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We present a new f (Q) cosmological model capable of reproducing late-time acceleration, i.e.
f (Q) = λ0 (λ + Q)n by supporting certain parametrization of the Hubble parameter. By using obser-
vational data from Hubble, Pantheon, and Baryonic Acoustic Oscillations (BAO) dataset, we inves-
tigate the constraints on the proposed quadratic Hubble parameter H(z). This proposal caused the
Universe to transition from its decelerated phase to its accelerated phase. Further, the current con-
strained value of the deceleration parameter from the combined Hubble+Pantheon+BAO dataset is
q0 = −0.285 ± 0.021, which indicates that the Universe is accelerating. We also analyze the evolution
of energy density, pressure, and EoS parameters to infer the Universe’s accelerating behavior. Finally,
we use a stability analysis with linear perturbations to assure the model’s stability.

I. INTRODUCTION

The General Relativity (GR) proposed by Albert Ein-
stein in 1915, is one of the most fundamental and suc-
cessful theories in modern physics. It has been tested
and confirmed in a wide range of experiments and ob-
servations, from the precession of Mercury’s orbit to the
detection of gravitational waves. However, GR has lim-
itations and is not able to explain everything in the Uni-
verse. One of the main limitations of GR is its inability to
account for the behavior of the Universe on very small
scales, such as those found in the quantum world. This
is because GR is a classical theory and does not take into
account the principles of quantum mechanics. Attempts
to combine GR with quantum mechanics, such as string
theory or loop quantum gravity, have been proposed,
but these theories are still under development and lack
experimental confirmation.

Furthermore, GR is unable to explain the phenomena
of Dark Matter (DM) and Dark Energy (DE), which con-
stitute a significant portion of the Universe. DM and
DE are inferred from their gravitational effects on visible
matter and radiation, but their nature and properties are
still unknown. Some Modified Gravity Theories (MGT)
have been proposed to explain these phenomena, such
as the f (R) gravity theory [2, 3], but they also require
further observational and experimental evidence. Till
now, several studies in MGT regime show promising as-
pects in different fields [3–12].
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MGTs offer compelling theoretical concepts to tackle
the cosmological constant problem and explain the Uni-
verse’s late-time acceleration. In an attempt to explain
the Universe’s late-time accelerated expansion, there
has been a recent resurgence of f (R) modified theories
of gravity. In particular, studies have shown that the cos-
mic acceleration can indeed be explained through f (R)
gravity [13]. Exploring alternative higher-order grav-
ity theories can motivate researchers to pursue models
that are consistent and inspired by various candidates
for a fundamental theory of quantum gravity. For in-
stance, string/M-theory suggests that scalar field cou-
plings with the Gauss-Bonnet invariant G play a crucial
role in the appearance of non-singular early-time cos-
mologies. These motivations can also be applied to the
late-time Universe through an effective Gauss-Bonnet
DE model [14–16]. Many aspects of Gauss-Bonnet grav-
ity have been extensively analyzed in the literature [17–
19].

Simple modified gravity models, such as the 1/R
theory, have been used to develop several DE models
[20, 21]. These models show different aspects of the cos-
mological implications predicted by them. In another
study, different promising f (R) gravity models have
been considered in the Palatini formalism to investigate
the cosmological implications and comparison with ob-
servational data [22]. These studies show that MGT
presents an attractive option due to its ability to provide
subjective solutions to many key DE problems. Telepar-
allel gravity is an alternative theory to GR that describes
gravitational interaction using the torsion scalar T in
a space-time with zero curvature [23–25]. The theory,
known as the Teleparallel Equivalent to GR (TEGR), is
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formulated by tetrad fields on the tangent space in the
Weitzenbock connection, which differs from the Levi–
Civita connection in GR. Hence such models may pre-
dict significantly different results in different domains,
including cosmological perspectives. One advantage
of working with f (T) models is the ability to simplify
dynamics and find exact solutions due to the order of
field equations. Symmetric teleparallel f (Q) gravity is
another alternative theory where the covariant deriva-
tive of the metric tensor does not vanish [26, 27]. This
theory, known as a Symmetric Teleparallel Equivalent
to GR (STEGR), is based on the non-metricity scalar Q
and has attracted interest from many researchers [28–
31]. Additionally, STEGR is based on the generaliza-
tion of Riemannian geometry described by Weyl geom-
etry [32]. Gravitational interaction is generally classi-
fied using three types of geometries: space-time cur-
vature, torsion, and non-metricity. Theories like f (R)
gravity are basically well motivated modifications of
space-time curvature, and recently, such models have
been widely investigated in different perspectives. Due
to to the dissimilarities in the fundamental level, non-
metricity theories like f (Q) gravity models may provide
significantly different results even when one considers
the model definitions analogous to f (R) gravity models.
Moreover, such modified models are capable of explain-
ing the observational results without invoking the idea
of DE and DM. Hence, MGT has attracted researchers’
attention over the past few decades as it reflects current
phenomena in the Universe. Therefore, gravitational
interactions have been studied using several geometric
forms [33–35]. Recently, anisotropic nature of the space-
time has been investigated in the domain of f (Q) grav-
ity in Ref. [7]. Considering a quadratic form of f (Q)
gravity, thermodynamical aspects of Bianchi type-I Uni-
verse has been studied in Ref. [8]. Using power-law
cosmology, the behaviour of the physical parameters,
for example, energy density, pressure, EoS parameter,
skewness parameter etc. has been investigated in f (Q)
gravity in Ref. [9].

