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In this paper, we investigate the cosmological implications and constraints of Weyl-type f (Q, T)
gravity. This theory introduces a coupling between the non-metricity Q and the trace T of the
energy-momentum tensor, using the principles of proper Weyl geometry. In this geometry, the scalar
non-metricity Q, which characterizes the deviations from Riemannian geometry, is expressed in its
standard Weyl form ∇µgαβ = −wµgαβ and is determined by a vector field wµ. To study the im-
plications of this theory, we propose a deceleration parameter with a single unknown parameter χ,
which we constrain by using the latest cosmological data. By solving the field equations derived from
Weyl-type f (Q, T) gravity, we aim to understand the behavior of the energy conditions within this
framework. In the present work, we consider two well-motivated forms of the function f (Q, T): (i)
the linear model represented by f (Q, T) = αQ +

β
6κ2 T, and (ii) the coupling model represented by

f (Q, T) = γ
6H2

0 κ2 QT, where α, β, and γ are free parameters. Here, κ2 = 1
16πG represents the gravita-

tional coupling constant. In both of the models considered, the strong energy condition is violated,
indicating consistency with the present accelerated expansion. However, the null, weak, and domi-
nant energy conditions are satisfied in these models.

Keywords: Weyl-type f (Q, T) gravity, FLRW metric, energy conditions, and deceleration parame-
ter.

I. INTRODUCTION

Recent astrophysical observations from various
sources, such as type Ia supernovas [1, 2], cosmic
microwave background anisotropies [3, 4], large-scale
structures [5, 6] and baryon acoustic oscillations [7, 8]
have provided strong evidence for the accelerating
expansion of the Universe in the present epoch. This
intriguing phenomenon is attributed to the dominance
of a mysterious energy component, known as Dark
Energy (DE), which possesses a large negative pres-
sure. While General Relativity (GR) is the standard
theory of gravity, it has not yet provided a satisfactory
explanation for the nature and origin of DE.

To address this issue, numerous alternative models
have been proposed within the framework of modified
theories of gravity. One such approach is f (R) grav-
ity, where the traditional Einstein-Hilbert action is mod-
ified by replacing the curvature scalar R with an ar-
bitrary function of R [9–11]. Another alternative the-
ory is f (T ) gravity, which considers the torsion scalar
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T in the teleparallel approach [12–16]. In addition,
Gauss-Bonnet f (G) gravity [17] and f (Q) gravity [18]
are among the other alternative theories of gravity that
have been explored. The motivation behind these mod-
ified theories of gravity lies in the search for a suitable
candidate that can account for the observed cosmic ac-
celeration and provide a deeper understanding of the
nature of DE.

The teleparallel approach to gravity offers an alterna-
tive perspective on describing the gravitational proper-
ties of spacetime. In this approach, the metric tensor
gαβ, which is traditionally used in GR, is replaced by
a set of tetrad vectors ei

α. These tetrad fields give rise
to torsion, which can fully account for gravitational ef-
fects, replacing the need for curvature. This formulation
leads to the development of the Teleparallel Equivalent
of GR (TEGR), also referred to as f (T ) gravity theory.
The TEGR theory was initially introduced in [19, 20].
and has since gained recognition as a viable framework
for understanding gravity. In f (T ) gravity, the torsion
plays a central role, providing a new perspective on the
nature of gravitational interactions. In teleparallel or
f (T ) type theories, the presence of torsion precisely can-
cels out the effects of curvature, resulting in a flat space-
time. This intriguing feature distinguishes these theo-
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ries from others and highlights their unique characteris-
tics. One notable advantage of the f (T ) gravity theory
is that its field equations are second-order differential
equations.

Recently, a novel approach has emerged, shifting the
focus of gravitational interactions to the non-metricity
Q of the metric [18]. Furthermore, the exploration of
the non-metricity Q of the metric has led to the devel-
opment of a new geometry known as Weyl’s geometry.
In Weyl’s geometry, the gravitational effects arise not
from the rotation of the angle between two vectors dur-
ing parallel transport, but rather from the variation in
the length of the vector itself, which mathematically de-
scribes as Qµαβ = ∇µgαβ ̸= 0. This unique perspective
shifts the focus to the intrinsic properties of the vectors,
revealing that changes in vector length play a funda-
mental role in describing gravitational phenomena. This
innovative gravitational framework, known as the Sym-
metric Teleparallel Equivalent of GR (STEGR) gravity,
was first introduced in [21]. Over time, it has evolved
into the f (Q) gravity theory, also referred to as coinci-
dent GR or nonmetric gravity, as documented in [18]. In
the last two decades, extensive research has been con-
ducted to explore the geometric and physical aspects of
STEGR gravity, and recent years have witnessed a surge
in interest in this theory [22–27]. For a comprehensive
overview of teleparallel gravity, refer to Ref. [28].

The f (Q, T) gravity represents a generalization of
f (Q) gravity, where the trace of the energy-momentum
tensor T is taken into account [29]. This extension al-
lows for the incorporation of additional effects arising
from exotic imperfect fluids or quantum phenomena,
which can introduce dependence on T. The cosmolog-
ical implications and reconstruction of f (Q, T) gravity
have been extensively investigated in recent literature,
aiming to understand the impact of these modifications
on the dynamics of the Universe and to explore their
compatibility with observational data. In this study [30],
the authors investigate the effects of perturbations on
the cosmological dynamics within the context of f (Q, T)
gravity. They analyze the behavior of linear perturba-
tions in the early and late Universe, aiming to under-
stand the impact of f (Q, T) gravity on the evolution of
cosmological structures and the generation of observ-
able features. The authors of [31, 32] explore the be-
havior of inflationary models in the context of f (Q, T)
gravity and examine their compatibility with observa-
tional constraints. Narawade et al. [33] investigated the
cosmological implications of this theory by constructing
a specific accelerating cosmological model. Using the
dynamical system analysis technique, the authors study
the evolution of the cosmological model and analyze its

stability and attractor behavior. They explore the pa-
rameter space of the model and identify the regions that
lead to accelerated expansion, consistent with the obser-
vational data on the accelerating Universe (please see
also [34]).

