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This paper explores the dark energy phenomenon within the context of f (R, Lm) gravity the-
ory. Two specific non-linear f (R, Lm) models are considered: f (R, Lm) = R

2 + Lα
m and f (R, Lm) =

R
2 + (1 + αR)Lm, where the parameter α is free. Here, we adopt a parametrization form for the Hub-

ble parameter in terms of redshift z as H(z) = H0

[
A(1 + z)3 + B + ϵ log(1 + z)

] 1
2 , which allows for

deviations from the standard ΛCDM model at both low and high redshifts. We then incorporate the
Hubble parameter solution into the Friedmann equations for both models. We employ Bayesian anal-
ysis to estimate the constraints on the free parameters H0, A, B, and ϵ using the Hubble measurements
and the Pantheon dataset. Further, we investigate the evolution of key cosmological quantities, such
as the deceleration parameter, energy density, pressure, EoS parameter, and energy conditions. The
evolution of the deceleration parameter reveals a significant transition from a decelerating phase to
an accelerating phase in the Universe. The EoS parameter exhibits quintessence-like behavior for both
non-linear f (R, Lm) models.

Keywords: Cosmology, Dark energy, f (R, Lm) gravity, Observational constraints, Energy condi-
tions.

I. INTRODUCTION

We maintain our belief that Einstein’s theory of Gen-
eral Relativity (GR) does not provide the ultimate expla-
nation for all gravitational phenomena, despite its suc-
cessful validation in solar system tests [1]. Through ex-
tensive observations and experiments, it has become ev-
ident that certain phenomena, such as the cosmic accel-
erating expansion and the mysteries surrounding Dark
Matter (DM), suggest the need for a potential modifi-
cation of GR at large scales. The discovery of the Uni-
verse’s expansion accelerating in its later stages [2–10]
has served as a direct motivation for pursuing such
modifications. The simplest approach to account for the
observed acceleration of the Universe is to introduce a
cosmological constant, denoted as Λ, which effectively
acts as Dark Energy (DE), which fills the Universe and
accounts for around 70% of its total energy content. This
DE component is responsible for generating a negative
pressure that drives the accelerated expansion. The Λ
Cold DM (ΛCDM) model faces certain challenges, such
as the coincidence problem [11], which refers to the fact
that the densities of non-relativistic matter and DE are
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of the same order at present. Another intricate issue as-
sociated with the cosmological constant is the cosmo-
logical constant problem, which involves the significant
inconsistency between the observed value of Λ based
on astronomical observations [2, 3] and the theoreti-
cally predicted value of the quantum vacuum energy
from particle physics [12]. In order to address the afore-
mentioned cosmological challenges, various dynamical
(time-varying) DE models have been proposed in the lit-
erature [13–16].

Alternatively, DE can also be understood as an effec-
tive geometric quantity arising from modifications to
the Einstein-Hilbert (EH) action. In order to incorpo-
rate these modifications, we can replace the Ricci curva-
ture, represented by R, in the EH with a generic func-
tion f (R). This formulation gives rise to the class of
theories known as f (R) theories, which have been ex-
tensively studied and discussed in the literature [17–19].
Numerous investigations have been conducted on mod-
ified theories of gravity that can account for both the
early and late-time expansion of the Universe. One no-
table example is the f (Q) gravity, where the Ricci scalar
R is replaced by a general function f (Q), with Q repre-
senting the non-metricity scalar [20, 21]. Other modified
theories of gravity, such as f (T) where T represents tor-
sion [22–26], f (R, G), f (R, T), and more, provide alter-
native explanations for the current accelerated expan-
sion of the Universe without invoking an effective DE
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term, akin to a cosmological constant. Previous studies
on these theories are outlined in the references provided
[27–37].

Recently, Bertolami et al. [38] introduced a general-
ized version of modified gravity, specifically the f (R)
theory, by incorporating a direct coupling between the
generic f (R) function, which describes the Ricci cur-
vature scalar R, and the Lagrangian density of matter
Lm within EH action. Building upon this, Harko and
Lobo extended the model to include arbitrary geometry-
matter couplings [39]. The inclusion of non-minimal
curvature and matter couplings in cosmological models
has led to intriguing applications in cosmology and as-
trophysics [40–42]. Additionally, Harko and Lobo pro-
posed the f (R, Lm) gravity, which encompasses a broad
range of curvature-matter coupling theories [43]. In this
modified gravity framework, the energy-momentum
tensor exhibits a non-vanishing covariant divergence,
leading to the emergence of an additional force orthog-
onal to four velocities. Consequently, the motion of test
particles deviates from geodesic paths. It is worth not-
ing that the f (R, Lm) modified theory of gravity does
not adhere to the equivalence principle and is subject to
constraints imposed by solar system tests [44, 45]. In
recent years, there has been a surge of interest in the
cosmological implications of the f (R, Lm) gravity the-
ory, resulting in a growing body of literature on the
topic [46–49]. A recent study by Wang and Liao [50] fo-
cused on investigating the energy conditions within the
context of f (R, Lm) gravity. Their work shed light on
the implications of this modified gravity theory on en-
ergy conditions. In addition, Goncalves and Moraes [51]
conducted an analysis of cosmological aspects by incor-
porating the non-minimal matter-geometry coupling in
f (R, Lm) gravity. Their study delved into the effects of
this coupling on various cosmological phenomena.

