
Citation: Amangeldy, N.; Milosz, M.;

Kudubayeva, S.; Kassymova, A.;

Kalakova, G.; Zhetkenbay, L. A

Real-Time Dynamic Gesture Variability

Recognition Method Based on

Convolutional Neural Networks. Appl.

Sci. 2023, 13, 10799. https://doi.org/

10.3390/app131910799

Academic Editor: Douglas

O’Shaughnessy

Received: 24 May 2023

Revised: 20 July 2023

Accepted: 9 August 2023

Published: 28 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

A Real-Time Dynamic Gesture Variability Recognition Method
Based on Convolutional Neural Networks
Nurzada Amangeldy 1 , Marek Milosz 2,* , Saule Kudubayeva 1 , Akmaral Kassymova 3, Gulsim Kalakova 4

and Lena Zhetkenbay 1

1 Department of Artificial Intelligence Technologies, Faculty of Information Technologies,
L.N. Gumilyov Eurasian National University, Pushkina 11, Astana 010008, Kazakhstan;
nurzadaamangeldy@gmail.com (N.A.); saule.kudubayeva@gmail.com (S.K.); jetlen7@gmail.com (L.Z.)

2 Department of Computer Science, Faculty of Electrical Engineering and Computer Science,
Lublin University of Technology, Nadbystrzycka 36B, 20-618 Lublin, Poland

3 Higher School of Information Technologies, Faculty of Economics, Information Technology and Vocational
Education, Zhangir Khan University, Zhangir Khan 51, Uralsk 090009, Kazakhstan;
kasimova.akmaral2020@gmail.com

4 Department of Physics, Mathematics and Digital Technology, A. Baitursynov Kostanay Regional University,
Kostanay 110000, Kazakhstan; gulsim_1507@mail.ru

* Correspondence: m.milosz@pollub.pl

Abstract: Among the many problems in machine learning, the most critical ones involve improving
the categorical response prediction rate based on extracted features. In spite of this, it is noted that
most of the time from the entire cycle of multi-class machine modeling for sign language recognition
tasks is spent on data preparation, including collection, filtering, analysis, and visualization of data.
To find the optimal solution for the above-mentioned problem, this paper proposes a methodology
for automatically collecting the spatiotemporal features of gestures by calculating the coordinates of
the found area of the pose and hand, normalizing them, and constructing an optimal multilayer per-
ceptron for multiclass classification. By extracting and analyzing spatiotemporal data, the proposed
method makes it possible to identify not only static features, but also the spatial (for gestures that
touch the face and head) and dynamic features of gestures, which leads to an increase in the accuracy
of gesture recognition. This classification was also carried out according to the form of the gesture
demonstration to optimally extract the characteristics of gestures (display ability of all connection
points), which also led to an increase in the accuracy of gesture recognition for certain classes to
the value of 0.96. This method was tested using the well-known Ankara University Turkish Sign
Language Dataset and the Dataset for Argentinian Sign Language to validate the experiment, which
proved effective with a recognition accuracy of 0.98.

Keywords: sign language recognition; CNN; multimodality; preprocessing

1. Introduction

Recently, increasing attention has been paid to improving the quality of life of people
with disabilities. The necessary conditions for their mobility, training, and interaction with
society are being created; special hardware, software, scientific, and technical products
are being developed; and various inclusive social and education programs are being
implemented [1]. For scientists worldwide, creating a barrier-free society for people with
disabilities is one of the most crucial tasks [2].

Hearing loss has become a common problem globally. According to the World Health
Organization [3], 432 million adults and 34 million children are projected to have some
degree of hearing loss by 2050, and approximately 700 million of these people will need
hearing rehabilitation. This increases the dependence on sign language, which is the
primary communication language for persons with various levels of hearing disorders.
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Just as spoken languages vary greatly from region to region, sign languages also reflect
the unique cultural and linguistic characteristics of the communities in which they are used.
Sign languages have developed and evolved differently in different parts of the world, and
are influenced by the cultural traditions and languages of deaf and hearing people in those
regions. For example, American Sign Language (ASL) [1,4] and British Sign Language
(BSL) [5] have some similarities, but at the same time are different languages with their
own grammar, syntax, and vocabulary. A similar situation is observed for sign languages
around the world. Some countries, like Kazakhstan and other post-Soviet countries, were
once under the influence of the Russian Empire. Until 1991, they were part of the Soviet
Union, whose centralized language policy led to the spread of Russian Sign Language
(RSL) in the Soviet republics [6,7]. Specialists should pay attention to sign languages, as it
is necessary to consolidate their status as separate systems and prevent their extinction.