In this study, we investigate a specific formulation of
the f (Q, T) gravity theory, focusing on the non-minimal
coupling between the non-metricity Q and the trace T
of the matter energy-momentum tensor. Our analysis
is conducted within the framework of the proper Weyl
geometry, where we adopt a specific expression for the
non-metricity Q derived from the non-conservation of
the divergence of the metric tensor, ∇µgαβ = −wµgαβ.
By using this approach, we are able to describe the non-
metricity in terms of a vector field wµ, in conjunction
with the metric tensor. In other words, the non-metricity
is fully determined by the magnitude of the vector field
wµ. This formulation is known as Weyl-type f (Q, T)
gravity [35]. Through this approach, we aim to explore
the constraints and implications of the energy condi-
tions in Weyl-type f (Q, T) gravity theory, with its spe-
cific coupling between the non-metricity and trace of
the matter energy-momentum tensor. Yang et al. [36]
derived the Newtonian and post-Newtonian limits of
Weyl-type f (Q, T) gravity. This analysis helps in obtain-
ing constraints imposed by Solar System-level gravity
on the theory and on the properties of the Weyl vec-
tor. Additionally, constraints from other astrophysical
observations can also be derived using the Newtonian
limit. Also, the authors investigated various aspects
of Weyl-type f (Q, T) gravity, including geodesic devia-
tion, the Raychaudhuri equation, and tidal forces within
this framework. Koussour [37] introduces a model-
independent approach within the framework of Weyl-
type f (Q, T) gravity to study the crossing of the phan-
tom divide line. By considering the non-metricity Q
and the trace T of the matter energy-momentum ten-
sor, the author investigates the behavior of the phan-
tom divide-line in a linear cosmological model. In this
study, our main objective is to investigate the behavior
of various energy conditions within the framework of
the Weyl-type f (Q, T) gravity theory. Energy conditions
hold great significance in cosmology, black hole ther-
modynamics [38], and singularity theorems [39] within
the realm of GR. They provide different criteria for en-
suring the positivity of the energy-momentum tensor in
the presence of matter and the attractive nature of grav-
ity. These energy conditions are derived from the Ray-
chaudhuri equation [40], which exhibits their purely ge-
ometric nature and requires the energy density to be
positive in order to maintain the attractive nature of
gravity. In their comprehensive work, Capozziello et
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al. [41] extensively examined the concept of general-
ized energy conditions in extended theories of gravity.
They provided a detailed description of these energy
conditions, which involved considering the contraction
of timelike and null vectors in relation to various ten-
sors, such as the energy-momentum tensor, Ricci ten-
sor, and Einstein tensor. Furthermore, Capozziello et
al.[42, 43] contributed to this understanding by offering
clear explanations of energy conditions within the con-
text of modified gravities.

The structure of this study is as follows: In Sec. II,
we provide an introduction to the fundamental concepts
of Weyl-type f (Q, T) gravity. Sec. III is dedicated to
the modified Friedmann equations in Weyl-type f (Q, T)
gravity, where we also present the two well-motivated
forms of the function f (Q, T): (i) the linear model rep-
resented by f (Q, T) = αQ + β

6κ2 T, and (ii) the coupling
model represented by f (Q, T) = γ

6H2
0 κ2 QT. The discus-

sion on energy conditions is presented in Sec. IV. In Sec.
V, to study the implications of this theory, we propose a
deceleration parameter with a single unknown parame-
ter χ and apply it to the modified Friedmann equations
of Weyl-type f (Q, T) gravity. Finally, in the concluding
Secs. VI and VII, we present the obtained results and
provide a comprehensive summary.

II. INTRODUCTION OF WEYL-TYPE f (Q, T) GRAVITY:
A COMPREHENSIVE OVERVIEW

The action governing Weyl-type f (Q, T) gravity can
be expressed as [35, 36],

S =
∫ √

−gd4x
[

κ2 f (Q, T)− 1
4

WαβWαβ − 1
2

m2wαwα+

λ(R + 6∇µwµ − 6wµwµ) + Lm

]
. (1)

In this context, the field strength tensor of the vec-
tor field is denoted as Wαβ = ∇βwα − ∇αwβ , where
wα represents the vector field itself. The quantity κ2 =
1/16πG, with G being the gravitational constant, and
m denotes the particle mass associated with the vector
field. The matter Lagrangian is denoted as Lm. The
action comprises of three terms. The first term corre-
sponds to the gravitational interaction described by the
Weyl-type f (Q, T) function. The second term repre-
sents the ordinary kinetic term of the vector field, while
the third term accounts for the mass term associated
with the vector field. It should be noted that the func-
tion f (Q, T) denotes an arbitrary function of the non-
metricity scalar Q and the trace of the matter-energy-
momentum tensor T. In addition, the symbol λ rep-

resents the Lagrange multiplier. It is introduced as a
parameter to enforce constraints or conditions within
the theory, especially, imposing the flat geometry con-
straint i.e. the total curvature vanishing of the Weyl
space (R̄ = 0).

The scalar of the non-metricity, denoted as Q, assumes
a crucial role within our theory, significantly influencing
its dynamics. It is defined as,

Q ≡ −gαβ
(

Lµ
νβLν

βµ − Lµ
νµLν

αβ

)
, (2)

where Lλ
αβ denotes the tensor of deformation read as,

Lλ
αβ = −1

2
gλγ

(
Qαγβ + Qβγα − Qγαβ

)
. (3)

In Riemannian geometry, both the Levi-Civita connec-
tion Γλ

αβ and the metric tensor gαβ can be compatible,
meaning that their covariant derivative with respect to
the connection vanishes, i.e., ∇µgαβ = 0. However,
in Weyl’s geometry, this compatibility seems to be al-
tered. The non-metricity captures the deviation from
metric compatibility, providing insights into the geo-
metric properties of the spacetime under consideration.
So, we have,

Qµαβ ≡ ∇µgαβ = ∂µgαβ − Γρ
µαgρβ − Γρ

µβgρα = 2wµgαβ,
(4)

where,

Γλ
αβ ≡ Γλ

αβ + gαβwλ − δλ
α wβ − δλ

β wα, (5)

and Γλ
αβ represent the semi-metric connection in Weyl

geometry and the Christoffel symbol in terms of the
metric tensor gαβ, respectively. Weyl introduced the
semi-metric connection to capture the joint variation of
both direction and magnitude experienced by a vector
field.