Although numerous theoretical approaches have
been proposed to explain the DE phenomenon, no
definitive model has been identified as the correct one.
One of the current approaches used to describe late-
time cosmic acceleration is parametrization [52, 53].
Parametrization involves introducing specific mathe-
matical functions or parameters, such as the deceler-
ation parameter, Hubble parameter, and jerk parame-
ter, to characterize the behavior of cosmic expansion.
These parameters are chosen to effectively capture the
observed accelerated expansion of the Universe. This
approach allows for flexibility in modeling and provides
a framework for studying the dynamics and properties
of the accelerating Universe. It has been extensively
studied in the literature and has been the subject of nu-
merous investigations [54–58].

In this study, we adopt a parametrization form for
the Hubble parameter in terms of redshift z, given by

H(z) = H0

[
A(1 + z)3 + B + ϵ log(1 + z)

] 1
2 , where H0,

A, B, and ϵ are free parameters. This parametriza-
tion allows for deviations from the standard ΛCDM
model at both low and high redshifts. We further in-
vestigate the FLRW Universe within the framework of
f (R, Lm) gravity by considering two non-linear f (R, Lm)
models, specifically, f (R, Lm) = R

2 + Lα
m (model 1) and

f (R, Lm) = R
2 + (1 + αR)Lm (model 2), where α repre-

sents a free model parameter. This paper is organized as
follows: In Sec. II, we present the formalism of f (R, Lm)
gravity in Flat FLRW Universe. In Sec. III, we adopt
a parametrization form to describe the relationship be-
tween the Hubble parameter and redshift z. Subse-
quently, we employ Bayesian analysis to estimate the
constraints on the free parameters H0, A, and ϵ using the
Hubble measurements and the Pantheon dataset. We
also examine the evolution of the deceleration parame-
ter for the model parameters obtained from these differ-
ent datasets. In Sec. IV, we focus on a specific f (R, Lm)
model, specifically f (R, Lm) =

R
2 + Lα

m, where α is a free
model parameter. We investigate the evolution of key
cosmological quantities, such as energy density, pres-
sure, EoS parameters, and energy conditions, in order
to gain insights into the DE phenomenon. In addition,
we explore another non-linear f (R, Lm) model, namely
f (R, Lm) = R

2 + (1 + αR)Lm, and analyze the behavior
of various cosmological parameters within this frame-
work. Finally, in Sec. V, we summarize and present our
conclusions.

II. FLAT FLRW UNIVERSE IN f (R, Lm) COSMOLOGY: A
FUNDAMENTAL FORMULATION

Here, we consider the expression for the action of
f (R, Lm) gravity theory as [43]

S =
∫

f (R, Lm)
√
−gd4x, (1)

where f (R, Lm) is an arbitrary function of the Ricci
scalar R and the matter Lagrangian Lm, g represents the
determinant of the metric tensor.

The Ricci scalar R can be calculated by contracting the
Ricci tensor Rµν as

R = gµνRµν, (2)

where

Rµν = ∂λΓλ
µν − ∂µΓλ

λν + Γλ
µνΓσ

σλ − Γλ
νσΓσ

µλ, (3)
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with Γα
βγ denotes the components of the Levi-Civita con-

nection and can be derived as

Γα
βγ =

1
2

gαλ

(
∂gγλ

∂xβ
+

∂gλβ

∂xγ
−

∂gβγ

∂xλ

)
(4)

The gravitational field equation derived by taking the
variation of the action (1) with respect to the metric ten-
sor gµν is,

fRRµν +(gµν□−∇µ∇ν) fR − 1
2
( f − fLm Lm)gµν =

1
2

fLm Tµν.
(5)

Here, we introduce the notations fR ≡ ∂ f
∂R and

fLm ≡ ∂ f
∂Lm

. Furthermore, Tµν represents the energy-
momentum tensor for a perfect fluid, which is defined
as

Tµν =
−2√−g

δ(
√−gLm)

δgµν . (6)

Furthermore, contracting the field equation (5) leads
to the following relationship between the trace of the
energy-momentum tensor T, the Lagrangian term Lm,
and the Ricci scalar R, (5),

R fR + 3□ fR − 2( f − fLm Lm) =
1
2

fLm T, (7)

where □F denotes the d’Alembertian operator ap-
plied to a scalar function F, defined as □F =

1√−g ∂α(
√−ggαβ∂βF).