In this work, we shall investigate the cosmological im-
plications of a new f (Q) gravity model, which is capa-
ble of reproducing late-time acceleration. We consider
quadratic Hubble parameter and analyse the constraints
on the proposed model using observational data from
Hubble, Pantheon, and BAO. To infer the accelerating
behaviour of the Universe, we thoroughly investigate
evolution of energy density, pressure, and EoS param-
eters. This work will contribute significantly to the cos-
mological aspects in the domain of f (Q) gravity and
H(z) quadratic expansion.

The paper is organized as follows. In Sec. II, we

briefly study f (Q) theory of gravity and modified Fried-
mann equations. In Sec. III, we discuss and investigate
the new cosmological f (Q) model. The stability analy-
sis for the model has been done in Sec. IV. Finally, in
Sec. V, we conclude the paper with a brief discussion.

II. f (Q) THEORY AND COSMOLOGY

Different gravity theories describe a metric-affine ge-
ometry by imposing constraints on the affine connection
[36]. The metric tensor gµν may be regarded as a gener-
alization of the gravitational potential, and it is primar-
ily utilized to construct concepts like for example vol-
umes, distances, and angles, whereas the affine connec-
tion Γµ

αβ gives parallel transport and covariant deriva-
tives. A basic result in differential geometry asserts that
the general affine connection can be divided into three
separate components [37],

Γ̃λ
µν = Γλ

µν + Cλ
µν + Lλ

µν . (1)

In this case, Γλ
µν ≡ 1

2 gλβ
(

∂µgβν + ∂νgβµ − ∂βgµν

)
represents the Levi-Civita connection of the metric ten-
sor gµν, Cλ

µν ≡ 1
2 Tλ

µν + T(µ
λ

ν) represents the contor-
tion, with the torsion tensor specified as Tλ

µν ≡ 2Γλ
[µν],

and Lλ
µν represents the disformation,

Lλ
µν ≡ 1

2
gλβ

(
−Qµβν − Qνβµ + Qβµν

)
, (2)

which is expressed in terms of the non-metricity tensor,
Qαµν ≡ ∇αgµν. In this paper, we will concentrate on a
torsion and curvature free geometry described only by
non-metricity Qαµν. The f (Q) theory is a STG modifi-
cation in which a matter Lagrangian Lm may be repre-
sented by an arbitrary function of Q, where Q is the non-
metricity scalar. The total gravitational action of f (Q)
gravity becomes [39, 40],

S =
∫ 1

2
f (Q)

√
−g d4x + Lm

√
−g d4x, (3)

where we set 8πG = 1. Moreover, g and Lm indicate the
metric determinant and the matter lagrangian density
respectively. Let us note that action (3) has been proved
to be equivalent to GR in flat space for f (Q) = −Q [40].
As a result, any change from GR may be converted into
f (Q).

