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Abstract. One of the actual problems of mathematical physics is to relate differential
geometry and nonlinear differential equation. Research in this direction is very important, as the
results are a theoretical and practical application. In this paper, we investigate the Camassa-
Holm equation. It is well known that the integrable nonlinear Camassa-Holm equation play an
important role in the study of wave propagation. We present the relationship between Camassa-
Holm equation and soliton surfaces. The first and second fundamental forms, surface area and
curvature for Camassa-Holm equation are found.

1. Introduction
Some nonlinear partial differential equations are integrable, allow physically interesting exact
solutions, moreover, these integrable equations are solvable by the inverse scattering problem
method. The study of integrable equations in (1+1)-, (2+1)-measures is relevant from the point
of view of mathematical physics [1]-[7]. Integrable equations allow different types of solutions:
soliton solution, domain wall solution, vortex solution, etc [8]. Moreover, solutions of integrable
equations have geometric characteristics. To study the geometric properties of solutions, the
theory of differential geometry of curves and surfaces is applied [9]-[11].

In 1993, Camassa and Holm derived an integrable generalization of the nonlinear equation,
which later became known as the Camassa-Holm equation [12]:

qt + 2uxq + uqx = 0, (1)

where
q = u− uxx.

Here u is the fluid velocity in the direction x [13].

2. Fundamental form.
In this section, we used the first and second fundamental form for finding soliton surfaces
and used the Sym Tafel formula. The Sym Tafel formula gives the connection between the
theory of solitons and classical geometry. Finding soliton surfaces is important when solving
integrable geometry. Geometrical objects associated with soliton surfaces can be associated with
the solutions of some nonlinear models [14]-[17].
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2.1. The first fundamental form
We give the first fundamental surface shape for the Camassa-Holm equation. Equation (1) is
fully integrable and admits a Lax pair [18]

U =

(
−1

2 λ
λq 1

2

)
, (2)

V =

(
1
2 (u+ ux)− 1

4λ2
1
2λ − λu

1
2λ (q + ux + uxx)− λuq 1

4λ2 − 1
2 (u+ ux)

)
, (3)

where λ eigenvalue. The derivatives U from (2) and V from (3) with respect to λ are of the
form

Uλ =

(
0 1
q 0

)
, (4)

Vλ =

(
1

2λ3 − 1
2λ2 − u

− 1
2λ2 (q + ux + uxx)− uq − 1

2λ3

)
. (5)

Zero curvature conditions for equation (1) is:

Ut − Vx + [U, V ] = 0, (6)

where [U, V ] = UV − V U , the matrices U and V are given in (2)-(3) [19].
In addition, a nonlinear partial differential equation (6) is a compatibility condition for a

system of linear equations:
Φx = UΦ,

Φt = V Φ.

Using the Sym-Tafel formula
r = Φ−1Φλ,

we define the following formulas:

rx = Φ−1UλΦ, (7)

rt = Φ−1VλΦ. (8)

The first quadratic form defines the internal geometry of the surface in the vicinity of a given
point. It is often denoted as I. For the Camassa-Holm equation, the first fundamental surface
shape is defined as [20]

I = d⃗r · d⃗r = Edx2 + 2Fdxdt+Gdt2. (9)

Relations between the derivatives of a vector and the matrix form r with respect to x and t:

E = r⃗2x =
1

2
tr
(
r2x

)
, (10)

F = r⃗xr⃗t =
1

2
tr (rxrt) , (11)
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G = r⃗2t =
1

2
tr
(
r2t

)
. (12)

where rx and rt are some matrices.
From (7) and (8) we can obtain

r2x = Φ−1U2
λΦ, (13)

r2t = Φ−1V 2
λΦ, (14)

rxrt = Φ−1UλVλΦ, (15)

where the matrix trace has the form
trU2

λ = 2q,

trV 2
λ =

1

2λ6
+ 2

(
− 1

2λ2
(q + ux + uxx)− uq

)
·
(
− 1

2λ2
− u

)
,

trUλVλ = − 1

2λ2
(q + ux + uxx)− uq + q

(
− 1

2λ2
− u

)
.

Taking into account (13), (14), (15), we have

r⃗2x = q, (16)

r⃗xr⃗t = − 1

4λ2
(q + ux + uxx)−

uq

2
+

q

2

(
− 1

2λ2
− u

)
, (17)

r⃗2t =
1

4λ6
+

(
− 1

2λ2
− u

)(
1

2λ2
(q + ux + uxx)− uq

)
. (18)

By substituting (16), (17), (18) into (9) we obtain the first fundamental form for the Camassa-
Holm equation:

I = qdx2 +

(
− 1

2λ2
(q + ux + uxx)− uq + q

(
− 1

2λ2
− u

))
dxdt+

+

(
1

4λ6
+

(
− 1

2λ2
− u

)(
1

2λ2
(q + ux + uxx)− uq

))
dt2. (19)

Knowing the first quadratic shape of the surface, we can calculate the lengths of the curves on
the surface, the angles between the curves and the area of the regions on the surface.

2.2. The second fundamental form
The second fundamental surface shape for the Camassa-Holm equation has the form [21]

II = d⃗r · d⃗n = Ldx2 + 2Mdxdt+Ndt2. (20)

where
L = r⃗xx · n⃗,

M = r⃗xt · n⃗,
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N = r⃗tt · n⃗.