Moreover, upon taking the covariant derivative of Eq.
(5), we obtain the following result,

∇µTµν = 2∇µln( fLm)
∂Lm

∂gµν . (8)

Now, by embracing the cosmological principle, we
elucidate our understanding of the Universe by employ-
ing the spatially isotropic and homogeneous flat FLRW
(Friedmann-Lemaı̂tre-Robertson-Walker) metric. This
metric serves as a fundamental tool in characterizing the
overall structure and dynamics of our expansive cos-
mos. By assuming this metric, we can investigate the
behavior of various cosmological phenomena, such as
the evolution of the Universe, the distribution of matter,
and the expansion rate, while considering the underly-
ing principles of isotropy and homogeneity:

ds2 = −dt2 + a2(t)[dx2 + dy2 + dz2], (9)

where a(t) denotes the scale factor that quantifies the
cosmic expansion at a specific time t. By taking into ac-
count the line element (9), we have calculated the Ricci
scalar as

R = 6(Ḣ + 2H2), (10)

where H = ȧ
a represents the Hubble parameter, which

quantifies the rate of cosmic expansion at a particular
epoch.

The energy-momentum tensor that describes the mat-
ter content of the Universe, characterized by isotropic
pressure p and energy density ρ, corresponding to the
line element (9), is given by

Tµν = (ρ + p)uµuν + pgµν. (11)

Here, uµ = (1, 0, 0, 0) represents the four-velocity
components that characterize the perfect cosmic fluid.

The Friedmann equations, governing the dynamics of
the Universe for the function f (R, Lm), can be expressed
as

3H2 fR +
1
2
(

f − fRR − fLm Lm
)
+ 3H ˙fR =

1
2

fLm ρ, (12)

and

Ḣ fR + 3H2 fR − f̈R − 3H ˙fR +
1
2
(

fLm Lm − f
)
=

1
2

fLm p.
(13)

III. ENERGY CONDITIONS

The energy conditions play a crucial role in under-
standing the geodesics of the Universe. Also, these
conditions are relationships imposed on the energy-
momentum tensor to ensure the presence of positive en-
ergy within the system. Derived from the well-known
Raychaudhury equations [59–61], they are expressed as

dθ

dτ
= −1

3
θ2 − σµνσµν + ωµνωµν − Rµνuµuν , (14)

dθ

dτ
= −1

2
θ2 − σµνσµν + ωµνωµν − Rµνnµnν , (15)

where θ denotes the expansion factor, nµ represents the
null vector, and σµν and ωµν are the shear and rotation
associated with the vector field uµ. In the case of attrac-
tive gravity, Eqs. (14) and (15) satisfy the following con-
ditions:

Rµνuµuν ≥ 0 , (16)

Rµνnµnν ≥ 0 . (17)

Hence, when dealing with a perfect fluid matter dis-
tribution in the context of modified gravity, the energy
conditions can be stated as

• Null energy condition (NEC): ρe f f + pe f f ≥ 0 ;

• Weak energy conditions (WEC): ρe f f ≥ 0 and
ρe f f + pe f f ≥ 0 ;
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• Dominant energy conditions (DEC): ρe f f ≥ 0 and
|pe f f | ≤ ρe f f .

• Strong energy conditions (SEC): ρe f f + 3pe f f ≥ 0 ;

where ρe f f and pe f f represent the effective energy den-
sity and effective pressure, respectively.

IV. ANALYZING DATA USING H(z)
PARAMETERIZATION

To comprehend the cosmos and analyze its evolu-
tion, various approaches can be employed, including
the parameterization of the Hubble parameter. By es-
tablishing a relationship between the Hubble parame-
ter H and the cosmic redshift parameter z, we can ex-
plore the mathematical expressions that describe the
evolution of the cosmological models under investiga-
tion. This approach entails incorporating corrections as-
sociated with the DE component, extending beyond the
standard ΛCDM model that includes the cosmological
constant and CDM. In the standard ΛCDM cosmology,
the Hubble parameter is expressed as

H(z) = H0

[
Ωm0(1 + z)3 + ΩΛ

] 1
2 . (18)

Here, H0, Ωm0 and ΩΛ = (1 − Ωm0) represent the
present values of the Hubble parameter, total matter
density, and total DE density, respectively. While our
current comprehension of cosmic evolution is primar-
ily founded on the ΛCDM model, it is important to ac-
knowledge that there are notable discrepancies between
the predictions of this theory and the observed phenom-
ena. These deviations have prompted extensive investi-
gations and discussions on the cosmological challenges,
which are covered in detail in the references cited in the
introduction [11, 12]. Therefore, we adopt a parameter-
ized cosmological model that allows deviations from the
standard ΛCDM model at both low and high redshifts.
Specifically, we consider a logarithmic correction associ-
ated with the DE term in the following parametric form
for H(z),

H(z) = H0

[
A(1 + z)3 + B + ϵ log(1 + z)