The tensor of non-metricity is the basic concept in this
family of theories, defined as,

Qαµν = ∇αgµν , (4)

and its two independent traces are as follows:

Qα = Qα
µ

µ , Q̃α = Qµ
αµ . (5)
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Also, it is important to introduce the concept of super-
potential,

4Pα
µν = −Qα

µν + 2Q α

(µ ν)
− Qαgµν

−Q̃αgµν − δα
(µQν) . (6)

Here, Q = −QαµνPαµν can be easily verified, utilizing
our sign conventions that are similar to those in Ref..
The tensor of energy-momentum is given by

Tµν = − 2√−g
δ
√−gLm

δgµν , (7)

and for notational simplicity, we propose the following
definition fQ = d f

dQ . By varying the action (3) with re-
gard to the metric tensor components yield

2√−g
∇α

(√
−g fQPα

µν

)
+

1
2

gµν f

+ fQ

(
PµαβQν

αβ − 2QαβµPαβ
ν

)
= −Tµν , (8)

and varying (3) with regard to the connection, one ob-
tains

∇µ∇ν

(√
−g fQPµν

α

)
= 0 . (9)

In this paper, we consider the Friedmann-Lemaı̂tre-
Robertson-Walker (FLRW) cosmology, which is a fre-
quently used solution to Einstein’s GR equations that
explains the large-scale structure of the Universe. The
FLRW metric presupposes that the Universe is homoge-
neous and isotropic, which means that it has the same
properties at every point and in every direction, respec-
tively. The flat FLRW metric is given by

ds2 = −dt2 + a2(t)
[

dr2 + r2
(

dθ2 + sin2 θdϕ2
)]

, (10)

where a(t) represents the scale factor, t represents cos-
mic time, and

(
t, r, θ, ϕ

)
represents spherical coordi-

nates. The scale factor specifies the current size of the
Universe and is used to explain its expansion or con-
traction. The non-metricity scalar can be obtained as
Q = 6H2, where H =

.
a
a is the Hubble parameter, which

measures the rate of expansion of the Universe.
Further, we consider the distribution of matter and

energy in the Universe to be of the perfect fluid type.
So, the mathematical representation of a perfect fluid is
given by the following energy-momentum tensor, Tµν =(
ρ + p

)
uµuν + pgµν, where uµ is the 4-velocity satis-

fying the condition uµuµ = −1, ρ and p are the en-
ergy density and pressure of a perfect fluid respectively.
The fluid is assumed to be isotropic in this form of the

energy-momentum tensor, which means that its prop-
erties are the same in all directions. It also implies the
fluid is at thermodynamic equilibrium, which means it
may be characterized by a barotropic equation of state
(EoS) of the form p = p

(
ρ
)
.

The modified Friedmann equations that describe the
expansion of the Universe are derived from field equa-
tions of f (Q) gravity and are given by:

3H2 =
1

2 fQ

(
−ρ +

f
2

)
, (11)

Ḣ + 3H2 +
ḟQ

fQ
H =

1
2 fQ

(
p +

f
2

)
, (12)

where the dot (.) represent derivatives with regard to
cosmic time t. The first equation, called the Friedmann
equation, connects the Universe’s expansion rate to its
energy density. The second equation, called the acceler-
ation equation, shows how the rate of expansion of the
Universe varies through time.

From Eqs. (11) and (12), we get the expressions of den-
sity ρ, isotropic pressure p and EoS parameter ω respec-
tively as,

ρ =
f
2
− 6H2 fQ, (13)

p =

 .
H +

.
fQ

fQ
H

(
2 fQ

)
− (

f
2
− 6H2 fQ), (14)

ω =
p
ρ
= −1 +

(
.

H +
.

fQ
fQ

H
) (

2 fQ
)

(
f
2 − 6H2 fQ

) . (15)

Moreover, the gravitational action (3) is reduced to
the standard Hilbert-Einstein form in the limiting case
f (Q) = −Q. For this scenario, we regain the so-
called STEGR [38], and Eqs. (5) and (6) reduce to the
standard Friedmann equations of GR, 3H2 = ρ, and
2Ḣ + 3H2 = −p, respectively. The above-mentioned
modified Friedmann equations system consists of only
two independent equations with four unknowns ρ, p, H,
and f . We require two additional constraint equations to
fully solve the system and examine the time evolution of
the energy density, isotropic pressure, and EoS parame-
ter. In the next section, we will solve these equations
using certain assumptions derived from the literature.
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III. NEW COSMOLOGICAL f (Q) MODEL

With a functional form of f (Q), the equations system
(11) and (12) is reduced to two equations and three un-
knowns, with one extra constraint to be added. In this
work, a new f (Q) gravity model has been discussed.
The objective is to investigate the evolution of the cos-
mological parameters, namely the deceleration parame-
ter q and the EoS parameter. Motivated by the work of
Mukherjee and Banerjee [41] in f (R) gravity, we assume
the new functional form of f (Q) symmetric teleparallel
gravity to be f (Q) = λ0 (λ + Q)n, where λ0, λ and n
are constants and represent the model parameters. Since
f (Q) must have the dimension of Q, the constant λ0 is
present to address the dimension. Also, due to the pos-
itive energy density, the value of the constant λ0 is as-
sumed to be −1 in all future analyses. Now, by using
this form in Eqs. (5)-(7), the expressions of energy den-
sity ρ, isotropic pressure p and EoS parameter ω reads
respectively as,

ρ =
λ0

2
χn−1

[
H2(6 − 12n) + λ

]
, (16)

p =
λ0

2
χn

4n
χ

12
.

