(τ2)

×
∫

d3k1

(2π)3

∫
d3k2

(2π)3

∫
d3k3

(2π)3

∫
d3k4

(2π)3

∫
d3k5

(2π)3

∫
d3k6

(2π)3

×δ3
(

k1 + k2 + k3

)
δ3
(

k4 + k5 + k6

)
|K|4

×⟨ζ̂p(τ)ζ̂−p(τ)ζ̂
′

k1
(τ1)ζ̂

′

k2
(τ1)ζ̂k3(τ1)ζ̂

′

k4
(τ2)ζ̂

′

k5
(τ2)ζ̂k6(τ2)⟩

]
, (112)

Z(1)
3 : = lim

τ→0

[∫ 0

−∞
dτ1

a2(τ1)
H3(τ1)

G3(τ1)
a(τ1)

∫ 0

−∞
dτ2

a2(τ2)
H3(τ2)

G3(τ2)
a(τ2)

×
∫

d3k1

(2π)3

∫
d3k2

(2π)3

∫
d3k3

(2π)3

∫
d3k4

(2π)3

∫
d3k5

(2π)3

∫
d3k6

(2π)3

×δ3
(

k1 + k2 + k3

)
δ3
(

k4 + k5 + k6

)
(k2 · k3) (k5 · k6)

×⟨ζ̂p(τ)ζ̂−p(τ)ζ̂
′

k1
(τ1)ζ̂k2(τ1)ζ̂k3(τ1)ζ̂

′

k4
(τ2)ζ̂k5(τ2)ζ̂k6(τ2)⟩

]
, (113)

Z(1)
4 : = lim

τ→0

[∫ 0

−∞
dτ1

a2(τ1)
H3(τ1)

G4(τ1)
a2(τ1)

∫ 0

−∞
dτ2

a2(τ2)
H3(τ2)

G4(τ2)
a2(τ2)

×
∫

d3k1

(2π)3

∫
d3k2

(2π)3

∫
d3k3

(2π)3

∫
d3k4

(2π)3

∫
d3k5

(2π)3

∫
d3k6

(2π)3

×δ3
(

k1 + k2 + k3

)
δ3
(

k4 + k5 + k6

)
(k1 · k2) (k4 · k5) |K|4

×⟨ζ̂p(τ)ζ̂−p(τ)ζ̂k1(τ1)ζ̂k2(τ1)ζ̂k3(τ1)ζ̂k4(τ2)ζ̂k5(τ2)ζ̂k6(τ2)⟩
]

, (114)

and

Z(2)
1 : = lim

τ→0

[∫ 0

−∞
dτ1

a2(τ1)
H3(τ1)

G1(τ1)
a(τ1)

∫ 0

−∞
dτ2

a2(τ2)
H3(τ2)

G1(τ2)
a(τ2)

×
∫

d3k1

(2π)3

∫
d3k2

(2π)3

∫
d3k3

(2π)3

∫
d3k4

(2π)3

∫
d3k5

(2π)3

∫
d3k6

(2π)3

×δ3
(

k1 + k2 + k3

)
δ3
(

k4 + k5 + k6

)
×⟨ζ̂p(τ)ζ̂−p(τ)ζ̂

′

k1
(τ1)ζ̂

′

k2
(τ1)ζ̂

′

k3
(τ1)ζ̂

′

k4
(τ2)ζ̂

′

k5
(τ2)ζ̂

′

k6
(τ2)⟩†

]
=
[
Z(1)

1
]†

, (115)
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Z(2)
2 : = lim

τ→0

[∫ 0

−∞
dτ1

a2(τ1)
H3(τ1)

G2(τ1)
a2(τ1)

∫ 0

−∞
dτ2

a2(τ2)
H3(τ2)

G2(τ2)
a2(τ2)

×
∫

d3k1

(2π)3

∫
d3k2

(2π)3

∫
d3k3

(2π)3

∫
d3k4

(2π)3

∫
d3k5

(2π)3

∫
d3k6

(2π)3

×δ3
(

k1 + k2 + k3

)
δ3
(

k4 + k5 + k6

)
|K|4

×⟨ζ̂p(τ)ζ̂−p(τ)ζ̂
′

k1
(τ1)ζ̂

′

k2
(τ1)ζ̂k3(τ1)ζ̂

′

k4
(τ2)ζ̂

′

k5
(τ2)ζ̂k6(τ2)⟩†

]
=
[
Z(1)

2
]†

, (116)

Z(2)
3 : = lim

τ→0

[∫ 0

−∞
dτ1

a2(τ1)
H3(τ1)

G3(τ1)
a(τ1)

∫ 0

−∞
dτ2

a2(τ2)
H3(τ2)

G3(τ2)
a(τ2)

×
∫

d3k1

(2π)3

∫
d3k2

(2π)3

∫
d3k3

(2π)3

∫
d3k4

(2π)3

∫
d3k5

(2π)3

∫
d3k6

(2π)3

×δ3
(

k1 + k2 + k3

)
δ3
(

k4 + k5 + k6

)
(k2 · k3) (k5 · k6)

×⟨ζ̂p(τ)ζ̂−p(τ)ζ̂
′

k1
(τ1)ζ̂k2(τ1)ζ̂k3(τ1)ζ̂

′

k4
(τ2)ζ̂k5(τ2)ζ̂k6(τ2)⟩†

]
=
[
Z(1)