] 1
2 , (19)

where H0, A, B, and ϵ are free parameters. In our model,
A is selected to represent the matter density parame-
ter at the present epoch (A = Ωm0), whereas ϵ intro-
duces a logarithmic term to potentially capture certain
behaviors that are not accounted for in simpler param-
eterizations such as the ΛCDM model. In addition, to
obtain H = H0 at z = 0, it is necessary for the vari-
able B = (1 − A). The parameterization of Eq. (18)

can be reproduced if the following condition is satisfied:
A = Ωm0, B = (1 − Ωm0), and ϵ = 0. On the other
hand, the term ϵ log(1+ z) introduces a logarithmic cor-
rection, which is motivated by our intention to create
a more flexible model capable of capturing potentially
more complex behaviors in the expansion rate of the
Universe. This choice is driven by the desire to explore
deviations from the standard ΛCDM model, which as-
sumes a simple, constant cosmological constant (Λ) and
a matter density parameter. The inclusion of the log
term introduces an additional degree of freedom to the
model, enabling it to account for variations in the ex-
pansion rate that simpler parameterizations may over-
look. This increased flexibility is valuable for assessing
the model’s compatibility with observational data and
determining whether it can offer a better description of
the observed behavior of the universe [62, 63].

To investigate the behavior of cosmological parame-
ters with respect to redshift, it is essential to consider the
relationship between redshift and the Universe’s scale
factor: a(t) = 1/(1 + z). Thus, we can describe the cor-
relation between the derivative of the Hubble parameter
with respect to time and redshift as

Ḣ =
dH
dt

= −(1 + z)H(z)
dH
dz

(20)

The dynamics and essential cosmological characteris-
tics of the model described in Eq. (19) are intricately tied
to the model parameters (H0, A, ϵ). In the following sub-
section, we apply constraints to the model parameters
(H0, A, ϵ) using up-to-date observational datasets.

Now, to constrain the parameters H0, A, and ϵ, one
can leverage various observational datasets. In this
study, we employ the standard Bayesian technique and
utilize the Markov Chain Monte Carlo (MCMC) method
to obtain the posterior distributions of the parameters
[64]. The MCMC analysis is conducted using the emcee
package [65]. Specifically, we incorporate two datasets:
the Hubble measurements (referred to as Hz data) and
the Pantheon dataset (referred to as SNe data). The like-
lihood function defined below is employed to determine
the best-fit values of the parameters:

L ∝ exp(−χ2/2), (21)

where χ2 is the chi-squared function [64]. In the follow-
ing, we present the expressions for the χ2 functions uti-
lized for different datasets:

A. Hz dataset

Singirikonda and Desai [66] recently compiled a col-
lection of Hubble measurements within the redshift
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range of 0.07 < z < 1.965. This dataset, referred to
as the Hz dataset, was obtained from the differential
ages (DA) ∆t of galaxies [67–70]. The comprehensive
list of datasets can be found in [71]. In order to estimate
the model parameters H0, A, and ϵ, we employ the chi-
square function as

χ2
Hz(H0, A, ϵ) =

31

∑
k=1

[Hth(zk, H0, A, ϵ)− Hobs(zk)]
2

σ2
H(zk)

,

(22)
where Hth denotes the theoretical value of the Hubble
parameter obtained from our model, while Hobs rep-
resents its observed value. The uncertainty related to
the Hubble parameter measurements is captured by the
standard deviation σH(zk)

.
Fig. 1 presents a contour plot illustrating the model

parameters H0, A, and ϵ based on the Hz dataset. The
contours depict the 1 − σ and 2 − σ confidence inter-
vals. The obtained best-fit values for the model pa-
rameters are as follows: H0 = 67.8+1.8

−1.8 km/s/Mpc,
A = 0.33+0.14

−0.13, and ϵ = 0.0+1.1
−1.1. In this case, the ob-

servational constraints on H(z) are consistent with the
predictions of the ΛCDM model, where ϵ = 0. The
value of H0 obtained in the analysis, which is close to
the value measured by recent Planck measurements for
the base-ΛCDM cosmology, reinforces the consistency
of the findings. The measured value of H0 = 67.4 ± 0.5
km/s/Mpc from the Planck mission is widely regarded
as one of the most precise measurements of the Hubble
constant [72].

B. SNe dataset

In this study, we employ the up-to-date Pantheon
SNe Ia dataset, which comprises 1048 data points ob-
tained from various surveys such as SNLS, SDSS, Pan-
STARRS1, HST, and low-redshift observations. This
sample covers the redshift range of z ∈ [0.01, 2.3] and
is utilized to constrain the aforementioned parameters
[73]. The chi-squared function χ2

SNe is derived from the
Pantheon sample consisting of 1048 SNe Ia data points
[73] and can be expressed as

χ2
SNe(H0, A, ϵ) =

1048

∑
i,j=1

∆µi

(
C−1

SNe

)
ij

∆µj, (23)

where CSNe denotes the covariance metric [73], and

∆µi = µth(zi, H0, A, ϵ)− µobs
i . (24)

In this context, µth represents the theoretical value of
the distance modulus, while µobs corresponds to its ob-

66 68 70
H0

1

0

1

2
0.1

0.2

0.3

0.4

0.5

A

H0 = 67.8+1.8
1.8

0.2 0.3 0.4 0.5
A

A = 0.33+0.14
0.13

1 0 1 2

= 0.0+1.1
1.1

Hz dataset

FIG. 1. Likelihood contours for model parameters using the
Hz dataset: 1 − σ and 2 − σ confidence intervals depicted.