Taking into account Eqs. (2)-(4), we are able to derive
the following relationship:

Q = −6w2. (6)

By performing the variation of the action with re-
spect to the vector field, we derive the generalized Proca
equation, which governs the evolution of the field,

∇βWαβ − (m2 + 12κ2 fQ + 12λ)wα = 6∇αλ. (7)

Upon comparing Eq. (7) with the standard Proca
equation, we observe that the effective dynamical mass
of the vector field can be expressed as follows:

m2
eff = m2 + 12κ2 fQ + 12λ. (8)
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where fQ ≡ ∂ f (Q,T)
∂Q . It is noteworthy that the Lagrange

multiplier field yields an effective current for the vector
field. In the realm of quantum field theory, experimental
measurements often reveal deviations between the ob-
served mass and the bare mass, which can be attributed
to the presence of interactions. So, Eq. (8) highlights
that within the framework of Weyl-type f (Q, T) gravity,
such deviations in mass can also stem from the nontriv-
ial geometric characteristics of the spacetime.

Moreover, the generalized field equation is obtained
by varying the action with respect to the metric tensor,
as governed by Eq. (1),

1
2

(
Tαβ + Sαβ

)
− κ2 fT

(
Tαβ + Θαβ

)
= −κ2

2
gαβ f (Q, T)

− 6κ2 fQwαwβ + λ
(

Rαβ − 6wαwβ + 3gαβ∇ρwρ
)

+ 3gαβwρ∇ρλ − 6w(α∇β)λ + gαβ□λ −∇α∇βλ, (9)

where

Tαβ ≡ − 2√−g
δ(
√−gLm)

δgαβ
, (10)

and

fT ≡ ∂ f (Q, T)
∂T

, (11)

respectively. Furthermore, we define the quantity Θαβ

as follows:

Θαβ ≡ gµν δTµν

δgαβ
= gαβLm − 2Tαβ − 2gµν δ2Lm

δgαβδgµν
. (12)

Within the aforementioned field equation, Sαβ repre-
sents the rescaled energy-momentum tensor associated
with the free Proca field,

Sαβ = −1
4

gαβWρσWρσ +WαρWρ
β −

1
2

m2gαβwρwρ +m2wαwβ.
(13)

In the Weyl-type f (Q, T) theory, the divergence of the
matter-energy-momentum tensor can be expressed as
follows [35]:

∇αTαβ =
κ2

1 + 2κ2 fT

[
2∇β(Lm fT)− fT∇βT − 2Tαβ∇α fT

]
.

(14)

Thus, the equation presented above demonstrates
that in the Weyl-type f (Q, T) theory, the matter energy-
momentum tensor does not exhibit conservation. Also,
it is important to highlight that when fT = 0, the energy-
momentum tensor becomes conserved.

III. COSMOLOGICAL WEYL-TYPE f (Q, T) MODELS

Let us assume that the Universe is described by
a homogeneous, isotropic, and spatially Friedmann-
Lemaitre-Robertson-Walker (FLRW) line element. This
line element, which captures the overall geometry of the
Universe, can be expressed as,

ds2 = −dt2 + a2(t)

(
dr2

1 − kr2 + r2dΩ2

)
, (15)

where t represents the cosmic time, a(t) denotes the
scale factor representing the expansion of the Universe,
r is the comoving radial coordinate, k corresponds to
the curvature of the spatial sections (taking values k =
−1, 0, 1 for open, flat, and closed Universes, respec-
tively), and dΩ2 represents the line element of the unit
2-sphere. In this study, we specifically focus on the flat
case of the FLRW model i.e. k = 0. In addition, we as-
sume that the vector field can be characterized as,

wα =
[
ψ(t), 0, 0, 0

]
. (16)

Thus, w2 = wαwα = −ψ2(t) and Q = −6w2 = 6ψ2(t).
Furthermore, we assume that the Universe can be

described as a perfect fluid in which the energy-
momentum tensor is defined as,

Tµν =
(
ρ + p

)
uµuν + pgµν, (17)

where ρ represents the energy density, p denotes
the pressure, and uα corresponds to the 4-velocity
of the fluid (uαuα = −1). This suggests that
Tα

β = diag
(
−ρ, p, p, p

)
, and Θα

β = δα
β p − 2Tα

β =

diag
(
2ρ + p,−p,−p,−p

)
.

In the cosmological scenario, the constraints of flat
space and the generalized Proca equation can be ex-
pressed as,

ψ̇ = Ḣ + 2H2 + ψ2 − 3Hψ, (18)

λ̇ =

(
−1

6
m2 − 2κ2 fQ − 2λ

)
ψ = −1

6
m2

e f f ψ, (19)

∂iλ = 0. (20)

where H(t) = ȧ
a represents the Hubble parameter,

which characterizes the rate of expansion of the Uni-
verse, and dot (.) represents the derivative with respect
to time t.

Using Eq. (9) and employing the provided metric (15),
we derive the generalized Friedmann equations as [35],

κ2 fT(ρ + p) +
1
2

ρ =
κ2

2
f −

(
6κ2 fQ +

1
4

m2
)

ψ2

− 3λ(ψ2 − H2)− 3λ̇(ψ − H), (21)
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−1
2

p =
κ2

2
f +

m2ψ2

4
+ λ(3ψ2 + 3H2 + 2Ḣ)

+ (3ψ + 2H)λ̇ + λ̈. (22)

The generalized Friedmann equations (21) and (22)
can be equivalently expressed in an effective form as,

3H2 =
1

2λ

(
ρ + ρe f f

)
, (23)

2Ḣ = − 1
2λ

(
ρ + ρe f f + p + pe f f

)
(24)

where

ρe f f = m2
effHψ + 2κ2 fT

(
ρ + p

)
− κ2 f − m2ψ2

2
− 6λψ2,

(25)
and

pe f f =
m2

eff
3

(
ψ̇ + ψ2 − 4Hψ

)
+ κ2 f + 4κ2 ḟQψ

+
m2ψ2

2
+ 6λψ2, (26)

respectively. In the special case where f = 0, ψ = 0,
and λ = κ2, the gravitational action (1) simplifies to
the standard Hilbert-Einstein action. As a consequence,
the generalized equations (21) and (22) reduce to the
standard Friedmann equations in GR. Specifically, these

equations become 3H2 = ρ

2κ2 and 2Ḣ = − (ρ+p)
2κ2 , respec-

tively. In this limit, the energy density ρ and pressure p
behave according to the standard framework of GR.

