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This paper is a parametrization of the equation of state (EoS) parameter of dark energy (DE), which

is parameterized using Square-Root (SR) form i.e. ωSR = ω0 + ω1
z√

z2+1
, where ω0 and ω1 are free

constants. This parametrization will be examined in the context of the recently suggested f (Q) gravity

theory as an alternative to General Relativity (GR), in which gravitational effects are attributed to

the non-metricity scalar Q with the functional form f (Q) = Q + αQn, where α and n are arbitrary

constants. We derived observational constraints on model parameters using the Hubble dataset with

31 data points and the Supernovae (SNe) dataset from the Pantheon samples compilation dataset

with 1048 data points. For the current model, the evolution of the deceleration parameter, density

parameter, EoS for DE, and Om(z) diagnostic have all been investigated. It has been shown that the

deceleration parameter favors the current accelerated expansion phase. It has also been shown that

the EoS parameter for DE has a quintessence nature at this time.

I. INTRODUCTION

Observational evidence for high redshift Supernovae

(SNe) supports the growing idea of late-time cosmic ac-

celeration [1, 2]. This observation is further supported

by evidence of Baryon Acoustic Oscillations (BAO) [3,

4], Cosmic Microwave Background (CMB) [5, 6], and

Large Scale Structure (LSS) [7, 8]. One of the most

delicate difficulties in current cosmology is determin-

ing who is accountable for late time cosmic accelerated

expansion. Our Cosmos/Universe is governed by an

unidentified type of energy known as Dark Energy (DE).

Although the inclusion of DE as the cosmological con-

stant, has been exceedingly efficient, theoretical difficul-

ties of fine-tuning and cosmic coincidence have ham-

pered its effectiveness [9, 10]. This leads physicists to

describe the Cosmos with a phase transition from de-

celeration to acceleration. The kinematic method is ex-

plored by Turner and Riess to describe cosmic accelera-

tion without assuming the validity of general relativity
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(GR) [11]. This method has no influence on the phys-

ical or geometrical features of DE and is referred to as

the model-independent way to investigate DE, i.e. via a

parametrized equation of state (EoS) parameter of DE as

a function of scale factor or redshift, and then comparing

such parametrizations to cosmological data. Ref. [12] is

a review of the parametrization of the EoS parameter

ω (z). Another model-independent way to investigate

the DE is to parametrize the deceleration parameter. For

a quick overview of the deceleration parameter, see here

[13]. Nojiri and Odintsov also investigated numerous

parametrizations of the Hubble parameter to study fu-

ture cosmological singularities [14]. The advantage of

the parameterization method is that the result is inde-

pendent of any specific gravitational theory. The nega-

tive is that it will not provide much direct knowledge on

what is causing the Cosmos to accelerate.

Another approach to solving the late time acceleration

problem and describing the origin of DE is to modify the

action of GR, which is known as Modified theories of

gravity (MTG). Many modified theories have been sug-

gested up to this moment. The f (R) gravity (where R

is the scalar curvature) introduced by Buchdahl is the

most important and extensively utilized modification to

GR [15]. Numerous researchers have examined vari-

ous aspects of f (R) gravity and how it might induce
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cosmic inflation and acceleration [16–18]. Another ex-

tension of the Einstein-Hilbert action is the presence of

non-minimal interaction between matter and geometry.

Thus, the so-called f (R, T) modified theory of gravity

emerges. Harko et al. introduced f (R, T) gravity the-

ory, where the gravitational Lagrangian is characterized

by an arbitrary function of the scalar curvature R and

the trace of the energy-momentum tensor T [19]. In

f (R, T) gravity, several astrophysical and cosmological

consequences are studied [20–24]. Apart from curva-

ture, the essential items involved with the manifold’s

connection defining gravity are also torsion and non-

metricity [25]. The gravity theories may be divided into

three categories based on the connection used. The first

employs curvature, free torsion, and metric-compatible

connections, such as GR. The second class employs a

metric-compatible, curvature-free connection with tor-

sion, such as the teleparallel equivalent of GR [26]. The

latter employs a curvature and torsion-free connection

that is not metric compatible, for example, the Symmet-

ric Teleparallel (ST) equivalent of GR [27]. The Geomet-

rical Trinity of Gravity refers to these three equivalent

interpretations based on the three separate connections

[25]. The f (Q) gravity (where Q is the non-metricity

scalar) is a generalization of the ST equivalent of GR

with zero torsion and curvature [28]. Much research on

f (Q) gravity has recently been published. Refs. [29, 30]

include the very first cosmological solutions in f (Q) the-

ory, whereas Refs. [31, 32] contain f (Q) cosmography

and energy conditions. A power-law model has been ex-

amined using quantum cosmology [33]. Cosmological

solutions and matter perturbation growth index have

been examined for a polynomial form of f (Q) theory

[34]. Harko et al. used a power-law function to analyze

the coupling matter in f (Q) gravity [35].