Sign languages used around the world are unique, but the way information is trans-
mitted between deaf people all over the world is the same: it is transmitted spatially and
visually, and it is perceived visually. An important property that was adopted from the
visual areas of the human brain initially served as a prototype for the creation of neural
networks, and later deep neural networks. Scientists all over the world who study and
research gesture language recognition face the problem of continuous multimodal sign lan-
guage interpretation, which consists of monomodal tasks of recognizing the configuration
of the hand that performs the gesture, hand movements in space relative to the body of the
speaker or camera, lip movements during the gesture demonstration, and emotions during
the gesture demonstration.

Modern research results make it clear that machine learning methods [8–16] based on
deep neural networks [8–15], in comparison with traditional classical approaches [7,16,17],
which are based on linear classifiers (e.g., the support vector method (SVM) or hidden
Markov classification (HMC)), can demonstrate good results in segmentation, classifica-
tion, and recognition as static and dynamic sign language (SL) elements. Thus, with the
help of two-threaded convolutional neural networks [2,9,10], it is possible to extract the
spatiotemporal features of a gesture from full-color images (RGB format) and 3D frames
(depth map) of video streams separately. In turn, a deep neural network (DNN) is used to
perform segmentation and classification of the hand shape with multiple architectures and
sizes of the input images [4,11]. In addition, it was revealed that the architecture of the long
short-term memory (LSTM) neural networks [1,3,12,13,15,18–20], with the help of long
and short-term memory, can extract the spatiotemporal characteristics of a gesture from
sequences of previously annotated 2D regions with a gesture. These methods considered
extract spatial and temporal information at different stages or separately. Thus, if there is a
complex dynamic background component on the scene, concurrently extracting both the
spatial and temporal components of a gesture will be an effective solution.

Thejowahyono et al. [8] used a DNN to recognize hand gestures in real-time for
seeking help, achieving an accuracy of 98.79%. Jose-Jimenez and others [9] presented an
American Sign Language translator based on convolutional neural networks (CNN) that
consistently classify the letters a-e correctly and a model that correctly classifies the letters
a-k in most cases. The network proposed by Sahoo [4] and others eliminates the need for the
preprocessing steps for the Massey University (MU) color image dataset by using a DNN
for segmentation and classification of the hand shape. The system was tested in real-time
on a community of 10 people, with an average accuracy of 81.74% and processing speed of
61.35 frames per second. Reference [10] proposes a comprehensive end-to-end system that
uses hand gestures with sign language digits for contactless user authentication, achieving
a 99.1% accuracy on the test dataset with a model output rate of 280 ms per image frame.
Finally, study [11] presents a machine learning-based system that recognizes Turkish sign
language in real-time with an accuracy of 98.97% using a cascade voting approach with
five single classifiers. These studies demonstrate the potential of deep learning models
for improving people’s safety, simplifying processes, and creating contactless solutions for
authentication and communication.
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Several research studies have proposed innovative systems for recognizing SL ges-
tures in real time. One such system [12] uses electromyography (EMG) signals and a
neural network with long-term and short-term memory to recognize hand movements in
ASL. Another system [13] employs bidirectional long short-term memory (BLSTM) and
multifunctional structures to recognize dynamic gestures in Hong Kong Sign Language
(HKSL) using data collected from smartwatches. Zhou, Z and et al. [14] developed a frame-
work called SignBERT, which uses bidirectional encoder representations from transformers
(BERT) based on a deep learning models and multimodal inputs to recognize dynamic
gestures for continuous sign language recognition (CSLR). This system was tested on sev-
eral datasets, including a new set of HKSL data, showing advanced results in recognition
accuracy. Additionally, an experimental system was developed to support deaf people in
the office when applying for an identity card using Polish Sign Language (PSL) expressions.
The system [15] uses a Kinect sensor and a feature vector inspired by linguistic research. It
was tested using three commonly used methods for dynamic gesture recognition.

While these studies offer innovative systems for sign language gesture recognition,
they are not without limitations. For example, using EMG signals is one of the systems [12]
that may require invasive procedures, which may limit its applicability in real conditions.
Another system [13] uses data from smartwatches, which may not capture all the nuances
of sign language gestures. The use of Leap Motion technology in one of the systems [16]
can also create problems with predicting the position of fingers. Leap Motion controllers
also have problems with detecting some hand positions (e.g., vertical, in which one finger
is covered by another). Finally, there is a problem in considering all the variations and the
complexity of SL for a more accurate and reliable interpretation of SL in general.