In order to examine the behavior of energy condi-
tions, we will examine various cosmological models
within the framework of Weyl-type f (Q, T) gravity the-
ory. These models correspond to different selections
of the function f (Q, T), which characterizes the non-
minimal coupling between the scalar non-metricity and
matter. Additionally, we will assume an additional
equation to study the dynamics of geometric and physi-
cal cosmological quantities in Weyl-type f (Q, T) gravity.
We consider two specific functional forms for f (Q, T)
as: f (Q, T) = αQ + β

6κ2 T (linear model) and f (Q, T) =
γ

6H2
0 κ2 QT (coupling model). In addition, we assume that

M2 = m2/κ2, which represents the dimensionless quan-
tity related to the mass of the Weyl vector field, indi-
cating the strength of the coupling between Weyl geom-
etry and matter. In this work, we consider a value of
M = 0.95 for the mass parameter, with λ = κ2 = 1 [35].

A. f (Q, T) = αQ +
β

6κ2 T

For the first cosmological model in Weyl-type f (Q, T)
gravity, we will examine the scenario where the function
f (Q, T) can be expressed as f (Q, T) = αQ+ β

6κ2 T, where

α and β are constants. Hence, fQ = α and fT = β

6κ2 . By
selecting this specific form for the function f (Q, T) and
solving Eqs. (21) and (22), we derive the expressions for
the pressure p, energy density ρ, and equation of state
(EoS) parameter ω = p

ρ as,

ρ = −
3
[

H2
(

12(2αβ + 3α + β) + (2β + 3)M2
)
+ 4βḢ

]
2
(
2β2 + 9β + 9

) , (27)

p = −
3
[

12(β + 2)Ḣ + H2
(

12(2αβ + 3α + 3β + 6) + (2β + 3)M2
)]

2
(
2β2 + 9β + 9

) , (28)

ω =
H2
[
24αβ + 36(α + β + 2) + (2β + 3)M2

]
+ 12(β + 2)Ḣ

H2
(
12(2αβ + 3α + β) + (2β + 3)M2

)
+ 4βḢ

. (29)

B. f (Q, T) = γ
6H2

0 κ2 QT

For the second cosmological model in Weyl-type
f (Q, T) gravity, we will examine the scenario where
the function f (Q, T) can be expressed as f (Q, T) =

γ

6H2
0 κ2 QT, where γ is a constant. Hence, fQ = γT

6H2
0 κ2 and

fT = γQ
6H2

0 κ2 . By selecting this specific form for the func-

tion f (Q, T) and solving Eqs. (21) and (22), we derive
the expressions for the pressure p, energy density ρ, and
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EoS parameter ω as,

ρ =

H2H2
0

[
2γH2

(
M2 + 60

)
+ 40γḢ − H2

0 M2
]

2
(

8γ2H4 + 4γH2H2
0 + H4

0

) , (30)

p = −
H2

0

[
2γH4

(
M2 + 12

)
+ 8Ḣ

(
γH2 + H2

0

)
+ H2H2

0

(
M2 + 24

)]
2
(

8γ2H4 + 4γH2H2
0 + H4

0

) , (31)

ω = −
2γH4

(
M2 + 12

)
+ 8Ḣ

(
γH2 + H2

0

)
+ H2H2

0

(
M2 + 24

)
H2
[
2γH2

(
M2 + 60

)
+ 40γḢ − H2

0 M2
] . (32)

IV. ENERGY CONDITIONS

In this section, we will examine the energy condi-
tions in specific models of Weyl-type f (Q, T) gravity.
By considering different choices of the function f (Q, T),
we will explore how these models satisfy or deviate
from the energy conditions commonly used in GR. In
the study of the Universe, certain physical parameters
such as the deceleration parameter and the EoS parame-
ter play a crucial role. However, an important aspect of
modern cosmology involves investigating energy con-
ditions, which are derived from the Raychaudhuri equa-
tion [40]. The Raychaudhuri equation is the foundation
for establishing energy conditions that satisfy the attrac-
tive nature of gravity and ensure the positivity of energy
density. These conditions are essential for maintaining

the consistency of null, timelike, and lightlike geodesics.
In Riemann geometry, the Raychaudhuri equation is ex-
pressed as [44],

dθ

dτ
= −1

3
θ2 − σµνσµν + ωµνωµν − Rµνuµuν , (33)

where Rµν is the Ricci tensor, θ is the expansion factor,
and σµν and ωµν correspond to the shear and rotation as-
sociated with the vector field uµ. For gravity exhibiting
attractive behavior, Eq. (33) fulfill the following condi-
tion:

Rµνuµuν ≥ 0 . (34)

In the context of Weyl geometry with non-metricity,
the Raychaudhuri equation is modified to account for
the specific geometric properties as [36],

[
θ − 2ωµuµ

]′
= −1

3

θ −

(
l2
)′

2l2 − ωµuµ


2

+


(

l2
)′

2l2 − ωµuµ


2

− Rµνuµuν − σµνσµν + ωµνωµν +∇µ fµ

− 1
l2 f µ∇µl2 − 2ωµ f µ − 2

(
ωµuµ

)2
− 2uµuν∇µων + l2∇µωµ − 2l2ωµωµ, (35)

where the equation describes the specific form of the ex-
tra force in Weyl-type f (Q, T) gravity given by

f ρ =
l2

p + ρ
hρν∇̃µ

(
Tµν − pgµν

)
+

(
l2
)′

2l2 uρ − ωµuµuρ.

(36)
Here, l(xµ) is an arbitrary function of space and time

coordinates, hαβ is a generalized projection tensor op-

erator in Weyl geometry [36]. It is important to note
that the influence of the non-minimal coupling between
matter and geometry, represented by f (Q, T), affects the
Raychaudhuri equation (35) through the expression of
an extra force as shown in Eq. (36). In addition, when
fT = 0, corresponding to the minimal coupling between
matter and geometry, the above equation simplifies to
the generalized Raychaudhuri equation in the coinci-
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dence gravity theory [18]. The coincidence gravity the-
ory is a broader framework than symmetric teleparallel
gravity. Hence, considering Eq. (35) with fT = 0 can be
regarded as the Raychaudhuri equation of the general-
ized STEGR.

The energy conditions are employed to investigate the
expansion of the Universe. Several forms of energy con-
ditions exist, including the null energy condition (NEC),
weak energy condition (WEC), dominant energy condi-
tion (DEC), and strong energy condition (SEC). Thus,
when considering a perfect fluid matter distribution, the
energy conditions are defined as,

• NEC if ρe f f + pe f f ≥ 0 ;

• WEC if ρe f f ≥ 0, ρe f f + pe f f ≥ 0 ;

• DEC if ρe f f ≥ 0, |pe f f | ≤ ρe f f ;

• SEC if ρe f f + 3 pe f f ≥ 0.