HH2(n − 1)
χ

+
.

H + 3H2

− 1

 ,

(17)

ω = −1 − 4
.

H(n − 1)
χ

+
4

.
H(2n − 1)

H2(6 − 12n) + λ
. (18)

where χ = 6H2 + λ.
For λ0 = −1, we observe from Eq. (16) that in or-

der to ensure a positive energy density, it is neces-
sary to consider n > 1/2 for all values of λ. Thus,
the range of n that is used in our analysis, ensures a
positive energy density. Now, we require one further
ansatz to examine the evolution of the cosmological pa-
rameters. In the literature, there are various justifica-
tions for using these equations [44–49, 60–62]. The tech-
nique is well famous as the model-independent way to
study cosmological models because it generally consid-
ers parametrizations of any kinematic parameters such
as the Hubble parameter, deceleration parameter, and
jerk parameter and gives the necessary extra equation.
The parameterization of the Hubble parameter is cru-
cial in establishing the nature of the Universe’s expan-
sion rate. These approaches have been widely explored
in the literature to characterize difficulties with cosmo-
logical inquiries, such as the problem of all-time decel-
erating expansion, the initial singularity problem, the
horizon problem, and Hubble tension. Generally, this

approach has both advantages and disadvantages. One
advantage is that it is not affected by the Universe’s mat-
ter and energy content. One problem of this approach
is that it does not explain why the expansion is accel-
erating [42, 43]. The normalized Hubble parameter is
considered to be parametrized in this study. In terms
of redshift z, we assume the commonly used quadratic
expansion parametric version of the normalized Hubble
parameter H(z)

H0
= E (z) = 1 + αz + βz2, where α and

β are free parameters [50]. In this case, the transition
redshift ztr can be produced opposite to the linear ex-
pansion i.e. β = 0.

Using this ansatz, the first derivative with respect to
the cosmic time of the Hubble parameter can be written
in terms of redshift as,

.
H = − (1 + z) H (z)

dH (z)
dz

,

= −H2
0(z + 1)(α + 2βz)

[
z(α + βz) + 1

]
, (19)

where H0 = H (0) is the present value of the Hubble
parameter.

Also, the general expression for the deceleration pa-
rameter q(z) is given by

q (z) = −
..
a

aH2 = −1 +
(1 + z)
H (z)

dH (z)
dz

. (20)

Again, by using the previous ansatz and Eq. (20), we
obtain

q (z) = −1 +
(z + 1)(α + 2βz)

βz2 + αz + 1
. (21)

Our main objective is to test this scenario using cur-
rent cosmological observations. According to the pre-
vious discussion, our model contains two main pa-
rameters (α and β) in addition to H0. Because the
model parameters λ and n are not explicitly contained in
the Hubble parameter expression (we used the model-
independent method), we try to fix them in order to in-
vestigate the evolution of energy density, isotropic pres-
sure, and EoS parameters. We took the values λ = 12
and various ranges of n = 0.7, 0.8, 0.9 into account.
These values are chosen to be consistent with the basic
observational requirement. In the next section, we will
try to constrain the model parameter H0, α, and β values
using the most recent cosmological dataset.

A. Observational data and fitting method

Next, the various observational dataset can be used
to constrain the parameters H0, α, and β. We utilize the
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standard Bayesian approach to investigate the observa-
tional data, and a Markov Chain Monte Carlo (MCMC)
method to get the posterior distributions of the parame-
ters. We also utilize the emcee package for MCMC analy-
sis [51]. In this study, we employ three dataset: Hubble
dataset with 57 data points, Supernovae (SNe) dataset
with 1048 data points from Pantheon samples compila-
tion dataset, and Baryonic Acoustic Oscillation (BAO)
dataset with six data points. Furthermore, the proba-

bility function L ∝ e−
χ2
2 gives the best-fit values for

the parameters using the pseudo-chi-squared function
χ2. Further, for all dataset, we employed 100 walkers
and 500 steps to get findings, and we used the following
prior for our study:

Parameter prior
H0 (60,80)
α (0,1)
β (0,1)

TABLE I. Priors for parameter model H0, α, and β.