In this paper, we consider the Square-Root (SR)

parametrization of ωDE (z), and then we use observa-

tional data to determine the behavior of the EoS pa-

rameter for DE. After confirming that the Cosmos un-

derwent acceleration, we presume that the acceleration

was caused by DE and employ a basic DE parametriza-

tion to investigate the property of DE within the frame-

work of f (Q) gravity. The observational constraints

on the model parameters are achieved by utilizing the

most recent Hubble dataset with 31 data points, and

SNe dataset from Pantheon samples compilation dataset

with 1048 data points. Using the estimated values of

model parameters, we examined the evolution of the

deceleration parameter and the EoS parameter for DE

at the 1 − σ and 2 − σ confidence levels. This study is

structured as follows: in the next section, we describe

the fundamental cosmological scenario of f (Q) gravity

and derive the field equations in for flat FRW space. Sec.

III presents the parametrization model of the EoS pa-

rameter and the background for discussing the cosmic

evolution of the Cosmos. In Sec. IV, we have detailed

the most recent observational data-sets used in our re-

search. Sec. V goes with cosmological parameters such

as deceleration parameter, energy density, EoS parame-

ter, and Om(z) diagnostic. The last section contains the

outcomes.

II. f (Q) COSMOLOGY

In f (Q) theory, the covariant derivative of the met-

ric tensor is non-zero, and this fact can be represented

mathematically in terms of a new geometrical variable

known as non-metricity i.e. Qσµν = ∇σgµν . So, f (Q)
gravity is a modified theory that extends Einstein’s the-

ory of GR by adding a function of the non-metricity ten-

sor Q into the action, which has no curvature or tor-

sion. The non-metricity tensor measures the variation

of a vector’s length in parallel transport and is the criti-

cal geometric variable that explains the characteristics of

gravitational interaction. The action of the f (Q) gravity

is [28]

S =
∫

[

−1

2
f (Q) + Lm

]

√

−g d4x, (1)

where Q is replaced by f (Q) in the symmetric teleparal-

lel action, f (Q) being an arbitrary function of Q. Here, g

is the determinant of the metric tensor gµν and Lm is the

usual matter Lagrangian density. The two independent

traces of Qαµν are

Qσ = Qσ
µ

µ , Q̃σ = Qµ
σµ . (2)

Moreover, the non-metricity scalar is defined as a con-

traction of Qαµν given by

Q = −QσµνPσµν , (3)

where Pσµν is the superpotential tensor (also known as

the non-metricity conjugate) and

4Pσ
µν = −Qσ

µν + 2Q
σ

(µ ν)
− Qσgµν − Q̃σgµν − δσ

(µQν) .

(4)

A variation of action (1) with regard to the metric

gives the field equations as
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2√−g
∇σ

(

√

−g fQPσ
µν

)

+
1

2
gµν f + fQ

(

PµσβQν
σβ − 2QσβµPσβ

ν

)

= Tµν , (5)

where fQ = fQ (Q) =
d f (Q)

dQ and Tµν = − 2√−g

δ(
√−gLm)

δgµν

with a choice of unit as 8πG = c = 1.