3
]†

, (117)

Z(2)
4 : = lim

τ→0

[∫ 0

−∞
dτ1

a2(τ1)
H3(τ1)

G4(τ1)
a2(τ1)

∫ 0

−∞
dτ2

a2(τ2)
H3(τ2)

G4(τ2)
a2(τ2)

×
∫

d3k1

(2π)3

∫
d3k2

(2π)3

∫
d3k3

(2π)3

∫
d3k4

(2π)3

∫
d3k5

(2π)3

∫
d3k6

(2π)3

×δ3
(

k1 + k2 + k3

)
δ3
(

k4 + k5 + k6

)
(k1 · k2) (k4 · k5) |K|4

×⟨ζ̂p(τ)ζ̂−p(τ)ζ̂k1(τ1)ζ̂k2(τ1)ζ̂k3(τ1)ζ̂k4(τ2)ζ̂k5(τ2)ζ̂k6(τ2)⟩†

]
=
[
Z(1)

4
]†

, (118)

and

Z(3)
1 : = lim

τ→0

[∫ 0

−∞
dτ1

a2(τ1)
H3(τ1)

G1(τ1)
a(τ1)

∫ 0

−∞
dτ2

a2(τ2)
H3(τ2)

G1(τ2)
a(τ2)

×
∫

d3k1

(2π)3

∫
d3k2

(2π)3

∫
d3k3

(2π)3

∫
d3k4

(2π)3

∫
d3k5

(2π)3

∫
d3k6

(2π)3

×δ3
(

k1 + k2 + k3

)
δ3
(

k4 + k5 + k6

)
×⟨ζ̂

′

k1
(τ1)ζ̂

′

k2
(τ1)ζ̂

′

k3
(τ1)ζ̂p(τ)ζ̂−p(τ)ζ̂

′

k4
(τ2)ζ̂

′

k5
(τ2)ζ̂

′

k6
(τ2)⟩

]
, (119)

Z(3)
2 : = lim

τ→0

[∫ 0

−∞
dτ1

a2(τ1)
H3(τ1)

G2(τ1)
a2(τ1)

∫ 0

−∞
dτ2

a2(τ2)
H3(τ2)

G2(τ2)
a2(τ2)

×
∫

d3k1

(2π)3

∫
d3k2

(2π)3

∫
d3k3

(2π)3

∫
d3k4

(2π)3

∫
d3k5

(2π)3

∫
d3k6

(2π)3

×δ3
(

k1 + k2 + k3

)
δ3
(

k4 + k5 + k6

)
|K|4

×⟨ζ̂
′

k1
(τ1)ζ̂

′

k2
(τ1)ζ̂k3(τ1)ζ̂p(τ)ζ̂−p(τ)ζ̂

′

k4
(τ2)ζ̂

′

k5
(τ2)ζ̂k6(τ2)⟩

]
, (120)
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Z(3)
3 : = lim

τ→0

[∫ 0

−∞
dτ1

a2(τ1)
H3(τ1)

G3(τ1)
a(τ1)

∫ 0

−∞
dτ2

a2(τ2)
H3(τ2)

G3(τ2)
a(τ2)

×
∫

d3k1

(2π)3

∫
d3k2

(2π)3

∫
d3k3

(2π)3

∫
d3k4

(2π)3

∫
d3k5

(2π)3

∫
d3k6

(2π)3

×δ3
(

k1 + k2 + k3

)
δ3
(

k4 + k5 + k6

)
(k2 · k3) (k5 · k6)

×⟨ζ̂
′

k1
(τ1)ζ̂k2(τ1)ζ̂k3(τ1)ζ̂p(τ)ζ̂−p(τ)ζ̂

′

k4
(τ2)ζ̂k5(τ2)ζ̂k6(τ2)⟩

]
, (121)

Z(3)
4 : = lim

τ→0

[∫ 0

−∞
dτ1

a2(τ1)
H3(τ1)

G4(τ1)
a2(τ1)

∫ 0

−∞
dτ2

a2(τ2)
H3(τ2)

G4(τ2)
a2(τ2)

×
∫

d3k1

(2π)3

∫
d3k2

(2π)3

∫
d3k3

(2π)3

∫
d3k4

(2π)3

∫
d3k5

(2π)3

∫
d3k6

(2π)3

×δ3
(

k1 + k2 + k3

)
δ3
(

k4 + k5 + k6

)
(k1 · k2) (k4 · k5) |K|4

×⟨ζ̂k1(τ1)ζ̂k2(τ1)ζ̂k3(τ1)ζ̂p(τ)ζ̂−p(τ)ζ̂k4(τ2)ζ̂k5(τ2)ζ̂k6(τ2)⟩
]

, (122)

where it is important to note that:

|K| = |k1 + k2 + k3| = |k4 + k5 + k6| =
√

k2
1 + k2

2 + k3
3 =

√
k2

4 + k2
5 + k2

6. (123)

Also the integral over conformal time as well as the momentum scales has to be tackled by dividing them in the
previously mentioned three regions:

Conformal time integral : lim
τ→0

∫ τ

−∞
:≡
(∫ τs

−∞

)
︸ ︷︷ ︸

SRI

+
(∫ τe

τs

)
︸ ︷︷ ︸

USR

+
(∫ τend→0

τe

)
︸ ︷︷ ︸

SRII

, (124)

and

Momentum integral :
∫ ∞

0
:≡
(∫ ks

k∗

)
︸ ︷︷ ︸

SRI

+
(∫ ke

ks

)
︸ ︷︷ ︸

USR

+
(∫ kend→0

ke

)
︸ ︷︷ ︸

SRII

, (125)

where in the above description finite limits of the integration plays the role of IR and UV cut-offs, which play a
very crucial role to extract the finite contribution out of the present computation. However, inclusion of such cut-off
regulators allow some divergent effects in the final result which one needs to remove by performing renormalization
as well as resummation, which we will going to address in detail in the later half of this paper. At present, our
prime objective is to explicitly compute the cut-off regulated expressions for the two-point primordial cosmological
correlators from curvature perturbation in the three consecutive regions, SRI, USR and SRII respectively. In the next
subsection we are going to study these facts in detail.

C. Computation of the cut-off regularized one-loop correction to the tree-level power spectrum

In the following subsection we compute the explicit contributions from the one-loop correction by implementing the
cut-off regularization technique in the subsequent aforementioned regions. Before going to the technical details in this
section, let us first mention that using all possible types of Wick contractions the one-loop result can be simplified by
the following expression:

⟨⟨ζ̂pζ̂−p⟩⟩One−loop = ⟨⟨ζ̂pζ̂−p⟩⟩(1,1) + 2Re
[
⟨⟨ζ̂pζ̂−p⟩⟩(0,2)

]
=

4∑
i=1

Z(3)
i + 2Re

[ 4∑
i=1

Z(1)
i

]
, (126)
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which is easier to evaluate in the three regions of discussion.

1. Result for the Region I (SRI)

The one-loop contribution to the primordial power spectrum computed from the comoving curvature perturbation
in the SRI region is computed as:[

∆2
ζ,One−loop(p)

]
SRI

=
[

∆2
ζ,Tree(p)

]2

SRI

{
cSRI − 1

8A2
∗π4

4∑
i=1

G̃i,SRIFi,SRI(ks, k∗)
}

=
[

∆2
ζ,Tree(p)

]2

SRI

{
cSRI − c4

s

8B2
∗π6

4∑
i=1

G̃i,SRIFi,SRI(ks, k∗)
}

. (127)

where the power spectrum in the SRI region is given by:[
∆2

ζ,Tree(p)
]

SRI

=
(

H4

8π2Ac3
s

)
∗

{
1 +

(
p

ks

)2}
=
(

H4

8π2Bcs

)
∗

{
1 +

(
p

ks

)2}
where p < kS . (128)

Here cSRI represents the regularization scheme dependent parameter for the present computational purpose in the
SRI phase. Also the coefficients in terms CGEFT couplings can be expressed at the pivot scale τ = τ∗ by the following
expressions:

G̃1,SRI = G2
1(τ∗)

= 4H2(τ∗) ˙̄ϕ6
0(τ∗)

Λ6

(
c3 + 9c4Z∗ + 30c5Z2

∗

)2

, (129)

G̃2,SRI = −G2
2(τ∗)H2(τ∗)c2

s

= −4H2(τ∗) ˙̄ϕ6
0(τ∗)c2

s

Λ6

(
c3 + 6c4Z∗ + 18c5Z2

∗

)2

, (130)

G̃3,SRI = −G2
3(τ∗)
c2

s

= −

(
2H(τ∗) ˙̄ϕ3

0(τ∗)
Λ3cs

(
c3 + 7c4Z∗ + 18c5Z2

∗

)
+ 2 ˙̄ϕ3

0(τ∗)H(τ∗)η∗

Λ3cs

(
c3 + 6c4Z∗ + 18c5Z2

∗

))2

, (131)

G̃4,SRI = G2
4(τ∗)H2(τ∗)

c6
s

=
( ˙̄ϕ3

0(τ∗)H(τ∗)
Λ3c3

s

{
c3 + 3c4Z∗ + 6c5

[
Z2

∗ + Ḣ(τ∗) ˙̄ϕ2
0(τ∗)

Λ6

]}
− 3 ˙̄ϕ4

0(τ∗)H2(τ∗)η∗

Λ6c3
s

{
c4 + 4c5Z∗

})2

. (132)

Also, the momentum and effective sound speed dependent functions are described by the following expressions:

F1,SRI(ks, k∗) = 1
2

[
3 +

(
k∗

ks

)2
]

, (133)

F2,SRI(ks, k∗) =
[

17
42 − 2

3

(
k∗

ks

)6
+ 24

7

(
k∗

ks

)7
− 9

2

(
k∗

ks

)8
]

, (134)

F3,SRI(ks, k∗) = −2
3

[
1 −

(
k∗

ks

)6
]

, (135)

F4,SRI(ks, k∗) = −1
2

[
1 −

(
k∗

ks

)2
]

. (136)
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At the pivot scale τ = τ∗, the parameters A∗ and B∗ are defined by the following expressions:

A∗ ≡ A(τ∗) =
˙̄ϕ2
0(τ∗)
2

(
c2 + 12c3Z∗ + 54c4Z2

∗ + 120c5Z3
∗

)
, (137)

B∗ ≡ B(τ∗)

=
˙̄ϕ2
0(τ∗)
2

{
c2 + 4c3

(
2Z∗ − H(τ∗) ˙̄ϕ0(τ∗)

Λ3 η∗

)
+ 2c4

[
13Z2

∗ − 6
Λ6

˙̄ϕ2
0(τ∗)H2(τ∗)

(
ϵ(τ∗) + 2η(τ∗)

)]

−24c5

Λ9 H3(τ∗) ˙̄ϕ3
0(τ∗)

(
2ϵ(τ∗) + 1

)}
. (138)

which are extremely useful to fix the effective sound speed at that scale by making use of the following relationship:

cs = cs(τ∗) =
√

B∗

A∗
. (139)

Also, it is important to mention the explicit expression for the coupling parameter Z∗ at the pivot scale τ = τ∗ as
appearing in the SRI phase is given by the following expression:

Z∗ ≡ Z(τ∗) = H(τ∗) ˙̄ϕ0(τ∗)
Λ3 , (140)

where ˙̄ϕ0(τ∗) can be expressed as:

˙̄ϕ0(τ∗) = Λ3

12H(τ∗)
c2

c3

[
− 1 +

√
1 + 8c3

c2
2

λ3

Λ3

]
. (141)

2. Result for the Region II (USR)

The one-loop contribution to the primordial power spectrum computed from the comoving curvature perturbation
in the USR region is computed as:[

∆2
ζ,One−loop(p)

]
USR

=
[

∆2
ζ,Tree(p)

]2

SRI

{
cUSR + 1

8A2
∗π4

4∑
i=1

G̃i,USRFi,USR(ke, ks)
}

Θ(p − ks)

=
[

∆2
ζ,Tree(p)

]2

SRI

{
cUSR + c4

s

8B2
∗π6

4∑
i=1

G̃i,USRFi,USR(ke, ks)
}

Θ(p − ks). (142)

where the power spectrum in the SRI region is already defined earlier. Here cUSR represents the regularization scheme
dependent parameter for the present computational purpose in the USR phase. Also the coefficients in terms CGEFT
couplings can be expressed within the interval τs ⩽ τ ⩽ τe by the following expressions:

G̃1,USR =
(

G2
1(τe)
c3

s

(
ke

ks

)6
− G2

1(τs)
c3

s

)

=
{

4H2(τe) ˙̄ϕ6
0(τe)

Λ6c3
s

(
c3 + 9c4Ze + 30c5Z2

e

)2(
ke

ks

)6
− 4H2(τs) ˙̄ϕ6

0(τs)
Λ6c3

s

(
c3 + 9c4Zs + 30c5Z2

s

)2}
, (143)

G̃2,USR =
(

G2
2(τe)H2(τe)

c5
s

(
ke

ks

)4
− G2

2(τs)H2(τs)
c5

s

)

=
{

4H2(τe) ˙̄ϕ6
0(τe)

Λ6c5
s

(
c3 + 6c4Ze + 18c5Z2

e

)2(
ke

ks

)4
− 4H2(τs) ˙̄ϕ6

0(τs)
Λ6c5

s

(
c3 + 6c4Zs + 18c5Z2

s

)2}
, (144)
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G̃3,USR =
(

G2
3(τe)
c6

s

(
ke

ks

)3
− G2

3(τs)
c6

s

)

=
(

2H(τe) ˙̄ϕ3
0(τe)

Λ3c3
s

(
c3 + 7c4Ze + 18c5Z2

e

)
+ 2 ˙̄ϕ3

0(τe)H(τe)η(τe)
Λ3c3

s

(
c3 + 6c4Ze + 18c5Z2

e

))2(
ke

ks

)3

−

(
2H(τs) ˙̄ϕ3

0(τs)
Λ3c3

s

(
c3 + 7c4Zs + 18c5Z2

s

)
+ 2 ˙̄ϕ3

0(τs)H(τs)η(τs)
Λ3c3

s

(
c3 + 6c4Zs + 18c5Z2

s

))2

, (145)

G̃4,USR =
(

G2
2(τe)H2(τe)

c7
s

(
ke

ks

)2
− G2

2(τs)H2(τs)
c7

s

)

=
( ˙̄ϕ3

0(τe)
Λ3c

7/2
s

{
c3 + 3c4Ze + 6c5

[
Z2

e + Ḣ(τe) ˙̄ϕ2
0(τe)

Λ6

]}
− 3 ˙̄ϕ4

0(τe)H(τe)η(τe)
Λ6c

7/2
s

{
c4 + 4c5Ze

})2(
ke

ks

)2

−

( ˙̄ϕ3
0(τs)

Λ3c
7/2
s

{
c3 + 3c4Zs + 6c5

[
Z2

s + Ḣ(τs) ˙̄ϕ2
0(τs)

Λ6

]}
− 3 ˙̄ϕ4

0(τs)H(τs)η(τs)
Λ6c

7/2
s

{
c4 + 4c5Zs

})2

. (146)

Also, the momentum and effective sound speed dependent functions are described by the following expressions:

F1,USR(ke, ks) =
[

1
4 + 9

4

(
ks

ke

)2
− 1

4

(
ks

ke

)4
− 9

(
ks

ke

)4
ln
(

ks

ke

)
− 6 sin

(
1 +

(
ke

ks

))
sin
(

1 −
(

ke

ks

))

−9
8

(
ks

ke

)2
{

2
(

ke

ks

)
sin
(

2
(

ke

ks

))
− cos

(
2
(

ke

ks

))}
− 6

(
ks

ke

)
sin
(

2
(

ke

ks

))

−69
16 cos

(
2
(

ke

ks

))
− 3

4

(
ks

ke

)2
{

2
(

ke

ks

)
cos
(

2
(

ke

ks

))
− sin

(
2
(

ke

ks

))}]
, (147)

F2,USR(ke, ks) =
[

1
8 + 9

12

(
ks

ke

)2
+ 9

4

(
ks

ke

)4
+ 9

4

(
ks

ke

)6
− 43

8

(
ks

ke

)8
− 9

8 cos
(

2
(

ke

ks

))]
, (148)

F3,USR(ke, ks) =
[

1
8 + 9

12

(
ks

ke

)2
+ 9

4

(
ks

ke

)4
+ 9

4

(
ks

ke

)6
− 43

8

(
ks

ke

)8
− 9

8 cos
(

2
(

ke

ks

))]
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[
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Additionally, it is important to mention the explicit expression for the coupling parameters Ze and Zs at the end of
USR and SRI to USR transition scales τ = τe and τ = τs are given by the following expression:

Ze ≡ Z(τe) = H(τe) ˙̄ϕ0(τe)
Λ3 , (151)

Zs ≡ Z(τs) = H(τs) ˙̄ϕ0(τs)
Λ3 , (152)

where ˙̄ϕ0(τe) and ˙̄ϕ0(τs) can be expressed as:

˙̄ϕ0(τe) = Λ3

12H(τe)
c2

c3

[
− 1 +

√
1 + 8c3

c2
2

λ3

Λ3

]
, (153)

˙̄ϕ0(τs) = Λ3

12H(τs)
c2

c3

[
− 1 +

√
1 + 8c3

c2
2

λ3

Λ3

]
. (154)
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3. Result for the Region III (SRII)

The one-loop contribution to the primordial power spectrum computed from the comoving curvature perturbation
in the SRII region is computed as:

[
∆2

ζ,One−loop(p)
]
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=
[

∆2
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]2
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{
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}
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}

Θ(p − ke). (155)

where the power spectrum in the SRI region is already defined earlier.Here cSRII represents the regularization scheme
dependent parameter for the present computational purpose in the SRII phase. Also the coefficients in terms CGEFT
couplings can be expressed within the interval τe ⩽ τ ⩽ τend by the following expressions:
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(
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G̃3,SRII =
(

G2
3(τend)

c6
s

(
ke

ks

)3
− G2

3(τe)
c6

s

)

=
(

2H(τend) ˙̄ϕ3
0(τend)

Λ3c3
s

(
c3 + 7c4Zend + 18c5Z2

end

)
+ 2 ˙̄ϕ3

0(τend)H(τend)η(τend)
Λ3c3

s

(
c3 + 6c4Zend + 18c5Z2

end

))2(
ke

ks

)3

−

(
2H(τe) ˙̄ϕ3

0(τe)
Λ3c3

s

(
c3 + 7c4Ze + 18c5Z2

e

)
+ 2 ˙̄ϕ3

0(τe)H(τe)η(τe)
Λ3c3

s

(
c3 + 6c4Ze + 18c5Z2

e

))2

, (158)
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Also, the momentum and effective sound speed-dependent functions are described by the following expressions:
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F3,SRII(kend, ke) = F2,SRII(kend, ke), (162)
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Additionally, it is important to mention the explicit expression for the coupling parameters Zend and Ze at the end
of SRII and USR scales τ = τend and τ = τe are given by the following expression:

Zend ≡ Z(τend) = H(τend) ˙̄ϕ0(τend)
Λ3 , Ze ≡ Z(τe) = H(τe) ˙̄ϕ0(τe)

Λ3 , (164)

where ˙̄ϕ0(τend) and ˙̄ϕ0(τe) can be expressed as:
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˙̄ϕ0(τe) = Λ3

12H(τe)
c2

c3

[
− 1 +

√
1 + 8c3

c2
2

λ3

Λ3

]
. (166)

D. Final result for the cut-off regularized one-loop corrected total power spectrum

In this subsection we are now going to provide the total cut-off regularized one-loop corrected primordial power
spectrum computed from comoving curvature perturbation, where we haven taken the individual contributions from
SRI, USR and SRII very carefully. After summing over all the one-loop contributions to the tree level contribution
we get the following result:[
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where the power spectrum in the SRI region can be recast in the following simplified form:[
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In the present context, all the momentum-dependent, time-dependent fixed functions and coupling parameters and
the Bogoliubov coefficients in the USR and SRII phases have already been mentioned before explicitly.