served value. The distance modulus is computed theo-
retically as

µth(z) = 5log10DL(z) + µ0, (25)

with

µ0 = 5log(1/H0Mpc) + 25. (26)

The luminosity distance DL can be computed from the
Hubble parameter as [72]

DL(z) = c(1 + z)
∫ z

0

dz′

H(z′)
, (27)

where c is the speed of light.
Fig. 2 presents a contour plot illustrating the model

parameters H0, A, and ϵ based on the SNe dataset. The
contours depict the 1 − σ and 2 − σ confidence inter-
vals. The obtained best-fit values for the model pa-
rameters are as follows: H0 = 69.3+4.1

−4.0 km/s/Mpc,
A = 0.44+0.32

−0.31, and ϵ = −0.9+2.2
−2.2. Recently, Freedman et

al. [74] conducted an independent measurement of the
Hubble constant using the tip of the red giant branch
as a distance estimator. Their analysis yielded a value
of H0 = 69.8 ± 1.9 km/s/Mpc, which is in remarkable
agreement with the value obtained in our model.
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FIG. 2. Likelihood contours for model parameters using the
SNe dataset: 1 − σ and 2 − σ confidence intervals depicted.

C. Hz + SNe dataset

To obtain comprehensive constraints on the parame-
ters H0, A, and ϵ from the Hz and SNe datasets, we em-
ploy the total likelihood function. This joint likelihood
function is obtained by taking the product of the likeli-
hood functions for the Hz data and SNe data,

LJoint = LHz ×LSNe. (28)

Likewise, the joint chi-square function is obtained by
summing the individual chi-square functions for the Hz
data and SNe data,

χ2
Joint = χ2

Hz + χ2
SNe. (29)

Fig. 3 presents a contour plot illustrating the model
parameters H0, A, and ϵ based on the Hz + SNe dataset.
The contours depict the 1 − σ and 2 − σ confidence in-
tervals. The obtained best-fit values for the model pa-
rameters are as follows: H0 = 68.0+1.5

−1.6 km/s/Mpc,
A = 0.34+0.11

−0.11, and ϵ = −0.16+0.80
−0.79. This analysis pro-

vides an intermediate value between the measurement
by Freedman et al. [74] and the value obtained from the
Planck base-ΛCDM model [72].
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Hz+SNe dataset

FIG. 3. Likelihood contours for model parameters using the
Hz + SNe dataset: 1 − σ and 2 − σ confidence intervals de-
picted.

D. The deceleration parameter

The deceleration parameter is defined as q =
−äa/ȧ2 = −ä/(H2a). By considering Eq. (19), we can
derive the following expression:

q(z) =
A(1 + z)3 − 2B − 2ϵ log(1 + z) + ϵ

2
(

A(1 + z)3 + B + ϵ log(1 + z)
) . (30)

The analysis of the deceleration parameter, as shown
in Fig. 4, reveals a transition from a decelerated phase
(q > 0) to an accelerated phase (q < 0) of the Uni-
verse’s expansion at redshift ztr, considering the con-
strained values of the model parameters. The present
value of the deceleration parameter is found to be q0 =
−0.51+0.25

−0.27 [76] for the Hz dataset, q0 = −0.79+0.0
−0.01 [77]

for the SNe dataset, and q0 = −0.57+0.57
−0.56 [78] for the

Hz + SNe dataset. Furthermore, the value of ztr of
the model varies within the range of 0.4 to 1.0 as in-
dicated by recent observations [79]. It is essential to
emphasize that our model aligns well with the more
widely accepted ΛCDM model when considering the
Hz and Hz + SNe datasets. However, a notable devia-
tion becomes apparent when comparing our model with
the SNe dataset. This indicates the sensitivity of our
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model’s predictions to the specific dataset used for anal-
ysis.

Hz

SNe

Hz+SNe

ΛCDM

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-1.0

-0.5

0.0

0.5

z

q

FIG. 4. Evolution of the deceleration parameter versus redshift
z for constrained model parameters using Hz, SNe, and Hz +
SNe datasets.

Furthermore, as illustrated in Fig. 5, it is evident that
the Hubble parameter demonstrates the expected posi-
tive behavior, in accordance with the model parameters
derived from three distinct datasets: Hz, SNe, and the
combined Hz + SNe.

Hz

SNe

Hz+SNe

0.0 0.5 1.0 1.5 2.0 2.5 3.0
50

100

150

200

250

300

350

z

H

FIG. 5. Evolution of the Hubble parameter versus redshift z for
constrained model parameters using Hz, SNe, and Hz + SNe
datasets.