Here, ρe f f and pe f f are the effective energy density
and pressure, respectively. In the following subsections,
we will derive the energy conditions for the two mod-
els being analyzed. It is important to emphasize that
our consideration of the effective quantities stems from
their ability to account for the modifications to the grav-
itational theory in the Weyl-type f (Q, T) function.

A. f (Q, T) = αQ +
β

6κ2 T

Using Eqs. (27) and (29), we get the energy conditions of the form

ρ = −
3
(

H2
(

12(2αβ + 3α + β) + (2β + 3)M2
)
+ 4βḢ

)
2
(
2β2 + 9β + 9

) ≥ 0, (37)

ρ + p = −
3
(

H2
(

12(α + 1) + M2
)
+ 4Ḣ

)
β + 3

≥ 0, (38)

ρ − p =
12
(

3H2 + Ḣ
)

2β + 3
≥ 0, (39)

ρ + 3p = −
6
(

H2
(

6(4αβ + 6α + 5β + 9) + (2β + 3)M2
)
+ 2(5β + 9)Ḣ

)
2β2 + 9β + 9

≥ 0. (40)

B. f (Q, T) = γ
6H2

0 κ2 QT

Using Eqs. (32) and (30), we get the energy conditions of the form

ρ =

H2H2
0

(
2γH2

(
M2 + 60

)
+ 40γḢ − H2

0 M2
)

2
(

8γ2H4 + 4γH2H2
0 + H4

0

) ≥ 0, (41)

ρ + p =

16γH2H2
0

(
3H2 +

.
H
)
− H4

0

(
H2
(

M2 + 12
)
+ 4Ḣ

)
8γ2H4 + 4γH2H2

0 + H4
0

≥ 0, (42)

ρ − p =

2H2
0

(
γH4

(
M2 + 36

)
+ 2Ḣ

(
6γH2 + H2

0

)
+ 6H2H2

0

)
8γ2H4 + 4γH2H2

0 + H4
0

≥ 0, (43)

ρ + 3p = −
2H2

0

(
γH4

(
M2 − 12

)
+ Ḣ

(
6H2

0 − 4γH2
)
+ H2H2

0

(
M2 + 18

))
8γ2H4 + 4γH2H2

0 + H4
0

≥ 0. (44)
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V. CONSTRAINTS FROM OBSERVATIONAL DATA

The given system of Eqs. (21) and (22) represents a
set of two equations with three unknowns: p, ρ, and
H. To analyze the energy conditions and further inves-
tigate the system, an additional physically meaningful
condition needs to be imposed. In this particular study,
we choose to consider the deceleration parameter as a
means to establish this condition. In this analysis, we
will consider the parametrization form of the decelera-
tion parameter (DP) as,

q(z) = 1 − 2
1 + χ(1 + z)4 , (45)

where z represents the redshift and χ is a parameter that
determines the rate of deceleration.

The parameterization method of the deceleration pa-
rameter has been widely used in cosmological studies as
it provides a flexible and convenient way to explore dif-
ferent expansion scenarios of the Universe [45–50]. Here
are some motivations behind this parametrization form
given by Eq. (45):

• Redshift dependence [1, 2]: The deceleration pa-
rameter, which characterizes the rate of expansion
of the Universe, is expected to evolve with cosmic
time. The parametrization form incorporates the
redshift z as a variable, allowing us to study the
behavior of the deceleration parameter at different
cosmic epochs.

• Model-independent approach [51, 52]: The
parametrization form does not rely on specific cos-
mological models or assumptions. Instead, it pro-
vides a phenomenological description that can be
applied to various theoretical frameworks, includ-
ing both DE and modified gravity models.

• Flexibility in cosmic acceleration: By adjusting
the parameter χ, the parametrization allows for
a wide range of possibilities for cosmic accelera-
tion. It enables the exploration of both accelerating
and decelerating phases of the Universe, as well as
transitions between them.

• Comparison with observational data: The
parametrization form can be constrained using
observational data, such as supernovae type
Ia, baryon acoustic oscillations, and cosmic mi-
crowave background observations. By fitting the
parametrization to the data, one can test differ-
ent cosmological scenarios and evaluate the con-
sistency with observations.

In addition, below are the values of the parametrized
deceleration parameter for different cosmic epochs:

• Past Universe (Early Universe): At very early
times, when z ≫ 1, the deceleration parameter
approaches q(z) ≈ 1. This corresponds to a de-
celerating Universe dominated by matter and ra-
diation.

• Present Universe: For the present epoch, with
z ≈ 0, the deceleration parameter is given by
q(z) = 1 − 2

1+χ . Depending on the value of χ, the
deceleration parameter can take different values.
For χ = 0, we have q(z) = 1, indicating a matter-
dominated Universe with no cosmic acceleration.
For χ > 0, the deceleration parameter becoming
smaller than 1 does not necessarily imply an accel-
erating Universe. So, the specific value of χ deter-
mines the strength of the acceleration, with larger
values indicating a more rapid expansion.

• Future Universe: As we move towards the future,
with increasing redshift z < 0, the deceleration pa-
rameter evolves depending on the chosen value of
χ. If χ = 0, the deceleration parameter asymptoti-
cally approaches q(z) ≈ −1, indicating a Universe
undergoing constant acceleration. This behavior
implies an exponential expansion known as the de
Sitter phase. Also, for distant future, z ≈= −1 im-
plying q(z) ≈ −1.

It’s important to note that the specific values of the
deceleration parameter depend on the chosen value of
χ. Different values of χ lead to different cosmological
scenarios, ranging from deceleration to acceleration in
various cosmic epochs.

The relationship between the deceleration parameter
and the Hubble parameter can be expressed by the fol-
lowing equation:

H(z) = H0exp

(∫ z

0

1 + q(z)
(1 + z)

dz

)
. (46)

By substituting Eq. (45) into Eq. (46), we obtain the
expression for H(z) as follows:

H(z) = H0

[
A(1 + z)4 + B

] 1
2 , (47)

where H0 is the present value of H(z), A = χ
1+χ and B =

1
1+χ . Further, the derivative of the Hubble parameter
with respect to time can be expressed as

Ḣ =
dH
dt

= − (1 + z) H(z)
dH
dz

. (48)
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Next, we assess the validity of the parametrization
by examining its consistency with recent observational
data, specifically the observational Hubble data, and
Type Ia supernovae (SNe Ia):

• Hubble dataset: We consider 31 Hubble data
points obtained using the differential age (DA) ap-
proach [53–55].