Now it is important to note that, there are issues with the requirement for a nontrivial potential. Potential
terms must be viewed as irrelevant physical operators that produce minor adjustments because they are not Galilean
symmetry invariant. But if they exist, large renormalizations would usually be applied to operators with mass
dimensions less than four, which would render the model of limited relevance. In reality, there is no way to get around
this problem because of the presence of an effective potential at least made up of quadratic order contribution is
needed to characterize a smooth end to the inflationary period. Surprisingly, the two contributions, ϕ (linear) and
ϕ2 (quadratic) are shielded by a non-renormalization theorem and can thus be reliably regarded as the completely
irrelevant deformations of the Galilean symmetry applicable to the underlying theoretical setup. This can be easily
proved by one particle irreducible effective action approach within the framework of path integral, which was explicitly
shown in the ref. [33]. Such a strong non-renormalization theorem does not allow any further operators in the
underlying theory which violate the symmetry at the quantum mechanical level. This strong non-renormalization
theorem established at the level of scalar field is also propagated to the quantum fluctuations induced by the terms
appearing in the second and third order perturbed action as written before for the comoving curvature perturbation
variable. For this reason it is automatically expected that in presence of Galilean symmetry or in presence of its
very mild breaking at the level of cosmological perturbation all the self interactions are protected by the any sorts of
radiative quantum corrections. On top of this due to having strong strong non-renormalization theorem the in all the
correlation functions computed from the cosmological perturbations generated from covariant Galileon has to be non-
renormalizable but stable under radiative quantum corrections. Consequently, in the present theoretical framework the
underlying concept of renormalization and resummation is not at all applicable. For this reason the cut off regularized
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total one-loop corrected primordial power spectrum computed from comving scalar curvature perturbation will fully
suffice the purpose and with the help of this result we are going to establish our final conclusion. From the derived
structure of the one-loop corrections as obtained from the SRI, USR and SRII phases it is completely evident that
it is free from quadratic and logarithmic divergences in the detailed structure of the momentum dependent factors
associated with the computation. From the underlying structure of the CGEFT theory and due to not absence of
the term η

′
ζ

′
ζ2 in the third order action to very mildly break the Galilean symmetry such mentioned divergences

are completely absent in the primordial power spectrum, which is obviously a remarkable fact from the present
computation. The other factors appearing in the one-loop correction are extremely power law suppressed and some
of them are highly oscillatory with having restricted amplitude of oscillation. These contributions are not at all
harmful for the present computational purpose and will give a very small correction to the tree level amplitude of
the primordial power spectrum. For this reason the cosmological perturbation will be valid throughout the SRI,
USR and SRII phases and all the perturbative approximations holds good perfectly during the computation of the
one-loop correction. We can clearly expect that due to having extremely suppressed one-loop correction the tree level
amplitude will sufficient enough for the enhancement of the spectrum from O(10−9) (SRI) to O(10−2) (USR) which
is one of the necessary conditions to form PBH. Now for the proper enhancement of the tree level power spectrum
and to maintain the perturbative approximations the ratio, ke/ks has to be strictly fixed at O(10), which basically
allows only 2 e-foldings in the USR regime of the computation. That means that prolonged USR phase is not all
allowed for the present computation. On the other hand to produce large mass PBHs position of the SRI to USR
transition scale has to be fixed at ks ⩽ 106, which automatically implies to restrict ke ⩽ 107, so that ke/ks ∼ O(10)
always maintained. This helps us to produce solar mass PBHs or more than that. In the next sections we are going
to investigate the details of the above findings and its outcomes in the formation of PBHs. Most importantly, we
are going to study the constraints in detail to form a large mass PBH within the framework of single field inflation
induced by covarinatized Galileon.

VI. Numerical results: Constraints on the PBH mass and evaporation time scale

In figure(1), we have explicitly shown the behaviour of the dimensionless power spectrum for comoving curvature
perturbation with respect to the wave number for fixed value of the effective sound speed cs = 0.05 for the Galileon.
Since renormalization and resummation is not needed for Galileon due to having strong non-renormalization theorem
we have only shown the behaviour of the one-loop corrected cut off regularized power spectrum where the cumulative
effects from the phases SRI, USR and SRII are encoded. We found just before the the SRI to USR transition the power
spectrum falls to a minimum value and then at the corresponding transition point spectrum sharply increases to a peak
value, O(10−2) at 5×106Mpc−1 momentum scale, which is appearing in the mid point in the USR region. The numb er
of e-foldings corresponding to the peak value of the amplitude of the power spectrum is ∆NPeak ∼ 20. After achieving
the maximum enhancement in the corresponding power spectrum the amplitude starts falling sharply and attain a
value O(10−6) at the end of the USR phase in the present set up. Further due to having sinusoidal contributions in the
power spectrum the the spectrum start oscillating with a very high frequency with having decaying overall amplitude.
Within a very short span it will saturate to a certain value with having very small oscillating envelop which persist for
longer span and then there is is sharp fall is observed which again saturates to the amplitude O(10−5) which persist
up to the end of SRII phase where the inflation ends as well. In figure(2) we have also depicted the representative
flow chart of the underlying process of Primordial Black Hole (PBH) formation in presence of one-loop correction in
the primordial power spectrum for scalar modes within the framework of single field Galileon inflation for the better
understanding purpose of the overall outcome of the work.