V. COSMOLOGICAL f (R, Lm) MODELS

In this discussion, we focus on cosmological models
constructed using a logarithmic correction of the ΛCDM
model. We aim to examine the stability of these mod-
els by testing the energy conditions. Specifically, we in-
vestigate two non-linear f (R, Lm) models: f (R, Lm) =

R
2 + Lα

m and f (R, Lm) = R
2 + (1 + αR)Lm, where α rep-

resents a free model parameter. These models are mo-
tivated by the generic f (R, Lm) function, which takes
the form of f (R, Lm) = f1(R) + f2(R)G(Lm), represent-
ing arbitrary curvature-matter coupling [80]. Minimal
and non-minimal coupling cases have gained significant
attention from cosmologists in recent years, especially
in the context of various modified gravity. The afore-
mentioned generic f (R, Lm) functions are particularly
interesting as they encompass both minimal and non-
minimal coupling scenarios. Through this exploration,
we aim to deepen our understanding of the role played
by minimal and non-minimal couplings in shaping the
dynamics of DE in cosmological models.

A. Model 1: f (R, Lm) =
R
2 + Lα

m

To study the dynamics of DE, we adopt a specific min-
imal f (R, Lm) function [80, 81]. This choice of minimal
coupling case is motivated by the notable research con-
ducted by [82] within the framework of f (R, T) gravity,

f (R, Lm) =
R
2
+ Lα

m (31)

where α represents a free model parameter. Notably,
when α = 1, we recover the standard Friedmann equa-
tions of GR. In the specific case of this f (R, Lm) model,
where Lm = ρ [83], the Friedmann equations (12) and
(13) can be formulated as

3H2 = (2α − 1)ρα, (32)

2Ḣ + 3H2 =
[
(α − 1)ρ − αp

]
ρα−1. (33)

By using Eqs. (32) and (41), we can express the energy
density ρ, pressure p, and the EoS parameter ω in terms
of the Hubble parameter and its derivative with respect
to cosmic time as

ρ =

(
3H2

2α − 1

)1/α

, (34)

p = −

(
3H2

2α−1

)1/α (
3αH2 + (4α − 2)Ḣ

)
3αH2 , (35)

ω =
p
ρ
= −1 +

(2 − 4α)Ḣ
3αH2 . (36)

By substituting Eqs. (34) and (35) into the energy con-
ditions, we obtain the following expressions:

NEC ⇐⇒ −
2 3

1
α −1Ḣ

(
H2

2α−1

) 1
α −1

α
≥ 0, (37)
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DEC ⇐⇒
2 3

1
α −1

(
H2

2α−1

)1/α (
3αH2 + (2α − 1)Ḣ

)
αH2 ≥ 0,

(38)

SEC ⇐⇒ −
2 31/α

(
H2

2α−1

)1/α (
αH2 + (2α − 1)Ḣ

)
αH2 ≥ 0,

(39)
The plots below depict the behavior of the energy

density ρ and pressure p as functions of redshift z
for the model parameters obtained from three different
datasets: Hz, SNe, and the combined Hz + SNe. The
equations (34) and (43) are utilized to calculate these
quantities. The behavior of the ρ and p as a function
of z can be clearly observed in Figs. 6 and 7. The en-
ergy density shows an increasing function with redshift,
indicating a positive value throughout the cosmic evo-
lution. Conversely, the pressure exhibits negative val-
ues. These observations align with the expanding na-
ture of the Universe, while the negative pressure sig-
nifies the presence of cosmic accelerated expansion. It
is evident that the inclusion of the logarithmic correc-
tion of the ΛCDM model within the framework of the
f (R, Lm) gravity contributes to the phenomenon of DE.

The EoS parameter describes the relationship between
the pressure p and energy density ρ within the Universe.
It serves as a key factor in classifying the expansion be-
havior, distinguishing between decelerated and acceler-
ated phases. The EoS parameter allows us to categorize
different epochs based on specific values:

• When the EoS parameter ω equals 1, it signifies a
stiff fluid.

• For ω = 1
3 , the model represents a radiation-

dominated phase.

• A value of ω = 0 corresponds to a matter-
dominated phase.

• In the current accelerated phase of evolution, the
range −1/3 < ω < −1 indicates the quintessence
phase.

• The value ω = −1 corresponds to the cosmo-
logical constant, which is the basis of the ΛCDM
model.

• Finally, for ω < −1, the Universe enters the phan-
tom era.

Fig. 8 depicts the behavior of the EoS parameter
with respect to z for the model parameters obtained
from three different datasets: Hz, SNe, and the com-
bined Hz + SNe. According to Eq. (36), when z = −1,

the corresponding value of ω is −1. The graph pre-
sented in Fig. 8 illustrates that the model exhibits be-
havior consistent with quintessence DE. In addition, the
present values of the EoS parameter for the Hz, SNe,
and the combined Hz + SNe are ω0 = −0.75+0.38

−0.37 [84],
ω0 = −0.90+0.79

−0.79 [85, 86], and ω0 = −0.79+0.29
−0.28 [84], re-

spectively.

Hz

SNe

Hz+SNe
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1200

z

ρ
/3
H
02

FIG. 6. Evolution of the energy density versus redshift z for
the model 1 (α = 0.8).

Hz

SNe

Hz+SNe

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-300
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-200

-150

-100

-50

0

z

p

FIG. 7. Evolution of the pressure versus redshift z for the
model 1 (α = 0.8).