We consider that the matter of the Cosmos is a perfect

fluid with no viscosity. The energy-momentum tensor

Tµν is given by

Tµν = (ρ + p)uµuν + pgµν , (6)

where uµ is the 4-velocity satisfying the normaliza-

tion condition uµuµ = −1. Also, ρ and p are

the energy density and isotropic pressure of a per-

fect fluid, respectively. The current objective is to

investigate the dynamics of the Cosmos against the

background of the spatially flat Friedmann-Lemaitre-

Robertson-Walker (FLRW) metric, which is expressed as

ds2 = −dt2 + a2(t)

[

dr2 + r2
(

dθ2 + sin2 θdφ2
)

]

. (7)

In this case, the non-metricity scalar is given by Q =
6H2, where H = ȧ

a is the Hubble parameter with a(t)
as the scale factor and the dot is the derivative with re-

spect to cosmic time t. The modified Friedmann equa-

tions govern the Cosmos’s dynamics take the form [29]

3H2 =
1

2 fQ

(

ρ +
f

2

)

, (8)

Ḣ +

(

3H +
˙fQ

fQ

)

H =
1

2 fQ

(

−p +
f

2

)

. (9)

For f (Q) = Q, we get the standard Friedmann equa-

tions [29], as predicted, because, as previously stated,

this specific option for the form of the function f (Q) rep-

resents the theory’s ST equivalent of GR limit. By using

f (Q) = Q + F(Q), the field equations (8) and (9) can be

written as

3H2 = ρ +
F

2
− QFQ , (10)

(

2QFQQ + FQ + 1
)

Ḣ +
1

4

(

Q + 2QFQ − F
)

= −2p .

(11)

Eqs. (10) and (11) can be interpreted as the ST coun-

terparts of GR cosmology, but with the inclusion of an

additional component arising from the non-metricity Q

of space-time that exhibits properties similar to those of

a fluid component attributed to DE i.e. ρQ = ρDE and

pQ = pDE.

Therefore, using Eqs. (10) and (11), we obtain

H2 =
1

3

(

ρ + ρDE

)

, (12)

2Ḣ + 3H2 = −(p + pDE) , (13)

where ρDE and pDE are the density and pressure contri-

butions of the DE due to the non-metricity of space-time

defined by

ρDE =
F

2
− QFQ , (14)

pDE = 2Ḣ(2QFQQ + FQ)− ρDE . (15)

Furthermore, the equation of state (EoS) parameter

due to the DE component is

ωDE =
pDE

ρDE
= −1 +

4Ḣ(2QFQQ + FQ)

F − 2QFQ
. (16)

By applying the covariant divergence to the field

equations (5), we derive ∇µTµν=0 [36], and incorporat-

ing Eq. (6), the conservation equation for the energy-

momentum tensor can be derived as

ρ̇ + 3H(1+ ω)ρ = 0 (17)

III. SQUARE-ROOT (SR) PARAMETRIZATION FOR

EOS PARAMETER

For our investigation of SR parametrization, we pres-

sume the functional form F (Q) = αQn, where α and n

are model parameters. This specific functional form of

f (Q) is motivated in Ref. [30]. Also, we observe that

if n = 0, the model reduces to the standard ΛCDM

model, with α
2 behaving as the cosmological constant

[37, 38]. The scenario n = 1 corresponds to the Symmet-

ric Teleparallel Equivalent of GR, due to a factor of α + 1

rescaling of Newton’s gravitational constant [29]. Nev-

ertheless, modification from the GR evolution occurs in

the small curvature phase for n < 1 and modification

at the large curvature phase for n > 1. Thus, whereas

models with n > 1 will apply to the early Cosmos, mod-

els with n < 1 will apply to the late time DE-dominated

Cosmos [30].
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Using this form, we derived the energy density ρDE,

and pressure pDE for DE in terms of Hubble parameter

as,

ρDE = α6n(
1

2
− n)H2n, (18)

and

pDE = −α6n−1(
1

2
− n)H2(n−1)

(

3H2 + 2nḢ
)

. (19)

The EoS parameter ωDE for DE becomes

ωDE = −1 − 2n

3





.
H

H2



 . (20)

To get cosmological findings that enable for direct

comparison of predicted results with observational data,

we include the redshift parameter z, expressed by 1 +
z = 1

a , as an independent variable instead of the cosmic

time variable t. Here, we have normalized the scale fac-

tor so that its current day value is one i.e. a (0) = a0 = 1.