• SNe Ia dataset: We also include 1048 SNe Ia lu-
minosity distance estimates from the Pan-STARSS
1 (PS1) Medium Deep Survey, the Low-z, SDSS,
SNLS, and HST missions in the Pantheon sample
[56, 57].

To analyze the cosmological observational data, we
adopt the Markov Chain Monte Carlo (MCMC) sam-
pling technique. Our approach expands on existing
studies by incorporating an extensive range of data and
applying more stringent priors on the model param-
eters. Specifically, we focus on the parameter space
θs = (H0, χ) and employ the emcee library [58] for par-
allelized MCMC sampling. Our analysis utilizes 100
walkers and 1000 steps to obtain reliable results. By
combining the information from the two types of data
(Hubble and Pantheon), we extract valuable insights
into the model parameters and their uncertainties.

We define the χ̃2 function for the joint Hub-
ble+Pantheon data as

χ̃2
joint = χ̃2

Hubble + χ̃2
Pantheon, (49)

where

χ̃2
Hubble =

31

∑
i=1

[
H(θs, zi)− Hobs(zi)

]2
σ(zi)2 , (50)

and

χ̃2
Pantheon =

1048

∑
i,j=1

∆µi

(
C−1

Pantheon

)
ij

∆µj (51)

Here, the variables are defined as follows: H(zi) rep-
resents the theoretical value of the Hubble parameter
for a specific model at different redshifts zi, Hobs(zi) is
the observed value of the Hubble parameter, σ(zi) rep-
resents the observational error, ∆µi = µth − µobs rep-
resents the difference between the theoretical and ob-
served distance modulus, and C−1

Pantheon is the inverse of
the covariance matrix of the Pantheon sample. For more
detailed information, please refer to the following Refs.
[25, 27, 37].

The observational constraints on the model parame-
ters are obtained by minimizing the corresponding χ̃2

using the MCMC method. The results of this analysis,

66 68 70 72
H0

0.1

0.2

0.3

0.1 0.2 0.3

Hubble
Pantheon
Joint

FIG. 1: The likelihood contours of the 1 − σ and 2 − σ

confidence levels of the model parameters H0
(km/s/Mpc) and χ using the Hubble and Pantheon

samples.

including the best-fit values and uncertainties for the
model parameters, are summarized in Tab. I. Further,
the 1 − σ and 2 − σ likelihood contours on the model
parameters are shown in Fig. 1, providing a graphi-
cal representation of the allowed parameter regions. In
Figs. 2 and 3, the error bar fit for the considered model is
shown, along with the ΛCDM model with Ωm0 = 0.315,
and H0 = 67.4 km/s/Mpc [59]. These figures illustrate
the goodness of fit for the model and provide a visual
comparison with the standard ΛCDM model. While
our analysis reveals that the values of H0 for the Hubble
dataset, Pantheon, and the combined dataset are close to
those of the ΛCDM model, suggesting consistency with
the standard model, it is important to note that the de-
termination of which model is superior is not solely de-
pendent on H0. The superiority of a cosmological model
is determined by its ability to provide a more complete
and accurate description of the universe’s evolution, in-
cluding its ability to explain a wide range of observa-
tional data beyond just the value of H0. In this con-
text, while the values of H0 are comparable between our
model and the ΛCDM model, our model offers addi-
tional advantages, such as a more flexible description
of the cosmological evolution, better fit to observational
data, and theoretical consistency.
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datasets H0 (km/s/Mpc) χ q0 ztr ω0 (Model 1) ω0 (Model 2)
Priors (60, 80) (−10, 10) − − − −
Hubble 68.2+1.7

−1.7 0.165+0.042
−0.037 −0.72+0.06

−0.06 0.57+0.09
−0.08 −0.80+0.05

−0.04 −0.89+0.01
−0.01

Pantheon 68.9+2.4
−2.4 0.197+0.085

−0.078 −0.67+0.11
−0.1 0.50+0.13

−0.12 −0.76+0.08
−0.07 −0.89+0.01

−0.01
Joint 68.8+1.3

−1.3 0.173+0.038
−0.034 −0.71+0.06

−0.05 0.55+0.07
−0.07 −0.79+0.04

−0.04 −0.89+0.01
−0.01

TABLE I: The results of MCMC on cosmological parameters using the Hubble and Pantheon samples.

0.0 0.5 1.0 1.5 2.0 2.5
z
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H(
z)

DP model
CDM

From Hubble dataset

FIG. 2: The evolution of Hubble parameter H(z) as a function of redshift z: Comparison between ΛCDM model
(black dashed line) and DP model (red line) with error bars (steel-blue dots)

0.0 0.5 1.0 1.5 2.0 2.5
z

32
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40
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44

46

(z
)

DP model
CDM

From Pantheon dataset

FIG. 3: The evolution of distance modulus µ(z) as a function of redshift z: Comparison between ΛCDM model
(black dashed line) and DP model (red line) with error bars (steel-blue dots)

VI. RESULTS AND DISCUSSION

The behavior of the deceleration parameter q provides
valuable insights into the dynamics of cosmic accelera-
tion throughout the evolution of the Universe. Fig. 4
showcases the intriguing findings of our analysis for the
constrained values of the model parameters obtained
from the joint Hubble+Pantheon data analysis, reveal-
ing the transition of q from a decelerated phase q > 0
to an accelerated phase q < 0 at a specific redshift ztr

(i.e. q = 0). This transition signifies a significant shift
in the dominant cosmic forces driving the expansion.
The observed value of ztr = 0.55+0.07

−0.07, as reported by
recent observations [60, 61], further validates the credi-
bility of our results. The value of ztr aligns with the cur-
rent understanding of cosmic acceleration and is con-
sistent with various independent measurements. Fur-
thermore, for the model parameters constrained by the
Hubble+Pantheon dataset, the present value of the de-
celeration parameter is q0 = −0.71+0.06

−0.05 [62, 63]. There-
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fore, the detailed investigation of q and its correspond-
ing redshift ztr is crucial for comprehending the under-
lying physics governing the expansion of the Universe.
It provides important constraints on cosmological mod-
els and sheds light on the nature of DE or modifica-
tions to gravity at different cosmic epochs. Our find-
ings demonstrate the capability of the employed model
to capture the complex dynamics of the Universe, incor-
porating both decelerated and accelerated phases of ex-
pansion. This comprehensive understanding of cosmic
evolution enhances our knowledge of the underlying
cosmological mechanisms and brings us closer to unrav-
eling the mysteries of the Universe’s past, present, and
future.