Below is the graph illustrating the behavior of the en-
ergy conditions. The primary objective of the energy
conditions is to examine the expansion of the Universe.
These conditions come in various forms, including the
NEC, WEC, DEC, and SEC. The violation of the NEC
indicates that none of the energy conditions mentioned
are satisfied. The violation of the SEC is currently a topic
of significant interest due to the observed accelerated
expansion of the Universe [87, 88]. According to cos-
mological scenarios, SEC must be violated during the
inflationary expansion and at the present time [89]. It
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Hz

SNe

Hz+SNe

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-1.0
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-0.6

-0.4

-0.2

z

ω

FIG. 8. Evolution of the EoS parameter versus redshift z for
the model 1 (α = 0.8).

is evident that for the model parameters obtained from
three different datasets: Hz, SNe, and the combined
Hz + SNe, both the NEC and DEC exhibit positive be-
havior. This indicates that both conditions are satisfied.
Since the WEC is a combination of the NEC and the re-
quirement of positive energy density, we can conclude
that the WEC also holds for the model parameters ob-
tained from three different datasets (see Figs. 9 and 10).
However, Fig. 11 shows that the SEC displays a tran-
sition from positive to negative behavior in the recent
past. This violation of the SEC strongly supports the ob-
served phenomenon of DE, indicating a transition from
a decelerated phase to an accelerated phase.

Hz

SNe

Hz+SNe
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800

1000

z

N
E
C

FIG. 9. Evolution of the NEC versus redshift z for the model 1
(α = 0.8).
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FIG. 10. Evolution of the DEC versus redshift z for the model
1 (α = 0.8).
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FIG. 11. Evolution of the SEC versus redshift z for the model 1
(α = 0.8).

B. Model 2: f (R, Lm) =
R
2 + (1 + αR)Lm

For the second model, we consider a specific non-
minimal f (R, Lm) function [47, 90]. This choice of
the non-minimal coupling case is motivated by various
studies in the literature that have explored similar for-
mulations,

f (R, Lm) =
R
2
+ (1 + αR)Lm (40)

where α represents a free model parameter. Notably,
when α = 0, we recover the standard Friedmann equa-
tions of GR. In the specific case of this f (R, Lm) model,
where Lm = ρ [83], the Friedmann equations (12) and
(13) can be formulated as

3H2(6αρ − 1) + 12αḢρ + ρ = 0, (41)

3H2(−2αρ + 4αp + 1) + Ḣ(−2αρ + 6αp + 2) + p = 0.
(42)
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By using Eqs. (41) and (42), we can express the energy
density ρ, pressure p, and the EoS parameter ω in terms
of the Hubble parameter and its derivative with respect
to cosmic time as

ρ =
3H2

18αH2 + 12αḢ + 1
, (43)

p = −
6α
(

2H2 + Ḣ
) (

3H2 + 4Ḣ
)
+ 3H2 + 2Ḣ(

18αH2 + 12αḢ + 1
)(

6α
(

2H2 + Ḣ
)
+ 1
) ,

(44)

ω =
p
ρ
= −1 +

2Ḣ
3H2

 1

6α
(

2H2 + Ḣ
)
+ 1

− 2

 . (45)

By substituting Eqs. (43) and (44) into the energy con-
ditions, we obtain the following expressions:

NEC ⇐⇒ −
2Ḣ
(

12α
(

2H2 + Ḣ
)
+ 1
)

(
18αH2 + 12αḢ + 1

)(
6α
(

2H2 + Ḣ
)
+ 1
) ≥ 0,

(46)

DEC ⇐⇒
2
(

6α
(

2H2 + Ḣ
) (

3H2 + 2Ḣ
)
+ 3H2 + Ḣ

)
(

18αH2 + 12αḢ + 1
)(

6α
(

2H2 + Ḣ
)
+ 1
) ≥ 0,

(47)

SEC ⇐⇒ −
6
(

6α
(

H2 + 2Ḣ
) (

2H2 + Ḣ
)
+ H2 + Ḣ

)
(

18αH2 + 12αḢ + 1
)(

6α
(

2H2 + Ḣ
)
+ 1
) ≥ 0,

(48)
In the case of the second model, as depicted in Fig.

12, the energy density exhibits a consistently positive
behavior for all the constrained values of the model pa-
rameters, which aligns with our expectations. Further-
more, Fig. 13 illustrates that the pressure undergoes a
transition from positive values in the past to negative
values in both the present and future. In Fig. 14, the EoS
parameter is plotted as a function of redshift z, using
the same constrained values of the model parameters.
The figure illustrates the transition from negative to pos-
itive values over the course of cosmic evolution. This
transition indicates an earlier decelerating phase of the
Universe characterized by positive pressure, suitable for
structure formation. In the present accelerating stage of
evolution, the EoS parameter exhibits negative pressure.
Furthermore, it is evident that the present values of the
EoS parameter (ω0 = −0.34+0.33

−0.31, ω0 = −0.72+0.67
−0.65, and

Hz
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FIG. 12. Evolution of the energy density versus redshift z for
the model 2 (α = 0.8).
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p

FIG. 13. Evolution of the pressure versus redshift z for the
model 2 (α = 0.8).