The authors of [16] present a system that uses data from a Leap Motion (LM) device and
the HMC algorithm to learn gestures, achieving an average gesture recognition accuracy of
86.1% with a standard deviation of 8.2%. The system was tested on ASL gestures and was
also able to recognize them with a typing speed of 3.09 words per minute. However, the
authors pointed out some issues with using LM technology for gesture recognition. For
instance, when the user’s fingers are not visible to the infrared (IR) cameras, LM may make
mistakes in predicting their position. In such cases, the hand may be depicted with folded
fingers when they are actually extended. Additionally, the position of the thumb when
pressed against the palm or between other fingers is poorly defined, making it difficult to
reliably identify the gesture.

The authors took a step forward in their study [6,7] by including information about
the movements of the human body and head together with the movements of the hands for
a multimodal analysis of human movements. By recording changes in a person’s posture,
3D head movement, and hand movement in a vector matrix, the authors strive to obtain a
total picture of the dynamic gesture being performed.

Approaches to gesture recognition [21–24] based on wearable electronic input devices,
which are gloves worn on the hand and containing various electronic sensors that track
the movements of the hand, demonstrate fairly good gesture recognition results. However,
these approaches have significant disadvantages, such as the size and material of the gloves
and the complexity of connection and configuration, making them unsuitable, for example,
for the elderly or for people with skin diseases.

The authors of [25] have developed a multilingual approach in which hand move-
ment modeling is also carried out using data that is independent of the target sign lan-
guage through derivation of subunits of hand movement. The scientists tested the pro-
posed approach by researching Swiss, German, and Turkish sign languages and demon-
strated that SL recognition systems could be effectively developed using multilingual sign
language resources.

By integrating information from different modalities, the system can better understand
the nuances of SL and accurately translate them into written language, greatly improving
the accuracy and efficiency of automatic SL interpretation systems and making them more
accessible to a wide range of users. Continuing the idea proposed in reference [25], in
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this paper, the authors propose a methodology for improving the prediction of categorical
responses in SL recognition tasks by automatically collecting the spatiotemporal characteris-
tics of gestures and grouping them by their form using the method of principal components,
then selecting the optimal architecture that is suitable for all groups of gestures. This pro-
posed method is also aimed at reducing the time spent on data preparation by automating
data collection. The proposed method was tested on the popular datasets, including the
Ankara University Turkish Sign Language Dataset (AUTSL) [26] and the Dataset for Argen-
tinian Sign Language (LSA64) [27]. The experiment confirmed the system’s effectiveness
and multilingualism.

2. Purpose and Summary of the Work

This work’s primary focus is the development of multimodal systems [28] for auto-
matic sign language translation.

Firstly, the authors strive to overcome the problems of recognizing sign language by
integrating several modalities, such as hand movement, hand configuration, and body and
head movements. Secondly, the authors try to cover various variations in the demonstration
of gestures and group them into four separate categories (described further) for a more
accurate and reliable interpretation of sign language. Thirdly, the authors develop a
preprocessing module that allows one to collect gesture properties from video files or in
real-time automatically. This makes the technique applicable to any sign language and
allows for further experiments. Fourth, the authors create their own extensive Kazakh Sign
Language (KSL) dataset consisting of 2400 training, test, and validation samples, which
helps solve the problem of limited datasets in gesture recognition research. Finally, the
authors test their architecture on various public data sets, contributing to ongoing efforts to
improve gesture recognition technologies.

The presented work makes it possible to answer the following formulated
research questions:

(1) Is it possible in practice to use technologies that integrate hand, body, and head
movements to improve sign language recognition?

(2) Is it possible to group gestures for a more accurate and reliable interpretation of
sign language?

(3) Is it possible to create preprocessing software that allows for gesture properties to be
automatically collected from video files or in real time from a video camera system?

(4) Is the created architecture of the real-time dynamic gesture variability recognition
system based on CNNs effective for different data sets?

3. Materials and Methods

The authors propose an approach that includes several modules for dynamic ges-
ture recognition, including a video preprocessing module for extracting key points from
recorded video sets, a video recording module for extracting key points in real-time, a
model creation module, and a real-time gesture demonstration system.

The proposed method with these modules is presented in Figure 1. It consists of
preprocessing modules (for video files and real-time videos), a module for training and
testing CNNs, and a developed model.
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Figure 1. The proposed method.

3.1. Preprocessing Module

The MediaPipe Hand tool [29], an open-source software tool created by Google, is a
comprehensive hand tracking and gesture recognition tool. It uses a set of 21 connections
for each hand, including four for each finger, one at the center of the palm, and one at the
wrist. By analyzing the movement and position of these connections, the tool can accurately
track the rotation and movement of the hand in three-dimensional space. In addition to
tracking the hand, the tool can also track the body skeleton, including the hand, pose, and
head relative to the camera. This allows one to analyze dynamic gestures that involve
movements of the entire body, not just the hands, using a 2D camera.