Therefore, the time-dependent derivative of the Hubble

parameter is represented as

.
H =

dH

dt
= − (1 + z) H (z)

dH (z)

dz
. (21)

Now, we have an additional choice to pick one param-

eter because we have more unknown parameters with

fewer equations to solve i.e. Eqs. (18)-(20). The DE is

typically described by an EoS parameter that is a ratio

of spatially homogenous pressure to DE density. Recent

cosmological investigations show that the ambiguities

are too great to distinguish between the cases: ω < −1,

ω = −1, and ω > −1 [39–41]. In the decelerating phase,

which contains two epochs of matter and radiation, the

EoS parameter takes the values ω = 1
3 and ω = 0 re-

spectively. The accelerating phase of the Cosmos, which

has recently been explored, is represented with ω < − 1
3

which contains the quintessence −1 < ω < − 1
3 , ΛCDM

ω = −1, and phantom regime ω < −1. The value of the

EoS parameter for DE estimated by Nine-Year Wilkin-

son Microwave Anisotropy Probe (WMAP9), which in-

tegrated data from H0 measurements, SNe, CMB, and

BAO, is ω = −1.084 ± 0.063 [39], whereas the Planck

collaboration shows ω = −1.006± 0.0451 [40], and later

in 2018, it published ω = −1.028 ± 0.032 [41]. So, the

value of the EoS parameter flips from positive in the

past to negative in the present. The parameterization of

the EoS is a valuable way for reconstructing cosmolog-

ical parameters and constraining the dynamical history

of the Cosmos in a general scheme. There are numer-

ous parameterizations for ωDE described in the litera-

ture, see Refs. [42–45]. In this work, we consider the SR

parametrization form of EoS parameter for DE in terms

of redshift z (ωQ = ωDE = ωSR) [46],

ωSR = ω0 + ω1
z√

z2 + 1
. (22)

The parametrization employed in this study offers

several key advantages in the context of modeling the

EoS of DE. Firstly, it provides a physically interpretable

framework, with ω0 representing the DE EoS at the

present epoch (z = 0) and ω1 characterizing the tem-

poral evolution of DE. This transparency enhances our

understanding of the underlying physical processes.

Moreover, the parametrization explicitly incorporates

the redshift dependence, allowing us to capture the

evolving nature of DE over cosmic time. Its flexibil-

ity enables us to encompass a wide range of DE behav-

iors, from quintessence to phantom DE. This adaptabil-

ity ensures that the parametrization can be fine-tuned

to match a variety of observational data, making it a

valuable tool for cosmological research. In addition, it

clearly observes that the EoS parameter at high redshift

(i.e. z → ∞) becomes ωSR = ω0+ω1 and thus depends

on the values ω0 and ω1. For z → −1, becomes as

ωSR = ω0 − ω1√
2

, it behaves like DE throughout cosmic

evolution and this is appropriate for ωDE in Eq. (20).

Using Eqs. (20), (21), and (22), we obtain the following

differential equation

dH (z)

dz
=

3
(

ω0 +
ω1z√
z2+1

+ 1
)

2n(z + 1)
H (z) (23)

Solving Eq. (23), we obtain the expression for the

Hubble parameter in terms of z
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H (z) = c0 exp























3







ω1 tanh−1
(

1−z√
2
√

z2+1

)

√
2

+ (ω0 + 1) log(z + 1) + ω1 sinh−1(z)







2n























, (24)

where c0 is a constant of integration. The current value

of the Hubble parameter can be obtained as

H0 = H (z = 0) = c0e
3ω1 coth−1(

√
2)

2
√

2n . (25)

Using Eqs. (24) and (25), the Hubble parameter can be

rewritten in terms of H0 in the form

H (z) = H0(z + 1)
3(ω0+1)

2n exp















6ω1 sinh−1(z)− 3
√

2ω1

(

tanh−1

(

z−1√
2
√

z2+1

)

+ coth−1
(√

2
)

)

4n















. (26)

The deceleration parameter q is written as

q = −
..
a

aH2
= −1 +

(1 + z)

H (z)

dH (z)

dz
. (27)

In the current model, q evolves as a function of z as

q (z) = −1 +
1

2n

(

3ω0 +
3ω1z√
z2 + 1

+ 3

)

. (28)

The Om diagnostic is an important method for classi-

fying the various DE cosmological scenarios [47]. It is

the simplest diagnosis since it just takes the first order

derivative of the cosmic scale factor. It is expressed for a

spatially flat Cosmos as

Om (z) =

(

H(z)
H0

)2
− 1

(1 + z)3 − 1
. (29)

The negative slope of Om(z) leads to quintessence

type behavior (ω > −1), whereas the positive slope,

refers to phantom-type behavior (ω < −1). The con-

stant nature of Om(z) represents the ΛCDM model

(ω = −1). In the next section, we will attempt to es-

timate the ω0, ω1 and n values using the Hubble and

Pantheon data-sets. With the help of the ω0, ω1 and n

values, we discuss the behavior of the aforementioned

cosmological parameters and verify the validity of the

cosmological model.