ω0 = −0.43+0.10
−0.11), in this case, satisfy the condition for

the acceleration phase, i.e., ω0 < − 1
3 [91, 92].

In the case of the second model, a similar analysis
of the energy conditions was conducted (see Figs. 15,
16, and 17). For the model parameters obtained from
the three different datasets (Hz, SNe, and the combined
Hz + SNe), both the NEC and DEC exhibit positive be-
havior, indicating their satisfaction. The WEC also holds
for these model parameters. However, the SEC shows a
transition from positive to negative behavior in the re-
cent past, violating the condition set by the SEC. This
violation of the SEC further supports the observed phe-
nomenon of DE.
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FIG. 14. Evolution of the EoS parameter versus redshift z for
the model 2 (α = 0.8).
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FIG. 15. Evolution of the NEC versus redshift z for the model
2 (α = 0.8).

VI. CONCLUSION

Currently, both dynamical DE models and alternative
theories of gravity are widely explored to explain the ob-
served accelerated expansion of the Universe. Among
them, f (R, T) and f (R, Lm) theories have gained signif-
icant attention in the past. In this study, we have fo-
cused on spatially homogeneous and isotropic FLRW
cosmological models, considering the presence of a
perfect fluid within the framework of f (R, Lm) the-
ory. We have investigated two non-linear functional
forms of this theory to understand their implications
on cosmic evolution. Specifically, f (R, Lm) = R

2 + Lα
m

(model 1) and f (R, Lm) = R
2 + (1 + αR)Lm (model

2), where α represents a free model parameter. Fur-
ther, we have employed a parametrization form of the
Hubble parameter in terms of redshift z as H(z) =

Hz

SNe

Hz+SNe
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0.41666
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FIG. 16. Evolution of the DEC versus redshift z for the model
2 (α = 0.8).
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FIG. 17. Evolution of the SEC versus redshift z for the model 2
(α = 0.8).

H0

[
A(1 + z)3 + B + ϵ log(1 + z)

] 1
2 , to obtain the cos-

mological solution. Subsequently, we have incorporated
this solution into the Friedmann equations of f (R, Lm)
gravity.

To assess the viability of this model and its potential
deviations from the ΛCDM framework, we conducted a
Bayesian analysis to derive constraints on the model pa-
rameters using Hz measurements (31 points) and SNe
dataset (1048 points). The best-fit values obtained for
the model parameters are H0 = 67.8+1.8

−1.8 km/s/Mpc,
A = 0.33+0.14

−0.13, and ϵ = 0.0+1.1
−1.1 for the Hz dataset, H0 =

69.3+4.1
−4.0 km/s/Mpc, A = 0.44+0.32

−0.31, and ϵ = −0.9+2.2
−2.2

for the SNe dataset, and H0 = 68.0+1.5
−1.6 km/s/Mpc,

A = 0.34+0.11
−0.11, and ϵ = −0.16+0.80

−0.79 for the Hz + SNe
dataset. In addition, we examined the evolution of key
cosmological quantities, including the deceleration pa-
rameter, energy density, pressure, EoS parameter, and
energy conditions for the model parameters obtained
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from three different datasets: Hz, SNe, and the com-
bined Hz + SNe. The analysis reveals that the deceler-
ation parameter undergoes a smooth transition from a
decelerated phase to an accelerated phase of expansion.
Additionally, as depicted in Figs. 6 and 12, the energy
density for both models decreases as the Universe con-
tinues to expand in the distant future, consistently main-
taining positive values throughout the cosmic evolution.
Conversely, the pressure, as illustrated in 7 and 13, ex-
hibits negative values in the present and future. The EoS
parameter in Figs. 8 and 14 display negative behavior,
indicating an accelerating Universe and the presence of
quintessence DE. Notably, the present values of the de-
celeration and EoS parameters align well with the most
recent observations of cosmological parameters and are
consistent with previous studies in the field [84–86]. In
addition, the findings presented in this study are consis-
tent with various models of DE based on empirical ob-
servations, including models such as f (Q) and f (Q, T)
gravity. The behavior of quintessence, a fundamental
component in these models, is evident in the results ob-

tained. These observations further underscore the com-
patibility of the f (R, Lm) gravity theories with a wide
range of DE models and their potential to provide a ro-
bust framework for describing the cosmic evolution [91–
95].

In the final analysis, the energy conditions were ex-
amined for both models to assess the validity of the ob-
tained solution. It was observed that all energy condi-
tions, except for the SEC, exhibited positive behavior, as
depicted in Figs. 9, 10, 15, and 16. However, the vio-
lation of the SEC, as shown in Figs. 11 and 17, strongly
support the accelerating nature of cosmic expansion and
signify a transition from a decelerated phase to an accel-
erated era. This further corroborates the evidence for the
presence of the DE phenomenon driving the accelerated
expansion of the Universe in the framework of f (R, Lm)
gravity.
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