• Hubble dataset: The significance of the Hubble
parameter study lies in the investigation of the
expanding Universe. Furthermore, this may be
represented in terms of the redshift parameter z,
which is relevant in a variety of situations. We
can derive the Hubble parameter’s value at certain
redshifts. One of the more successful ways in this
regard is determining its value from line-of-sight
BAO dataset. The differential age technique is an-
other popular method for determining H(z). The
31 Hubble points acquired using differential age
(DA) technique and 26 points collected from vari-
ous methods including BAO, give 57 points of the
Hubble dataset in the redshift range 0.07 < z <
2.41 [52]. As previously stated, we now use the
pseudo chi-square function to estimate the values
of the parameters H0, α, and β. It is given for the
Hubble dataset by,

χ2
Hubble(H0, α, β) =

57

∑
i=1

[Hth
i (H0, α, β, zi)− Hobs

i (zi)]
2

σ2
Hubble(zi)

,

(22)
where Hobs

i is the observed value, Hth
i is the Hub-

ble’s theoretical value, and σzi is the standard error
in the observed value.

• Pantheon dataset: The SNe is crucial in describ-
ing the expanding Universe. Furthermore, spec-
troscopically acquired SNe data from surveys such
as the SuperNova Legacy Survey (SNLS), Sloan

Digital Sky Survey (SDSS), Hubble Space Tele-
scope (HST) survey, Panoramic Survey Telescope
and Rapid Response System (Pan-STARRS1) give
strong evidence in this direction. The Pantheon
dataset, the most current SNe data sample, con-
tains 1048 magnitudes for the distance modulus
measured throughout the range of 0.01 < z < 2.3
for the redshift z [53]. For the Pantheon dataset,
the pseudo chi-square function is given by,

χ2
SNe(H0, α, β) =

1048

∑
i,j=1

∆µi

(
C−1

SNe

)
ij

∆µj, (23)

where CSNe denotes the covariance matrix [53],
and ∆µi = µth(zi, θ) − µobs

i (zi) denotes the dif-
ference between the measured distance modulus
value acquired from cosmic measurements and its
theoretical values estimated from the model with
the specified parameter space

(
H0, α, β

)
. The the-

oretical and observed distance modulus are de-
noted by µth

i and µobs
i , respectively. The theo-

retical distance modulus is µth
i (z) = m − M =

5LogDl(z), in which m and M are the apparent and
absolute magnitudes of a standard candle, respec-
tively. Also, the luminosity distance is Dl(z) =

(1 + z)
∫ z

0
dy

H(y,H0,α,β) .

• BAO dataset: The BAO distance dataset, which
comprises the 6dFGS, SDSS, and WiggleZ surveys,
contains BAO values at six distinct redshifts, as
shown in Tab. II. Also, the characteristic scale
of BAO is governed by the sound horizon rs
at the epoch of photon decoupling z∗, which is
determined by the following relation:

rs(z∗) =
c√
3

∫ 1
1+z∗

0

da

a2H(a)
√

1 + (3Ωb0/4Ωγ0)a
, (24)

where, Ωb0 and Ωγ0 are the current density of
baryons and photons, respectively. In BAO mea-
surements, the following relationships are em-
ployed,

△θ =
rs

dA(z)
, (25)

dA(z) =
∫ z

0

dy
H(y)

, (26)

△z = H(z)rs, (27)

where △θ denotes the observed angular separation,
△z denotes the measured redshift separation of the



6

BAO feature in the two-point correlation function of
the galaxy distribution on the sky along the line of
sight. In this study, BAO dataset of six points for
dA(z∗)/DV(zBAO) are collected from the Refs. [54–59],
where z∗ ≈ 1091 is the redshift at the epoch of photon

decoupling and dA(z) is the co-moving angular diame-
ter distance combined with the dilation scale DV(z) =[

dA(z)2z/H(z)
]1/3

. For the BAO dataset, the pseudo

chi-square function is assumed to be χ2
BAO = XTC−1

BAOX,
where X depends on the survey presumed and C−1

BAO is
the inverse covariance matrix [59].

zBAO 0.106 0.2 0.35 0.44 0.6 0.73
dA(z∗)

DV (zBAO)
30.95 ± 1.46 17.55 ± 0.60 10.11 ± 0.37 8.44 ± 0.67 6.69 ± 0.33 5.45 ± 0.31

TABLE II. Values of dA(z∗)/DV(zBAO) for different values of zBAO.