IV. OBSERVATIONAL DATA

The several observational datasets may then be uti-

lized to restrict the parameters H0, ω0, ω1 and n. It is

important to note that the EoS parameter ωDE for DE

(see Eq. (20)) is not dependent on the parameter α and

hence is not explicitly contained in the Hubble parame-

ter expression, i.e. Eq. (26), we attempt to fix it by setting

α = 1. We study the observational data using the stan-

dard Bayesian approach, and we get the posterior dis-

tributions of the parameters using the MCMC (Markov

Chain Monte Carlo) method. In addition, for MCMC

analysis, we use the emcee Python package [48]. In this

work, we use two data: Hubble dataset with 31 data

points, and SNe dataset from Pantheon samples com-

pilation dataset with 1048 data points.

A. Hubble dataset

We utilize a dataset consisting of 31 data points ob-

tained through the Cosmic Chronometers (CC) tech-

nique. This approach allows us to directly extract infor-

mation about the Hubble function at various redshifts,

spanning up to z ≤ 2. The choice to incorporate CC data

is primarily motivated by its reliance on measurements

of age differences between two galaxies that evolved

passively, originating simultaneously but separated by
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a small redshift interval. This method facilitates the cal-

culation of ∆z/∆t. Notably, CC data has demonstrated

higher reliability in comparison to other methods that

depend on absolute age determinations for galaxies, as

previously discussed in [49]. The CC data points uti-

lized in our analysis were collected from references [50–

56], all of which are independent of the Cepheid dis-

tance scale and specific cosmological models. It is im-

portant to acknowledge that these data points rely on

the modeling of stellar ages, employing well-established

techniques of stellar population synthesis (for further

details, refer to Refs. [52, 54, 57–60] for analyses re-

lated to CC systematics). To evaluate the goodness of

fit between our model and the dataset, we employ the

χ2 function, defined as

χ2
Hubble(H0, ω0, ω1, n) =

57

∑
i=1

[Hth
i (H0, ω0, ω1, n, zi)− Hobs

i (zi)]
2

σ2
Hubble(zi)

.

(30)

Here, Hobs
i denotes the observed value, Hth

i is the the-

oretical value of the Hubble parameter obtained by our

model, and σzi
is the standard error in the observed

value.

B. Pantheon dataset

The SNe plays an important role in characterizing

the expanding Cosmos. Moreover, spectroscopically

acquired SNe data from studies that include the Su-

perNova Legacy Survey (SNLS), the Sloan Digital Sky

Survey (SDSS), the Hubble Space Telescope (HST) sur-

vey, and the Panoramic Survey Telescope and Rapid

Response System (Pan-STARRS1) provide strong evi-

dence in this path. The Pantheon dataset, the most re-

cent SNe data sample, comprise 1048 magnitudes for

the distance modulus evaluated over a redshift range of

0.01 < z < 2.3 [61, 62]. For the Pantheon dataset, the χ2

function is given by,

χ2
Pan(H0, ω0, ω1, n) =

1048

∑
i,j=1

▽µi

(

C−1
Pan

)

ij
▽ µj. (31)

Here, CPan represents the covariance matrix [61], and

▽µi = µth(zi, θ)− µobs
i (zi) represents the difference be-

tween the observed distance modulus value acquired

from cosmic measurements and its theoretical values

obtained by our model. The theoretical and observed

distance modulus are denoted by µth
i and µobs

i , respec-

tively. The theoretical distance modulus is µth
i (z) =

m − M = 5LogDl(z), in which m and M are the ap-

parent and absolute magnitudes of a standard candle,

respectively. In addition, the luminosity distance Dl(z)
is [41],

Dl(z) = c(1 + z)
∫ z

0

dy

H(y)
. (32)