In the preprocessing module, key gesture points are extracted using the MediaPipe
Holistic [30] pipeline. It is designed to overcome the limitations of individual models for
pose and hand components. The MediaPipe Holistic pipeline starts with an assessment
of a person’s posture using the Blazes pose detector and a subsequent reference model.
Then, using the found pose landmarks, two regions of interest (ROI) for each hand are
determined, and a reframing model is used to improve the ROI. Then, the full-resolution
input frame is cropped to these areas of interest, and hand models specific to the gesture
recognition task are used to evaluate the corresponding landmarks.

In the final step, all the landmarks are combined with the pose model landmarks to
obtain a total of 258 coordinates. These coordinates consist of 33 values for the pose (x, y, z)
and 33 values for visibility, resulting in a total of 33 × 4 = 132. Additionally, there are
22 values (x, y, z) for each hand, accounting for a total of 22 × 2 × 3 = 126 coordinates.

This multi-stage approach allows the MediaPipe Holistic pipeline to achieve a high level
of accuracy in detecting human pose and hand movements. Let us break it down further:

Landmark Extraction: Initially, landmarks specific to the pose of a person, includ-
ing body joints and facial features, are extracted using a pose estimation model. These
landmarks provide information about the overall body position and orientation.

Pose Landmarks: The pose landmarks consist of 33 coordinates (x, y, z) and 33 visibility
values. The (x, y, z) coordinates represent the spatial position of each landmark, while the
visibility values indicate whether the landmark is occluded or visible.

Hand Landmarks: Hand landmarks are extracted separately for each hand using a
hand tracking model. Each hand consists of 21 landmarks, resulting in a total of 22 values
(including a wrist landmark). The (x, y, z) coordinates of these landmarks capture the
hand’s position, orientation, and finger movements.
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Combining Landmarks: Finally, the extracted pose landmarks and hand landmarks
are combined to form a comprehensive representation of the person’s pose. By merging
these landmarks, the system obtains a total of 258 coordinates (132 from pose landmarks
and 126 from hand landmarks) that collectively describe the person’s body posture and
hand gestures.

This multi-step process enables the MediaPipe Holistic pipeline to accurately analyze
and interpret human pose and hand movements, facilitating various applications such as
gesture recognition, motion tracking, and augmented reality.

After collecting the critical points of the dynamic gesture, when viewing the captured
data, it is observed that not all the connections were displayed; based on this, the motions
were grouped according to the demonstration form to embrace the maximum possible
forms of gesture demonstration, taking into account the following properties:

1. Palm orientation:

• Palms facing the camera—gestures in which the palm faces the camera, and the
fingers are visible to the viewer; for example, pointing or greeting.

• Palms facing away from the camera—gestures in which the back of the palm
faces the camera, and the fingers are not visible, for example, a demonstration of
refusal or disapproval.

2. Localization:

• Upper body—gestures involving movements of the arms and hands above the
waist; for example, waving, clapping, or stretching the hand.

• Lower body—gestures related to the movements of the legs and feet; for example,
walking, running, or jumping.

3. Trajectory of movement:

• Parallel to the camera—gestures in which the hand moves in the same plane as
the camera; for example, waving or gesticulating horizontally.

• Perpendicular to the camera—gestures in which the hand moves towards or
away from the camera; for example, points or stretches.

Considering the above properties, four groups of dynamic gestures were selected,
ten words were chosen from each group (i.e., 40 words—Table A1), and each word was
recorded 50 times by demonstrators of different ages and genders. As a result, a training
sample of 30,960,000 elements was obtained.

The principal component method was utilized to visualize the data, which comprised
a total of 30,960,000 elements. The dataset consisted of 40 dynamic gestures (words), which
were further divided into 2000 records. Each gesture was recorded in 50 instances, with
each instance comprising 60 frames.

The gestures were characterized by 258 parameters, including pose coordinates and
visibility values. The pose coordinates consisted of 33 values each for the x, y, and z coordinates,
while the visibility values indicated the visibility of each pose point. This resulted in a total of
33 ∗ 4 = 132 pose parameters. Additionally, the hand coordinates included 22 values each for
the x, y, and z coordinates for both hands, totaling 22 ∗ 2 ∗ 3 = 126 hand parameters.