• Results: In this part, we have discussed the
results obtained from the statistical MCMC ap-
proach with the Bayesian technique. To restrict
the parameters of the model H0, α, and β, we
use the combined dataset for the Hubble dataset
with 57 data points, the Pantheon dataset with
1048 sample points, and the BAO dataset with
six points. For this purpose, we employ the to-
tal likelihood function and the chi-square func-
tions, which are given by LT = LHubble × LSNe ×
LBAO and χ2

T = χ2
Hubble + χ2

SNe + χ2
BAO. Fig.

3 shows the 1 − σ and 2 − σ likelihood con-
tours for the parameters of the model H0, α,
and β using the Hubble+Pantheon+BAO dataset.
The best-fit values of the model parameters es-
timated are H0 = 64.87+0.84

−0.81 km/s/Mpc, α =

0.715+0.021
−0.021, and β = 0.1475+0.0016

−0.0016. It is necessary
to highlight that the best-fit value of H0 found in
this study is close to the value acquired by the
Planck experiment [1]. We have also found from
Fig. 3 that the likelihood functions for the Hub-
ble+Pantheon+BAO dataset are very well matched
to a Gaussian distribution function. Figs. 1 and 2
compare our H(z) quadratic expansion model to
the widely accepted ΛCDM model in cosmology,

i.e. H (z) =
√

Ω0
m (1 + z)3 + ΩΛ, for the figure,

we choose Ω0
m = 0.315± 0.007 and H0 = 67.4± 0.5

km/s/Mpc [1]. The figures also depict the experi-
mental results from Hubble and Pantheon, with 57
and 1048 data points with errors, respectively, giv-
ing for a clear comparison between the two mod-
els.

B. Evolution of cosmological parameters

Here, we will discuss the behavior of cosmological
parameters such as the deceleration parameter, energy
density parameter, isotropic pressure, and EoS param-
eter. These cosmological parameters are critical for un-
derstanding the evolution and structure of the Universe,
as well as testing modified gravity theories.

According to the observations, the Universe is in a
phase transition, which implies it is transitioning from
a past decelerating period to a recent accelerating ex-
panding period. The physics of this phenomenon may
be studied using a geometrical parameter known as
the deceleration parameter q, which explains the Uni-
verse’s acceleration or deceleration behavior depending

on whether it is negative or positive. If q > 0, the
expansion of the Universe is decelerating as the grav-
itational effect of matter and radiation in the Universe
counteracts the expansion. If q < 0, the Universe’s ex-
pansion is accelerating since the repulsive forces of DE
surpass the gravitational effect of matter and radiation.
Fig. 4 depicts the behavior of q for the correspond-
ing values of model parameters restricted by the Hub-
ble+Pantheon+BAO dataset. It is clear that the Universe
accelerates, decelerates, and shows a phase transition at
redshift zt. The expression in Eq. (21) indicates that q
is time-dependent, which can also represent a Universe
phase transition. As z → −1, we observe that q → −1,
so, the model exhibits a late time acceleration. More-
over, for our cosmological model with H(z) quadratic
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FIG. 1. The variation of the Hubble parameter H(z) as a function of redshift z. The blue dots are error bars, the orange line is the
curve produced for our model, and the black dashed line is the standard cosmological model (ΛCDM).
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FIG. 2. The variation of the distance modulus parameter µ(z) as a function of redshift z. The blue dots are error bars, the orange
line is the curve produced for our model, and the black dashed line is the standard cosmological model (ΛCDM).

expansion, the constrained value of the deceleration pa-
rameter using the combined Hubble+Pantheon+BAO
dataset is q0 = −0.285 ± 0.021. This value is in agree-
ment with previous studies that employed similar tech-
niques to estimate q0 [46, 60–62]. The transition from
deceleration to the acceleration phase in f (Q) gravity
under various assumptions is discussed by [7–10]. Our
scenario shows clearly that the model is completely in
an accelerated phase, which is consistent with the ob-
served data (see Fig. 4).