-1 0 1 2 3 4

-1.0

-0.5

0.0

0.5

1.0

z

q

FIG. 4: The evolution of the deceleration parameter q as
a function of redshift z for the constrained values of

model parameters from the joint data analysis.

The EoS parameter ω also provides valuable insights
into the nature of cosmic expansion by characterizing
the relationship between energy density ρ and pressure
p. By examining the behavior of ω, we can classify the
different phases of the Universe’s expansion. For in-
stance, when ω = 1, it represents a stiff fluid, indicating
an extreme scenario where pressure is equal to energy
density. On the other hand, the matter-dominated phase
is characterized by ω = 0, signifying a scenario where
pressure is negligible compared to energy density. In
the radiation-dominated phase, we observe ω = 1

3 , in-
dicating a state where radiation dominates the cosmic
dynamics. Furthermore, when ω lies within the range
−1 < ω < − 1

3 , it represents the quintessence phase,
where a scalar field with a time-evolving EoS drives
the accelerated expansion [64, 65]. The special case of
ω = −1 corresponds to the cosmological constant, com-
monly referred to as the ΛCDM model [66], which ac-
curately describes the observed acceleration of the Uni-
verse. In certain scenarios, we may encounter a phase
known as the phantom era, characterized by ω < −1
[67, 68]. During this phase, the pressure becomes more
negative than the energy density, leading to exotic phe-
nomena and potential instabilities in cosmic evolution.

It is worth noting that for an accelerating Universe, ω

must satisfy the condition ω < −1/3. This condition
is equivalent to a violation of the SEC. The SEC is one
of the energy conditions in GR that imposes certain con-
straints on the behavior of energy and matter in the Uni-
verse. According to the SEC, the sum of the energy den-
sity and three times the pressure should always be non-
negative, which can be expressed as ρ + 3p ≥ 0. This
condition ensures that the gravitational effects of mat-
ter and energy are attractive and prevents the existence
of exotic forms of matter with repulsive gravity. How-
ever, in the case of an accelerating Universe, where the
expansion rate is increasing over time, the violation of
the strong energy condition (ρ + 3p < 0 or ω < −1/3)
becomes necessary [69].

A. f (Q, T) = αQ +
β

6κ2 T

In order to ensure a physically meaningful and obser-
vationally consistent cosmological model, specific val-
ues for the model parameters need to be chosen. In
this study, we have selected the values α = −1.07 and
β = 0.5 for this purpose. These parameter values have
been chosen to satisfy two important criteria: ensuring
the positivity of the energy density and aligning the EoS
parameter with observational constraints.

Fig. 5 illustrates the relationship between the den-
sity parameter and redshift. One can observe that the
density parameter is consistently positive for all redshift
values. Moreover, at redshift z = 0, the density pa-
rameter is strictly positive and as the redshift increases,
the energy density also increases. This behavior con-
firms that the WEC is satisfied in this model. It indi-
cates that the Universe’s energy content remains non-
negative and increases as the Universe expands. The
behavior of the EoS parameter in Fig. 6 clearly indi-
cates that −1 < ω < −1/3, suggesting the presence
of quintessence DE and implying an accelerating phase
of the Universe. It is noteworthy that the current value
of the EoS parameter for this case is ω0 = −0.79+0.04

−0.04
[70–73] for the joint Hubble+Pantheon data.

The energy conditions for this particular scenario are
depicted in Figs. 7a, 7b and 7c.

The violation of the SEC on a cosmological scale is an
intriguing aspect of modern cosmology. It suggests the
presence of exotic forms of energy or modifications to
the laws of gravity at cosmic scales. In light of the SEC’s
significance, we examined the acceptable ranges of the
model parameter β, as depicted in Fig. 7a. The parame-
ter α is fixed to be −1.07, while β ranges from 0.5 to 3.0.
The variation in β leads to changes in the behavior of
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the SEC. For values of β < 0, the SEC exhibits some pos-
itive behavior. We focused on the range of β < 0 where
the violation of the SEC is more pronounced. Further-
more, a negative value of ω implies ρ + 3p < 0, indi-
cating a violation of the SEC at the present epoch. The

results shown in Figs. 7b and 7c demonstrate that the
NEC and DEC are satisfied for this particular scenario.
These conclusions are supported by the behavior of the
energy density shown in Fig. 5. Thus, the validation
of the NEC and the energy density together confirm the
fulfillment of the WEC.
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FIG. 5: The evolution of the density parameter ρ1 as a
function of redshift z (linear model).
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FIG. 6: The evolution of the EoS parameter ω1 as a
function of redshift z (linear model).
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FIG. 7: The evolution of the energy conditions as a function of redshift z (linear model).

B. f (Q, T) = γ
6H2

0 κ2 QT

The density and EoS parameters corresponding to this
scenario are illustrated below.

Fig. 8 presents the relationship between the density
parameter and redshift, considering the parameter val-
ues γ = 0.315. It is evident that the density param-
eter is consistently positive for all redshift values. At
z = 0, the density parameter is strictly positive and
it grows as the redshift increases. This behavior is in
line with our understanding of an expanding Universe
where the energy density of cosmic components, such
as DE, decreases with time. The behavior of the EoS pa-
rameter in Fig. 9 exhibits a similar pattern to the pre-
vious model. It is found that the EoS parameter lies
within the range −1 < ω < −1/3, which implies the

presence of quintessence DE and an accelerating phase
of the Universe. Specifically, for this scenario, the cur-
rent value of the EoS parameter is determined to be
ω0 = −0.89+0.01

−0.01 [70–73] (for the joint data). This value
indicates that the DE component in the Universe is con-
sistent with quintessence, driving the accelerated expan-
sion observed in cosmological observations.

In Fig. 10a, we show the behavior of the SEC while
varying the parameter γ in the small range of 0.315 to
0.340. It is observed that with the variation of γ, the SEC
is violated at the present epoch. As γ moves with a small
change, there is a noticeable change in the SEC behavior,
and it exhibits a more pronounced violation within the
mentioned range. The negative behavior of the SEC in-
dicates the accelerated expansion of the Universe, con-
sistent with the presence of DE. On the other hand, the
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NEC and the DEC are not violated, as their behaviors
remain positive throughout (refer to Figs. 10b and 10c).