Each video file consists of 60 frames (Equation (1), and information about each frame
is represented as a vector matrix (Equation (2) comprising 258 elements:

V = { f1, f2, f3 . . . f60} (1)

f1 =
{

xp1, yp1, zp1, vp1 . . . xp33, yp33, zp33, vp33 , xlh1, ylh1, zlh1 . . . xlh21, ylh21, zlh21 , xrh1, yrh1, zrh1 . . . xrh33, yrh33, zrh33
}

(2)

where: p—pose, v—visibility, rh—right hand, lh—left hand.
Principal component analysis (PCA) was utilized to identify similar groups of ob-

servations (gestures) based on their principal component values. PCA allows for the
discovery of patterns within high-dimensional data and representation of such patterns
in a lower-dimensional space without significant loss of information. The purpose of the
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PCA model was to examine predefined groups of gestures based on their demonstration
form. The input data for PCA (Figure 2) consisted of the dimensions of the data, including
the number of samples and variables, which were divided into four gesture clusters. Once
40 observations were obtained, the data were then inputted into the K-means algorithm to
further divide the observations into four distinct clusters (as depicted by different colors in
Figure 2: blue, purple, orange, and yellow). Each observation was assigned to the cluster
with the closest mean value.

Group 1 (blue color in Figure 2, Figure 3a): gesture groups where the orientation of
the palm is directed to the camera or the demonstrator, the connections are as readable as
possible, and the trajectory of movement is parallel to the camera or static.

Group 2 (purple color in Figure 2, Figure 3b): gesture groups where the orientation of
the palm is parallel to the camera, but the movement is perpendicular to the camera since
the movement’s trajectory for the camera is a sequence of the skeleton of the hand.

Group 3 (orange color in Figure 2, Figure 3c): gesture groups where the orientation
of the palm is not directed at the cameras or the demonstrator, the connections are not all
readable, and the movement is parallel relative to the camera. The orientation of the palm
and the movement is perpendicular to the camera.

Group 4 (yellow color in Figure 2, Figure 3d): gesture groups in which the palm orien-
tation and movement are perpendicular to the camera or interlocutor when demonstrating.

By grouping gestures in this way, the authors seek to account for the variations
and complexities in gesture languages and to improve the accuracy and efficiency of
recognition systems.

Figure 2. Clusters of gesture groups.
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Figure 3. Samples of the 1st, 2nd, 3rd, and 4th groups of gestures (starting from the top; see text).
Publication with the consent of the people shown in the figure.

3.2. Video Recording Module

The video recording module makes it possible to record one or more gestures in
real-time, followed by data extraction for model training.

When recording a gesture, its name, the number of instances, and the total number of
frames are indicated. The developed system is focused on the use of an ordinary everyday
camera without additional devices, which makes it budget friendly. For recording, in this case,
a Logitech WebCam C270 USB was used (Logitech, Lausanne, Switzerland), which provides
video with a resolution of 1280 × 720 and a frequency of up to 30 frames per second. The
system can work with any camera, providing a resolution higher than 480 × 640.

When capturing key points in real-time, the number of words, number of instances,
and number of frames can be specified; hence, the resulting tensors are of different sizes for
video files and for real-time recording.

One of the main features of the system is that it works in real time, which requires fast
and efficient recording, analysis, and preprocessing of the video. To reduce the amount of
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data to be processed, the recording begins from the moment of detection from the Media
Pipe, resulting in 60 frames on average for each instance of the gesture. This ensures fast
and efficient video data processing, allowing the system to provide results in real time.

3.3. Creating, Training, and Testing the Model Module

One of the popular approaches to recognizing dynamic gestures is using convolutional
neural networks. The number of convolutional layers in a CNN may affect its ability
to extract features from tensors. However, too many layers can lead to overtraining, so
balancing the number of layers is necessary. The size of the convolution kernel is also crucial
for extracting certain features, but too large a size can increase the number of parameters and
lead to overfitting. The pooling size also affects the preservation of important information
and needs to be adjusted. The number of fully connected layers affects the network’s ability
to classify gestures, but too many layers can also lead to overtraining. The number of
neurons in thoroughly combined layers is also essential for classification and needs to be
adjusted for optimal network performance. Considering the above, the CNN architecture
was successfully selected, as shown in Figure 4.

Figure 4. The proposed model’s detailed architecture.

The model architecture shown in Figure 4 is a sequential neural network consisting of
convolutional layers, max pooling layers, a flatten layer, and two dense layers. The input to
the model is a sequence of data points, and the output is a prediction for the sign language
gesture being performed.
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The convolutional layers use filters to extract features from the input sequence, and
the max pooling layers reduce the spatial size of the features while retaining the most
important information. The flatten layer converts the 2D feature maps to a 1D feature
vector, and the dense layers perform classification on the features.

The first dense layer has 1024 units and uses a dropout layer to prevent overfitting.
The final dense layer has 40 units, which corresponds to the number of sign language
gestures being recognized by the model. The total number of parameters in the model is
669,320, all of which are trainable.

The categorical cross-entropy loss function measures the distance between the actual and
predicted probabilities of classes. For example, in the case of a classification problem with
10 categories, for each data element the model will output a probability vector of length 10,
where each piece corresponds to the probability that the component belongs to a certain class.
The prediction vector is compared with the actual class labels, represented as a one-ot-encoding
vector. The loss function is minimized by optimizing the model parameters.