C. Hubble+Pantheon dataset

In this subsection, we presented the outcomes of the

statistical MCMC method combined with the Bayesian

analysis. We apply the joint analysis for the Hubble

dataset with 31 data points, and the Pantheon dataset

with 1048 sample points to constrain the parameters of

the model H0, ω0, ω1 and n from Eq. (26). We uti-

lized 100 walkers and 1000 MCMC steps to get conclu-

sions for the dataset. For the joint analysis, we con-

sider the following priors: H0 ∈ [60, 80], ω0 ∈ [−2, 2],
ω1 ∈ [−2, 2], and n ∈ [−2, 2]. When only a dataset

is used to estimate parameters, we presume a Gaussian

likelihood. The quality of fit for the joint analysis is mea-

sured by a total chi-squared function χ2
T that is defined

as:

χ2
T = χ2

Hubble + χ2
Pan, (33)

where χ2
Hubble is calculated using Eq. (30) and χ2

Pan is

calculated using Eq. (31). Moreover, a joint Gaussian

likelihood can be written as

LT ∝ e−
χ2

T
2 , (34)

where LT represents the product of the likelihood func-

tions of each dataset.
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FIG. 1. The confidence curves for the model parameters at 1 − σ and 2 − σ using the Hubble+Pantheon dataset. Dark green

shaded zones indicate the 1 − σ confidence level (CL), whereas light green shaded regions reflect the 2 − σ CL. The parameter

constraint values are also displayed at the 1 − σ CL.
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FIG. 2. The variation of H(z) vs. z. The blue dots represent error bars, the red line represents our model’s curve, and the black

dashed line represents the ΛCDM model.

FIG. 3. The variation of µ(z) vs. z. The blue dots represent error bars, the red line represents our model’s curve, and the black

dashed line represents the ΛCDM model.

Recent studies have highlighted the significance of

Hubble parameter measurements and Pantheon data in

constraining cosmological parameters. In our model,

the parameters of interest are H0, ω0, ω1, and n. How-

ever, our primary aim is to assess the influence of pa-

rameters within the chosen parameter space and gauge

their compatibility with observational data. Fig. 1 dis-

plays the 1 − σ and 2 − σ likelihood contours derived

from the joint analysis of the Hubble and Pantheon

datasets. The best-fit values of the estimated model pa-

rameters are H0 = 67.83+0.74
−0.75, ω0 = −0.75+0.20

−0.19, ω1 =

0.34+0.34
−0.30, and n = 0.74+0.26

−0.39. The likelihood functions for

the Hubble+Pantheon datasets are also extremely well

matched to a Gaussian distribution function, as seen in

Fig. 1. Figs. 2 and 3 compare our RS parametrization

model to the widely accepted ΛCDM model in cosmol-

ogy, i.e. H (z) = H0

√

Ωm
0 (1 + z)3 + ΩΛ

0 . For the figure,

we choose Ωm
0 = 0.314 and H0 = 67.4 km.s−1.Mpc−1

[41]. The figures also include Hubble and Pantheon ex-

perimental findings, with 31 and 1048 data points with

errors, respectively, allowing for a direct comparison be-
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tween different models.

V. COSMOLOGICAL PARAMETERS

Cosmological parameters play a vital role in the con-

struction of cosmological models. For the model to be

realistic, the current value of the deceleration parameter

q must be matched with the cosmic measurements. Fur-

thermore, the model’s decelerating or accelerating be-

havior is determined by the positive or negative value

of q. The behavior of the deceleration parameter, en-

ergy density, and EoS parameter in terms of redshift is

illustrated below. For the model parameter values, we

use the Hubble+Pantheon data-sets. According to Fig.

4, the deceleration parameter clearly indicates the tran-

sition from a decelerated (i.e., q > 0) to an accelerated

(i.e., q < 0) stage of the Cosmos expansion for the con-

strained values of the model parameters. The present

value of the deceleration parameter (i.e., z = 0) corre-

sponding to the model parameter values constrained by

the Hubble+Pantheon dataset is q0 = −0.46+0.16
−0.07. More-

over, the transition redshift (i.e., q = 0) is ztr = 0.83+0.54
−0.33

[63, 64] for the Hubble+Pantheon dataset. In addition,

it is essential to point out that the q0 and ztr values con-

strained in this paper are consistent with the value re-

ported in Refs. [65–67]. The behavior of the energy

density of DE is shown in Fig. 5. As the Universe ex-

pands, the energy density of DE increases with redshift

z, but decreases with time. At late times, the DE density

reaches a minimum value. Moreover, the small value of

DE density implies that the Universe will continue to ac-

celerate in its expansion in the future, leading to the big

rip scenario.