For the numerical purpose we fix, ks = 106 Mpc−1 (where we fix the IR cut-off) and the end of USR at ke =
107 Mpc−1 (where we fix the UV cut-off), end of inflation scale at kend = 1027 Mpc−1, the regularization parameters,
cSRI = 0, cUSR = 0, cSRII = 0, ∆η(τe) = 1 and ∆η(τs) = −6. To maintain the perturbative approximations holds
good perfectly and to generate sufficient number of e-foldings to achieve inflation we fix, kUV/kIR = ke/ks ≈ O(10)
and kend/ke ≈ O(1020). Though we have shown the figure for the sound speed cs = 0.05, our analysis is valid within
the regime 0.024 < cs < 1, which means for Galileon causality is strictly maintained within the framework of EFT.

From this plot we found that the number of e-foldings allowed in the USR phase is given by:

∆NUSR = ln(ke/ks) ≈ ln(107/106) = ln(10) ≈ 2, (169)

which is an important information for the PBH formation in the present Galileon inflationary paradigm. Also, the
allowed number of e-foldings for the SRI and SRII periods are given by:

∆NSRI = ln(ks/p∗) ≈ ln(106/0.02) ∼ 18, (170)
∆NSRII = ln(kend/ke) ≈ ln(1027/107) ≈ 40. (171)
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FIG. 1. Behaviour of the dimensionless primordial power spectrum for scalar modes with respect to the wave number. Here
we fix the effective sound speed at cs = 0.05. We also fix the pivot scale at p∗ = 0.02 Mpc−1, SRI to USR transition scale
at ks = 106 Mpc−1, end of USR scale at ke = 107 Mpc−1, end of inflation scale at kend = 1027 Mpc−1, the regularization
parameters, cSRI = 0, cUSR = 0 and cSRII = 0. Also we use, ∆η(τe) = 1 and ∆η(τs) = −6. In this plot we have found that,
kUV/kIR = ke/ks ≈ O(10) and kend/ke ≈ O(1020). Peak amplitude O(10−2) of the corresponding spectrum is achieved at the
scale 5ks ∼ 5 × 106Mpc−1. Total number of e-foldings 60 is achieved in this analysis, which is sufficient enough for inflation.

As a consequence, the total number of e-foldings allowed by Galileon inflation is given by:

∆NTotal = ∆NSRI + ∆NUSR + ∆NSRII ∼ 18 + 2 + 40 = 60. (172)

This possibility will lead a large mass PBH formation having sufficient number of e-folds for inflation in the single
field framework with Galileon.

We found that for Galileon inflation the prolonged USR period is strictly not allowed for PBH formation. In this
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Primordial Black Hole (PBH) formation from Galileon Inflation 
 (in presence of one-loop effect in the primordial spectrum)

Key factors:          *Position of the SRI to USR transition scale,                        

*Peak amplitude of the spectrum, 

ke/ks ⇠ O(10) ! �NUSR ⇠ 2

<latexit sha1_base64="bqlBB338Q3BzgZhBL8AQcIT2RsI="></latexit>

 *The ratio:

kend ⇠ O(1027Mpc�1)

<latexit sha1_base64="FLJro3ud+Eo5FuFnyAtbqgEEfcE=">AAACF3icdVBNSwMxEM36WetX1aOXYBHqwSW72FZvRS9eRAXbCt22ZNNUQ5PskmSFsuy/8OJf8eJBEa9689+Y1goq+mDg8d4MM/PCmDNtEHp3pqZnZufmcwv5xaXlldXC2npDR4kitE4iHqnLEGvKmaR1wwynl7GiWIScNsPB0chv3lClWSQvzDCmbYGvJOszgo2VugV30E0DJSCVvSzQTKQBwRyeZiUPdVK/mo3Nk5hknXTXy3a6hSJy/TI62PcgcpGF71tSRt5BpQK9sYJQEUxw1i28Bb2IJIJKQzjWuuWh2LRTrAwjnGb5INE0xmSAr2jLUokF1e10/FcGt63Sg/1I2ZIGjtXvEykWWg9FaDsFNtf6tzcS//Jaienvt1Mm48RQST4X9RMOTQRHIcEeU5QYPrQEE8XsrZBcY4WJsVHmbQhfn8L/ScN3vT23fL5XrB1O4siBTbAFSsADVVADx+AM1AEBt+AePIIn5855cJ6dl8/WKWcyswF+wHn9AA7Pnzs=</latexit>

*Position of the end of SRII phase:

ks ⇠ O(106)Mpc�1

<latexit sha1_base64="lHZotBn1JZ+A2TgWhKU633VY644="></latexit>

�NTotal = �NSRI + �NUSR + �NSRII = 18 + 2 + 40 = 60

<latexit sha1_base64="tluBYFz7HkrMzfYgnwRyyNF2I1g="></latexit>

*Sufficient inflation in terms of total number of e-foldings:

MPBH ⇠ O(1029 � 1030)kg
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Large mass PBHs  

FIG. 2. Representative flow chart of the underlying process of Primordial Black Hole (PBH) formation in presence of one-loop
correction in the primordial power spectrum for scalar modes within the framework of single field Galileon inflation.

region the PBH mass can be estimated in terms of the effective sound speed cs for the underlying CGEFT:

MPBH = 1.13 × 1015 ×
(

γ

0.2

)(
g∗

106.75

)−1/6(
ks

p∗

)−2
M⊙ × c2

s

= 0.46 ×
(

γ

0.2

)(
g∗

106.75

)−1/6
M⊙ × c2

s

≈ O(1029 − 1030)kg
≈ O(M⊙), (173)

where M⊙ ∼ 2 × 1030kg is the solar mass, SRI to USR transition scale, ks = 106 Mpc−1 and pivot scale, p∗ =
0.02 Mpc−1, effective sound speed 0.024 < cs < 1, γ ∼ 0.2 and relativistic d.o.f. g∗ ∼ 106.75 for SM and g∗ ∼ 226 for
SUSY d.o.f.