As seen in Fig. 5, the density parameter remains pos-
itive all through the Universe’s evolution and increases
as redshift z increases, as predicted. It starts as positive
and decreases to zero as z → −1 for various values of
n and suitable constraints on λ. The isotropic pressure
p in Fig. 6 decreases as redshift increases, starting with
a high negative value and tending to a small value at
the current and future epochs for different values of n.
According to the observations, the negative pressure is
caused by DE in the context of the Universe’s acceler-
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= 0.715+0.021
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= 0.1475+0.0016
0.0016

Hubble+Pantheon+BAO datasets

FIG. 3. The 1 − σ and 2 − σ likelihood contours for the model parameters using the Hubble+Pantheon+BAO dataset. The 1 − σ

confidence level (CL) is represented by dark orange shaded regions, while the 2 − σ CL is represented by light orange shaded
regions. Also, the parameter constraint values are shown at the 1 − σ CL.

ating expansion. As a result, the behavior of isotropic
pressure in our model corresponds to this finding.

Recent observational astronomy has estimated a cer-
tain range of values for the EoS parameter ω, which is
a function of isotropic pressure and energy density, i.e.
ω = p

ρ , in which the Universe’s expansion scenario is
accelerating. The EoS parameter can be useful in clas-
sifying the many periods of accelerated and decelerated
Universe expansion. In the simplest case, the cosmolog-
ical constant Λ emerges for a certain value of the EoS
parameter i.e. ω = −1. In addition, in cosmology,
the phantom model and the quintessence model emerge
when ω < −1 and ω > −1, respectively. Fig. 7 depicts
the evolution of the EoS parameter. It is obvious from
Fig. 7 that ω < 0 and displays a quintessence DE for
various values of n, indicating an accelerating phase.

IV. STABILITY ANALYSIS

In this section, the scalar perturbation analysis will
be used to examine the stability behavior of the H(z)
quadratic expansion model in f (Q) gravity. We will fol-
low the linear homogeneous and isotropic perturbation
and discuss the first-order perturbation for the Hubble
and density parameter [63–65]. So, the first order per-
turbation in the FLRW framework with the perturba-
tion geometry functions δ (t) and matter functions δm (t)
may be represented as,

Ĥ(t) = H(t)(1 + δ (t)) (28)

ρ̂(t) = ρ(t)(1 + δm (t)), (29)

where, Ĥ(t), and ρ̂(t) indicates the perturbed Hubble
and density parameter, δ (t) and δm (t) are the perturba-
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-1 0 1 2 3 4 5 6

-1.0

-0.5

0.0

0.5

z

q
(z
)

FIG. 4. The behavior of the deceleration parameter q vs. red-
shift z using the values constrained from the combined Hub-
ble+Pantheon+BAO dataset. The figure also includes a com-
parison between our model and the ΛCDM.

n=0.7

n=0.8

n=0.9

-1 0 1 2 3 4 5 6

0

2

4

6

8

z

ρ
(z
)/
3H

02

FIG. 5. The behavior of the density parameter ρ vs. red-
shift z using the values constrained from the combined Hub-
ble+Pantheon+BAO dataset and and different values of n.

tion terms, respectively. As a result, the perturbation of
the functions f (Q) and fQ may be written as δ f = fQδQ
and δ fQ = fQQδQ, where δQ = 12HδH is the first-
order perturbation of the scalar Q. Hence, neglecting
the higher power of δ (t), the Hubble parameter may be
calculated as 6Ĥ2 = 6H2 (1 + δ (t)

)2
= 6H2 (1 + 2δ (t)

)
.

Now, using Eq. (5) we obtain

Q
(

fQ + 2Q fQQ
)

δ = −ρδm. (30)

This yields the matter-geometric perturbation rela-
tionship and the perturbed Hubble parameter may be
realized from Eq (28). Next, to derive the analytical so-
lution to the perturbation function, consider the pertur-
bation continuity equation as follows [66]:

˙δm + 3H(1 + ω)δ = 0. (31)

n=0.7

n=0.8

n=0.9

-1 0 1 2 3 4 5 6

-8

-6

-4

-2

0

z

p
(z
)

FIG. 6. The behavior of the pressure p vs. redshift
z using the values constrained from the combined Hub-
ble+Pantheon+BAO dataset and and different values of n.

n=0.7

n=0.8

n=0.9

Quintessence

ΛCDM

-1 0 1 2 3 4 5 6

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

z

ω
(z
)

FIG. 7. The behavior of the EoS parameter ω vs. red-
shift z using the values constrained from the combined Hub-
ble+Pantheon+BAO dataset and and different values of n.