The EoS parameter is one of the cosmological param-

eters that are important in describing the status of the

expansion of our Cosmos. So when the value of the EoS

parameter is strictly less than ω < − 1
3 , the Cosmos ac-

celerates. The behavior of the EoS parameter for DE is

depicted in Fig. 6 based on constrained values of model

parameters ω0, ω1 and n from Hubble+Pantheon data-

sets. It is seen that the EoS parameter for DE contin-

ues in the quintessence era, maintaining the Cosmos’s

acceleration. The current value of EoS is calculated as

ω0 = −0.75+0.20
−0.19 [68, 69].

In addition, the slope of the diagnostic parameter

Om(z) can distinguish between two types of DE scenar-

ios (quintessence and phantom). According to Fig. 7,

the Om (z) for the constrained values of the model pa-

rameters has a negative slope over the whole domain.

We may deduce from the Om (z) diagnostic test that our

RS model depicts quintessence-type behavior. This in-

Hubble+Pantheon

CDM

-1 0 1 2 3 4

-1.0

-0.5

0.0

0.5

z

q
(z
)

FIG. 4. The behavior of the deceleration parameter q vs. red-

shift z.

Hubble+Pantheon

-1 0 1 2 3 4

0

5

10

15

20

25

z

D
E
/3
H
02

FIG. 5. The behavior of the density parameter for DE ρDE vs.

redshift z.

dicates that our model exhibits unique characteristics

when contrasted with the standard ΛCDM model.

VI. CONCLUSION

DE is one of the most enticing and intriguing topics

in current cosmology, as it contributes to the Cosmos’s

accelerating expansion. Many attempts have been taken

to explain this cosmic acceleration, including several

parametrizations of DE models and modified theories

of gravity. The goal of this research is to examine the

SR parametrization model in the f (Q) theory of gravity

as an alternative theory to GR, in which gravitational

effects are attributed to the non-metricity scalar Q.

We derived the exact solution of the field equations

for the functional form of f (Q) as f (Q) = Q + αQn,

where α and n are arbitrary constants, by using the SR

parametrization form of the EoS parameter for DE as
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Hubble+Pantheon

CDM

-1 0 1 2 3 4

-1.0

-0.9

-0.8
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-0.5

-0.4

z

S
R
(z
)

FIG. 6. The behavior of the EoS parameter for DE ω vs. red-

shift z.

Hubble+Pantheon

CDM

-1 0 1 2 3 4

0.20
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0.40

0.45

z

O
m
(z
)

FIG. 7. The behavior of the Om(z) vs. redshift z.

ωSR = ω0 + ω1
z√

z2+1
, which leads to the variable decel-

eration parameter. To obtain the best-fit values for the

model parameters ω0, ω1 and n, we used Hubble dataset

with 31 data points and SNe dataset from Pantheon

samples compilation dataset with 1048 data points.

The best-fit values of the estimated model parameters

are H0 = 67.83+0.74
−0.75, ω0 = −0.75+0.20

−0.19, ω1 = 0.34+0.34
−0.30,

and n = 0.74+0.26
−0.39 for the Hubble+Pantheon dataset.

In this case, ω0 represents the current value of the EoS

parameter for DE, which exhibits negative behavior and

is situated in the quintessence epoch. In addition, we

explored numerous cosmological parameters to assess

the model’s feasibility. The deceleration parameter

demonstrates that the Cosmos depicted by our model

transitions smoothly from the early decelerated phase

to the present accelerated phase. Further, the present

value of the deceleration parameter corresponding to

the model parameter values constrained by the Hub-

ble+Pantheon dataset is q0 = −0.46+0.16
−0.07. The transition

redshift is ztr = 0.83+0.54
−0.33 for the Hubble+Pantheon

dataset. Finally, Fig. 7 shows that the slope of the

Om(z) diagnostic parameter Om(z) is negative. Thus,

the model presented here behaves like the Cosmos’s

quintessence model. The f (Q) cosmological model un-

der consideration can be viewed as a highly promising

alternative to the ΛCDM model, and more research into

its possibilities would be both intriguing and important.

A similar examination will be carried out in a future

publication.
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