The satisfaction of NEC along with the positive behav-
ior of the density parameter confirms the validity of the
WEC.
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FIG. 8: The evolution of the density parameter ρ2 as a
function of redshift z (coupling model).

-1 0 1 2 3 4

-1.0

-0.8

-0.6

-0.4

-0.2

z

ω

FIG. 9: The evolution of the EoS parameter ω2 as a
function of redshift z (coupling model).
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FIG. 10: The evolution of the energy conditions as a function of redshift z (coupling model).

VII. CONCLUSION

Recent observational studies provide compelling ev-
idence for the accelerated expansion of the Universe.
This accelerated expansion is attributed to the presence
of a high negative pressure component called DE, which
satisfies the condition ρ + 3p < 0 or ω < −1/3. This ob-
servation has motivated further investigations into the
nature of gravity and led to the development of modi-
fied theories of gravity, which aim to provide a geomet-
rical extension to GR. These modified theories of gravity
offer alternative explanations for the observed cosmic
acceleration and seek to reconcile them with our under-
standing of fundamental physics.

In this paper, we have investigated the cosmological
implications and constraints of Weyl-type f (Q, T) grav-
ity. This theory introduces a coupling between the non-
metricity Q and the trace T of the energy-momentum
tensor, using the principles of proper Weyl geometry. In

this geometry, the scalar non-metricity Q, which charac-
terizes the deviations from Riemannian geometry, is ex-
pressed in its standard Weyl form and is determined by
a vector field wα. To study the implications of this the-
ory, we have proposed a deceleration parameter with a
single unknown parameter χ. By solving the field equa-
tions derived from Weyl-type f (Q, T) gravity, we have
studied the behavior of the energy conditions within
this framework. The energy conditions provide im-
portant constraints on the physical viability of a the-
ory, and by examining their satisfaction or violation,
we have gained valuable insights into the nature of the
gravitational theory and its compatibility with observa-
tional data. Especially, we have employed two well-
motivated forms of the function f (Q, T) to investigate
the gravitational theory: (i) the linear model represented
by f (Q, T) = αQ + β

6κ2 T, and (ii) the coupling model
represented by f (Q, T) = γ

6H2
0 κ2 QT. We further inves-

tigated the behavior of the deceleration parameter with
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respect to redshift, considering the values H0 = 68.8+1.3
−1.3

and χ = 0.173+0.038
−0.034, which were obtained from the joint

Hubble+Pantheon dataset. The deceleration parameter
q exhibits a transition from an early decelerating phase
to the current accelerated expansion of the Universe at
a redshift of ztr = 0.55+0.07

−0.07, consistent with the lit-
erature values. The present value of the deceleration
parameter q0 is determined to be −0.71+0.06

−0.05, aligning
with previous findings. It is very important to note that
the parameters of the deceleration parameter have been
constrained using different datasets (Hubble and Pan-
theon), as presented in Tab. I and Fig. 1. By observing
the convergence of these parameter values, our focus
has shifted towards analyzing the joint dataset to derive
more robust and reliable results.

In Sec. VI, we have investigated the behavior of den-
sity, EoS parameter, and energy conditions for the two
models of Weyl-type f (Q, T) gravity. The density pa-
rameter in both models exhibits positive behavior, in-
dicating a non-negative energy content of the Universe.
Furthermore, the EoS parameter analysis reveals that it
lies within the range of −1 < ω < −1/3, signifying the
presence of quintessence DE and implying an acceler-
ating phase of the Universe [64, 65]. The values of the
model parameters α, β, and γ are further used to in-
vestigate the behavior of various energy conditions in
relation to the EoS parameter. In both the models pre-
sented in Sec. VI, the energy conditions, namely the
NEC, WEC, and DEC, are satisfied. This is observed
through the analysis of the corresponding figures, such
as Figs. 7 and 10. However, it should be noted that the
SEC is violated in these models. This violation of SEC
is indicative of the accelerated expansion of the Uni-
verse and is consistent with previous studies and obser-
vations.

In this study, we have focused on two specific cases of
Weyl-type f (Q, T) gravity, namely the linear and cou-
pling models. These models have provided valuable in-
sights into the behavior of energy conditions and the dy-
namics of the Universe. In the Weyl-type f (Q, T) grav-
ity theory, the cosmological evolution’s nature is signif-
icantly influenced by the values of the model parame-
ters and the functional form of f (Q, T). Our analysis
of specific models and a range of cosmological parame-
ters reveals a fundamental result: the universe initiated
its recent evolution in a decelerating phase before tran-
sitioning into an accelerating phase. The values of the
model parameters allow for the construction of a wide
range of cosmological scenarios, encompassing the evo-

lution of the universe through the radiation era (ω = 1
3 ),

matter era (ω = 0), quintessence era (−1 < ω < − 1
3 ),

and ΛCDM model (ω = −1). Remarkably, the linear
model predicted three phases of the universe (see Fig.
6), similar to the ΛCDM model (radiation, matter, and
acceleration phases), whereas the coupling model pre-
dicts only the acceleration phase (see Fig. 9). In con-
trast to the standard ΛCDM model, our models exhibit
quintessence-like behavior akin to a DE model. Despite
deviating from the ΛCDM paradigm in certain aspects,
the variant of the Weyl-type f (Q, T) modified gravity
theory considered here remains capable of explaining
current observational data on cosmological parameters.
It provides a compelling and internally consistent expla-
nation for the accelerating expansion of the Universe.
However, it is important to note that our analysis is not
exhaustive, and there are still other possible models to
explore. One such example is the exponential case i.e.

f (Q, T) = ηH2
0 e

µ

6H2
0

Q
+ ν

6κ2 T, which was mentioned as
the third model in the original paper [35]. Future inves-
tigations can delve into studying this particular model
and its implications for the energy conditions and the
evolution of the Universe.

Further, in light of the limitations of our models, a
key question arises regarding the feasibility of directly
solving the field equations in Weyl-type f (Q, T) gravity,
as opposed to resorting to the parametrization method
(such as Eq. (45)) [25–27]. It is worth noting that ob-
taining exact solutions to these field equations is highly
challenging due to their complexity. However, despite
the current difficulties, future research efforts may aim
to tackle this challenge and explore the possibility of ob-
taining direct solutions.
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