By plotting the training and validation accuracy (‘train_accuracy’, ‘val_accuracy’), the
model’s performance can be tracked during training to determine whether the model is
over-trained or under-trained. If the accuracy of training increases but verification does not
increase, this may indicate that the model is being rebuilt. Plotting training and validation
losses (‘loss’, ‘val_loss’) allows one to track the model’s performance during training and
determine whether the model is overly or insufficiently adapted. If training losses decrease
and validation losses increase, this may indicate that the model is being rebuilt (Figure 5). If
both losses are high, this may mean that the model is not sufficiently adapted and it needs
to be trained for more epochs or with other parameters.

Figure 5. Model training and validation losses (left) and accuracy (right) of all groups.

Both metrics are essential for evaluating the performance of a machine learning model.
Still, factual accuracy is more often used in multiclass classification tasks, and training
accuracy is more often used to assess the performance of a model in the learning process.

The model was successfully trained with a ‘train_accuracy’ of 0.98 on a training
sample consisting of a data array of 30,960,000 elements containing 40 dynamic gestures,
which consists of 2000 records (each gesture is recorded in 50 instances, which consists of
60 frames), which are characterized by 258 parameters (pose coordinates: 33 x, y, z values
and 33 visibility values, total 33 × 4 = 132, hand coordinates: 22 x, y, z values for both
hands, total 22× 2× 3 = 126). To verify the quality of the model and its ability to generalize
to new data, its performance was evaluated on validation samples with an accuracy of 0.96
and test samples with an accuracy of 0.96.

3.4. Model Demployment Module

Deployment begins by initializing several variables, including an empty list to store
a sequence of key points, a count of the number of frames processed, a list to store the
recognized sentence, and a threshold value to screen out unlikely predictions.
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The function then opens the video capture device (preprocessing or video recording)
and runs a loop to read frames from the device. For each frame, the function uses the
holistic model to detect and track hand landmarks and other body landmarks, then extracts
the hand landmarks to use as input for the pre-trained model (2D CNN). If the hand
landmarks are detected first, the function resets the sequence and frame counter.

Once the sequence reaches the desired length, the function feeds it into the pre-trained
model to predict the gesture. If the prediction reliability is above the threshold value, the
recognized gesture is added to the sentence. The function then draws the predicted gesture
and sentence on a frame and displays them in a window (Figure 6).

Figure 6. Dynamic gesture variability recognition system. Publication with the consent of the people
shown in the figure.

4. Results

To achieve high accuracy in the classification of dynamic gestures, it is better to use a
sufficiently large and diverse data set (which will cover various forms of demonstration as
much as possible) for training and a complex model (Figure 7).

The first group of gestures (Figure 7)—where the palm orientation is directed towards
the camera or the demonstrator, the connection points involved in the gesture are as readable
as possible, and the trajectory of movement is parallel to the camera or static—showed the
highest result for the training sample. The value of ‘train_accuracy’ was 0.98 for the test
sample, the value of ‘test_accuracy’ was 0.98, and for the validation sample, the values of
‘val_accuracy’ was 0.96.

The second group of gestures (Figure 7) is where the orientation of the palm is parallel to
the camera and the movement of the hand is perpendicular to the camera. This means that
the hand is moving away from or towards the camera, and the palm is facing the camera.
Since the movement of the hand is not parallel to the camera, it may be more challenging to
capture the movement accurately. To accurately capture action, it may be necessary to use
techniques such as motion capture or computer vision algorithms to track the position and
direction of the hand in three-dimensional space. This may include using multiple cameras
to capture the movement at different angles and triangulating the hand’s position based on
the images captured by each camera. But despite this, because the orientation of the palm is
directed towards the camera, our model showed that in the result for the training sample, the
value of ‘train_accuracy’ was 0.99; for the test sample, the value of ‘test_accuracy’ was 0.98,
and for the validation sample, the value of ‘val_accuracy’ was 0.96.

In the third group of gestures (Figure 7), in which the orientation of the palm is not
directed at the camera or the demonstrator, the connection points are not all readable, and
the movement is parallel relative to the camera. This form of demonstration presents a
challenge for accurately capturing and interpreting gestural movements. Since the orienta-
tion of the palm is not directed at the camera or the demonstrator, it can be challenging
to see the exact position and configuration of the fingers. The model we proposed also
successfully showed that the value of ‘train_accuracy’ was 0.98, for the test sample, the
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value of ‘test_accuracy’ was 0.97, and for the validation sample, the value of ‘val_accuracy’
was 0.94.