Finally, the evaporation time scale of the formed large mass PBHs from the Galileon inflationary paradigm can be
computed as:

tevap
PBH = 1064

(
MPBH

M⊙

)3
years ≈ 1064years. (174)
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Though the span for PBHs formation in terms of number of e-foldings is small (∆NUSR ∼ 2), but the estimated PBH
mass is extremely large (∼ M⊙) and the corresponding evaporation time scale is also very large (∼ 1064years) in the
present context.

VII. Summary and conclusions

In this paper, we investigated the process of PBHs formation in the framework of single-field Galileon inflation. We
have demonstrated that the no-go theorem imposed due to having a large one-loop effect on the primordial power
spectrum computed from scalar curvature perturbation in all possible classes of single field inflationary frameworks
(such as P (X, ϕ) inflation, EFT of inflation, which covers various canonical and non-canonical models) to explain the
generation of large mass PBHs formation can be completely evaded within the framework of Galileon inflation. The
outcomes of our findings are explicitly shown in figure (1) and figure (2). Let us highlight the following points to justify
our findings: (1) In the scenario under consideration, the one-loop quantum effects are sub-dominant over the tree-level
amplitude of the primordial power spectrum, and perturbation theory holds good perfectly. The prime reason for this
fact lies in the very mild breaking of Galilean symmetry in the comoving curvature perturbation, ζ → ζ −H/ ˙̄ϕ0 (b · δx)
generated from the underlying EFT framework. Due to this small breaking of Galilean symmetry, the cubic interaction
term η

′
ζ

′
ζ2 is absent in the third order action for the comoving curvature perturbation, as this contribution can be

recast as a total derivative term at the boundary, which gives a trivial contribution and can be absorbed in the field
redefinition. This aspect was highlighted in the technical part of the discussion. Since the other terms appearing in
the third-order action do not have any terms that contain the time derivatives of the second slow-roll parameter η, the
effect of the sharp transition from SRI to USR is not harmful at all for the present computational purpose. We have
found that, due to the absence of the specific cubic self-interaction term, no quadratic and logarithmic divergences
are appearing in the one-loop contributions computed from the SRI, USR, and SRII regions, respectively. Other
contributions that are appearing in the one-loop contributions are either highly power law suppressed or made up of
sinusoidally highly oscillating terms with restricted small amplitudes. For this reason, we found from our analysis
that the one-loop contribution is subdominant over the result obtained from the tree-level counterpart. The technical
details in support of such a strong outcome are presented in the previous sections of this paper for reference. (2) In this
case, there are no strong constraints from renormalization and ressumation on the one-loop corrected power spectrum,
as these effects are not important in the context of Galileon EFT due to its strong non-renormalization theorem. (3)
Interestingly, there is no problem in fixing the position of the SRI to USR transition scale at ks ∼ 106Mpc−1 necessary
for the generation of large fluctuations, which are O(10−2) required for PBH formation. (4) Consequently, large mass
PBHs, O(M⊙) whose evaporation time scale is 1064years. (5) In the absence of any strict restriction on shifting the
position of the SRI to USR transition scale by shifting it to a smaller value, one can be able to generate PBHs with
extremely large masses MPBH ≫ M⊙ having a huge evaporation time scale. On the other hand, extremely small mass
PBHs MPBH ≪ M⊙ can also be generated by shifting the position of the SRI to the USR transition scale to a very
large value. The aforesaid implies that PBHs with arbitrary masses can be generated using Galileon inflation, where
the no-go result due to quantum loop corrections on the primordial power spectrum is completely evaded.

For the immediate future prospect, one can study the density of PBH formation to the tail of the probability
distribution function (PDF), and thus it has a direct impact on the non-Gaussinaity. In most of the studies during
such studies of PBH formation, it is assumed that the PDF of the comoving curvature perturbation variable is
Gaussian. However, in a strict sense, this is not true always. It is expected from the corresponding setup of the
underlying problem that PBHs have to be formed in the tail of the mentioned PDF of curvature perturbation. This
will be going to change predictions from primordial non-Gaussianity which is responsible for the enhancement of
the appearance of the occasional events which directly put an impact on the PBH formation in this context of the
discussion. Such non-Gaussian effects on the corresponding PDF of comoving curvature perturbation sometimes
reduce the amount of power required to produce such PBHs. For more details on this issue, details see refs. [288–291].
Recently the issue of the non-Gaussianity in the presence of the USR phase has been addressed in ref. [292] in detail at
the level of the three-point function and the associated bispectrum computed from curvature perturbation. However,
from the perspective of PDF, we have not studied anything yet, which we are planning to address in near future
studies on the related setup.
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