Solving the previous equations for δ and δm, we de-
rive the following first order differential equation,

˙δm − 3H(1 + ω)ρ

Q( fQ + 2Q fQQ)
δm = 0. (32)

Again, using Eqs. (5) and (6) to simplify the above
equation, the solution is written as,

δm (z) = δm0 H (z) ,

= δm0 H0

(
1 + αz + βz2

)
, (33)

and

δ (z) = δ0
Ḣ
H

,

= δ0(1 + z)
dH (z)

dz
,

= δ0H0(1 + z)
(
α + 2βz

)
, (34)
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where δm0 is the integration constant and δ0 = − δm0
3(1+ω)

.
Fig. 8-13 depict the evolution behavior of perturba-
tion terms δm (z) and δ (z) in terms of redshift z. It is
clear that both the perturbations δm (z) and δ (z), decay
quickly and approach zero at late periods. Also, it can
be shown that the behavior of δm (z) and δ (z) is iden-
tical for all model parameter values. Thus, our H(z)
quadratic expansion model exhibits stable behavior un-
der the scalar perturbation method [66].

FIG. 8. The behavior of δm vs. redshift z for n = 0.7 with
0 < δm0 < 1.

FIG. 9. The behavior of δm vs. redshift z for n = 0.8 with
0 < δm0 < 1.

FIG. 10. The behavior of δm vs. redshift z for n = 0.9 with
0 < δm0 < 1.

FIG. 11. The behavior of δ vs. redshift z for n = 0.7 with
0 < δ0 < 1.

FIG. 12. The behavior of δ vs. redshift z for n = 0.8 with
0 < δ0 < 1.
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FIG. 13. The behavior of δ vs. redshift z for n = 0.9 with
0 < δ0 < 1.

V. CONCLUDING REMARKS

The present scenario of the Universe’s accelerating ex-
pansion has gotten increasingly intriguing over time. To
develop a proper explanation of the accelerating Uni-
verse, several dynamical DE models and modified grav-
ity theories have been used in various ways. In this
paper, we have considered a new f (Q) gravity model
i.e. f (Q) = λ0 (λ + Q)n with H(z) quadratic expan-
sion and constrained it with Hubble, Pantheon, and
BAO dataset. To constrain the model with observa-
tional data, we have used the statistical MCMC ap-
proach with the Bayesian method. From our analy-
sis, the best-fit values are found to be H0 = 64.87+0.84

−0.81
km/s/Mpc, α = 0.715+0.021

−0.021 and β = 0.1475+0.0016
−0.0016. The

fitted value of the Hubble parameter obtained from the
study is very close to the value predicted by the Planck
experiment. In addition, it is clear that the Hubble
quadratic parametrization used in our study is a model-
independent way [42, 67, 68] to study the expansion his-
tory of the Universe. While the constraints we obtained
are not directly related to the parameters of the f (Q)
model, they do provide some information about the un-
derlying model when compared to the observational
data. Additionally, we performed theoretical analyses
to study the behavior of the f (Q) model and its depen-
dence on the parameters, which allowed us to gain in-
sights into the properties of the model and interpret the
observational results. We noted that the constraints on
λ0, λ, and n are obtained indirectly through the Hub-
ble function parametrization, which was chosen to pre-
dict the late cosmic acceleration, and are not as stringent

as the constraints on α and β. In the next stage, we in-
vestigated the behaviors of some cosmological param-
eters such as the deceleration parameter, energy den-
sity parameter, isotropic pressure, and EoS parameter.
Our results show that the Universe, in this particular
model, is in a transition phase. For the higher redshift
range, one can see that the Universe is at a decelerated
phase with q(z) > 0 due to the counteraction of mat-
ter and radiation gravitational effect on the expansion.
For smaller redshift values, the deceleration parameter
becomes negative, denoting the Universe’s expansion
caused by the repulsive forces of DE, which surpass the
gravitational effect of matter and radiation. From the
EoS parameter behaviour, one can see that the model
shows a quintessence behaviour for different values of
the model parameter n.The model predicts the transi-
tion of the Universe from decelerated phase to an ac-
celerated expanding phase. The model predictions are
consistent with the observational data. We have also in-
vestigated the stability of the model, and it is found that
the H(z) quadratic model is stable under the scalar per-
turbations.

Finally, the cosmological model investigated in this
paper has been constrained, and it is found that it
stands in agreement with the recent observational re-
sults. The study of cosmological models in the domain
of nonmetricity theory is not very old and recent find-
ings in f (Q) gravity theory show promising aspects in
cosmological perspectives. This investigation will con-
tribute to our understanding of f (Q) gravity theory as a
promising alternative to GR.
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