Figure 7. Confusion matrix of the dynamic gesture variability recognition model for all test groups
(see Table A1 for Kazakh’s words translations).

When the orientation of the palm and movement is perpendicular to the camera, it
means that the hand is moving in the direction either towards the camera or away from
it. Many gestures (Figure 6) belong to this category, but for the experiment, 10 gesture
words were selected with these demonstration properties. These groups of sign words
in the fourth group showed minor indicators for the validation sample, with the value of
‘val_accuracy’ being 0.92. For the test sample, the value of ‘test_accuracy’ was 0.97, and for
the validation sample, the value of ‘train_accuracy’ was 0.98.

Based on the presented results (Figure 7), it can be concluded that the model that was
used to recognize different groups of gestures has an average validation accuracy of 0.92.
This means that, on average, the model is able to accurately classify gestures with a high
level of confidence. However, it should be noted that some groups of gestures performed
better than others, with some showing significantly higher accuracy than the average. The
orientation of the palm and the trajectory of the movement were identified as important
factors that can impact the accuracy of the model. Overall, the results suggest that the
model has the potential to be a useful tool for gesture recognition, but further research and
refinement may be needed to improve its performance on more challenging gestures.
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The validation accuracy 0.92 is an important metric, as it provides an estimate of how
well the model is generalizing to new, unseen data. A high validation accuracy indicates that
the model is performing well and can be trusted to make accurate predictions for new data.

The proposed method for sign language recognition was tested on three different datasets
(Table 1, and Figure 8): the Ankara University Turkish Sign Language Dataset (AUTSL), the
Dataset for Argentinian Sign Language (LSA64), and Kazakh Sign Language (KSL).

Table 1. Comparison of the authors’ method with other work (only RGB) on a test set of the AUTSL,
LSA64, and KSL datasets.

Datasets Precision Recall F1 Score Accuracy

AUTSL 0.93 0.93 0.93 0.93

LSA64 1 1 1 1

KSL 0.98 0.98 0.98 0.98

Figure 8. Confusion matrix of the AUTSL and LSA64 datasets (see Table A1 for Kazakh’s words
translations).

Table 1 presents a comparison of the performance of the proposed method for sign
language recognition with other works based on three different datasets: AUTSL, LSA64,
and the author’s dataset: KSL.

The results show that the proposed method has a higher precision, recall, F1 score,
and accuracy than the other works for the KSL dataset. The precision, recall, F1 score, and
accuracy values were all 0.98, indicating that the proposed method is highly accurate in
recognizing signs in this dataset. For the AUTSL dataset, the precision, recall, F1 score, and
accuracy values were all 0.93. This indicates that the proposed method performs well in
recognizing signs in this dataset, although not as well as in the KSL dataset. For the LSA64
dataset, the precision, recall, F1 score, and accuracy values were all 1. This indicates that
the proposed method performs perfectly in recognizing signs in this dataset (Figure 8).
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Overall, the results suggest that the proposed method is effective in recognizing signs
in multiple datasets and has a higher accuracy than other works in recognizing the signs in
the KSL dataset.

Table 2 presents a comparison of the recognition results achieved using different ges-
ture language recognition methods on the AUTSL dataset, including hybrid and ensemble
architectures. The proposed method in the study achieved an accuracy of 0.98, which
was slightly lower than the results achieved by other state-of-the-art methods, such as
STF+LSTM and 3D CNN, CGN, and RGB-D, which achieved accuracies of 0.9856 and
0.9853, respectively.

Table 2. Comparison of the authors’ method with other work (only RGB) on a test set from the
AUTSL dataset.

Model Accuracy

STF+LSTM [31] 0.9856

3D CNN, CGN, RGB-D [32] 0.9853

authors’ method 0.98

ResNet. Transformer [33] 0.9292

CNN+FPM+BLSTM+Attention (RGB-D) [26] 0.6203

It is noteworthy that the proposed approach does not rely on complex hybrid archi-
tectures or ensemble models that demand significant computational resources. Despite
this, the method achieves a reasonable level of recognition accuracy without the need for
supplementary features such as text or lip data, or additional equipment like depth-sensing
cameras or gloves. These findings suggest that gesture recognition can be accomplished
using simpler architectures and only RGB images, indicating promising possibilities for
practical applications.

The comparison table highlights the potential of more complex architectures and
depth cameras for achieving higher accuracy in gesture recognition, as shown by some of
the state-of-the-art methods presented. However, the proposed method is still effective in
achieving acceptable recognition accuracy without using these more complex techniques,
which suggests that it may be a useful and practical solution in certain contexts.

5. Discussion

The results presented in the text show that the proposed model for gesture recognition
is effective for recognizing different groups of gestures with a high degree of accuracy.
The analysis of the different groups of gestures showed that certain factors, such as the
orientation of the palm and the trajectory of movement, play an important role in the
accuracy of the model.

The high validation accuracy of 0.93 indicates that the model performs well and can
be trusted to make accurate predictions on new data. This is an important metric for any
machine learning model, as it shows how well it generalizes to new, unseen data. The
results also suggest that the proposed model has the potential to be a useful tool for gesture
recognition in sign language and can be applied to multiple sign languages, indicating its
multilingualism.

Furthermore, the experiment conducted in the study was compared to other works on
a test set from the AUTSL and LSA64 datasets, and the results showed that the proposed
method had a higher precision, recall, F1 score, and accuracy.

This further supports the effectiveness of the proposed method for gesture recognition
in sign language. Further development of the issues discussed in the article may include
the refinement of the proposed method and experimental setup to improve its performance
and accuracy. In addition, the system’s applicability in real-world scenarios and its ability
to work with various sign languages and dialects should also be studied.
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6. Conclusions

The answer to all the formulized research questions above is: YES.
The proposed approach in this research combines several modalities, including hand

movement, hand configuration, and body and head movements, to improve the accuracy of
sign language recognition. The integration of information from different modalities allows
the system to better understand the nuances of sign language and accurately translate it
into written speech. This is a significant innovation in the field of sign language recognition
and translation, as it improves the accuracy and efficiency of the system and makes it more
accessible to a wide range of users.

Secondly, the authors have attempted to capture the maximum possible variations in
the demonstration of gestures by grouping them into four different groups. This allows for
a more comprehensive understanding of sign language and improves the accuracy of the
recognition system.

Thirdly, the authors have developed a preprocessing module that can automatically
collect gesture properties from a video file or in real-time, making the methodology univer-
sal for any sign language and open for further experiments.

In addition to proposing a new approach for automatic sign language translation, the
authors have also made significant contributions to the recognition and preservation of
Kazakh Sign Language (KSL). As KSL is a relatively new and less-studied sign language,
its recognition as a separate sign language and its preservation is important. The authors
have developed their own KSL dataset, which is a significant contribution to the field, as
it provides ample training data for the proposed approach and can be used for further
research and experimentation. This can help to improve the recognition and preservation
of KSL, as well as other sign languages facing similar situations.

Overall, the proposed approach is effective and innovative, with several key contribu-
tions to the field of sign language recognition and translation. The authors have addressed
several research questions and proved the effectiveness of the architecture by testing it
on open datasets. These findings have the potential to make automatic sign language
translation more accessible and efficient for a wide range of users.

7. Future Work

Firstly, by expanding the system we have proposed, it is possible to develop a continu-
ous SL recognition system, which can then produce correctly translated sentences based on
the semantic parsing of words. Secondly, the use of the single functionality (video recording
system, processing of finished videos) offered in this system can become a prerequisite for
the development of automatic SL translation systems for any sign language.
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Appendix A. List of Words Used in This Research

Table A1. List of Kazakh sign words and their translations to English.

No. Kazakh Sign Word in Latin Kazakh Sign Word in Cyrillic Translation

1. bayandau Бaяндaу Narrative

2. jangbyr Жaңбыр Rain

3. jaryk Жaрық Light

4. jyrtu Жырту Plow

5. kezdesu Кездесу The meeting

6. khauyn Қaуын Melon

7. kholghap Қoлғaп Gloves

8. kobelek Көбелек Butterfly

9. korpe Көрпе Blanket

10. shainek Шәйнек Kettle

11. akylsyz Aқылсыз Crazy

12. demalu Демaлу Rest

13. grimm Гримм Grimm

14. khasyk Қaсық Spoon

15. khuany Қуaну Rejoice

16. kuieu jigit Күйеу жiгiт The groom

17. paidaly Πaйдaлы Useful

18. shattanu Шaттaну Delight

19. tate Тәте Aunt

20. unaidy Ұнaйды Like

21. aiau Aяу Pity

22. alup kely Aлып келу Bring

23. aparu Aпaру Drag

24. aser etu Әсер ету Influence

25. beldemshe Белдемше Skirt

26. jalgasu Жaлғaсу Continuation

27. jien Жиен Nephew

28. keshiru Кешiру Forgive

29. kuieu Күйеу Husband

30. oktau Оқтaу Loading

31. akelu Әкелу Bring

32. ana Aнa Mother

33. apa Aпa Sister

34. auru Aуру Disease

35. balalar Бaлaлaр Children

36. dari Дәрi Medicine

37. et Ет Meat

38. korshi Көршi Neighbor

39. shakyru Шaқыру The invitation

40. tanysu Тaнысу Dating
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