Using the Sym-Tafel formula, we get

rxx = Φ−1UλxΦ+ Φ−1 [Uλ, U ] Φ, (21)

rxt = Φ−1UλtΦ+ Φ−1 [Uλ, V ] Φ, (22)

rtt = Φ−1VλtΦ+ Φ−1 [Vλ, V ] Φ, (23)

where are the matrices

Uλx =

(
0 0
qx 0

)
,

Uλt =

(
0 0
qt 0

)
,

Vλt =

(
0 −ut

− 1
2λ2 (ux + uxx)− utq − uqt 0

)
,

[Uλ, U ] =

(
0 1
−q 0

)
,

[Uλ, V ] =

(
1
2λ (ux + uxx)

1
2λ2 − (u+ ux)

q (u+ ux)− q
2λ2 − 1

2λ (ux + uxx)

)
,

[Vλ, V ] =

(
−u

λ (2q + ux + uxx)
1

2λ4 − u
λ2

1
4λ4

(
q + ux + uxx + 2λ2uq

) (
2λ2 (u+ ux) + 1

)
u
λ (2q + ux + uxx)

)
.

To determine the normal n to the surface, we use the following formula

n =
Φ−1 [Uλ, Vλ] Φ√
1
2 tr
(
[Uλ, Vλ]

2
) , (24)

where

[Uλ, Vλ] =

(
− 1

2λ2 (ux + uxx) − 1
λ3

q
λ3

1
2λ2 (ux + uxx)

)
,

([Uλ, Vλ])
2 =

(
1

4λ4 (ux + uxx)
2 − q

λ6 0

0 − q
λ6 + 1

4λ4 (ux + uxx)
2

)
.

The relations between the derivatives of the vector and the matrix form r with respect to x
and t are of the form:

L = r⃗xx · n⃗ =
1

2
tr (rxx · n) , (25)

M = r⃗xt · n⃗ =
1

2
tr (rxt · n) , (26)

N = r⃗tt · n⃗ =
1

2
tr (rtt · n) . (27)
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From (25), (26), (27) we have

tr (rxx · n) =
2 (2q − qx)√

λ2 (ux + uxx)
2 − 4q

, (28)

tr (rxt · n) =
2q − 4qλ2 (u+ ux)− λ2(u2x + u2xx)− 2λ2 (uxuxx + qt)

λ2
√
λ2 (ux + uxx)

2 − 4q
, (29)

tr (rtt · n) =
4
(
λ4u · a+ bλ2 + q

4 + ux
8 + uxx

8

)
λ4
√
λ2 (ux + uxx)

2 − 4q
, (30)

where

a =
u2x
2

+ (q + uxx)ux + uq +
u2xx
2

+
qt
2
,

b =
u2x
4

+

(
q

2
+

u

4
+

uxx
4

+
1

4

)
ux +

(
−q +

uxx
4

)
u+

uxx
4

.

Substituting (28), (29), (30) into (20), we obtain the second fundamental surface shape for the
Camassa-Holm equation

II =
(2q − qx)√

λ2 (ux + uxx)
2 − 4q

dx2 +

+

(
2q − 4qλ2 (u+ ux)− λ2(u2x + u2xx)− 2λ2 (uxuxx + qt)

)
λ2
√
λ2 (ux + uxx)

2 − 4q
dxdt+

+
2
(
λ4u · a+ bλ2 + q

4 + ux
8 + uxx

8

)
λ4
√
λ2 (ux + uxx)

2 − 4q
dt2. (31)

The second quadratic form is a very effective tool for studying the geometric properties of a
regular surface.

3. Area of Surfaces
Surfaces area is given in the form [18]

S =

∫ ∫ ∣∣∣→rx × →
rt
∣∣∣ dxdt. (32)

where × - a vector product, rx, rt-private derivatives by x, t and∣∣∣→rx × →
rt
∣∣∣ =

√
→
r2x

→
r2t − (

→
rx

→
rt)2, (33)

∣∣∣→rx × →
rt
∣∣∣ = √

EG− F 2. (34)

We can write

S =

∫ ∫ √
EG− F 2dxdt, (35)

where

E =
1

2
tr(r2x) =

1

2
tr(U2

λ) = q, (36)

F =
1

2
tr(rxt) =

1

2
tr(UλVλ) = − 1

4λ2
(q + ux + uxx)−

uq

2
+

q

2

(
− 1

2λ2
− u

)
, (37)

G =
1

2
tr(r2t ) =

1

2
tr(V 2

λ ) =
1

4λ6
+

(
− 1

2λ2
− u

)(
1

2λ2
(q + ux + uxx)− uq

)
. (38)
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4. Total and Mean Curvatures of a surface
In mathematics, curvature is any of a number of loosely related concepts in different areas of
geometry. Intuitively, curvature is the amount by which a geometric object such as a surface
deviates from being a flat plane, or a curve from being straight as in the case of a line, but
this is defined in different ways depending on the context. In studying the properties of regular
surfaces, the concepts of average surface curvature and Gaussian curvature are widely used. The
average curvature of the surface at a given point is the half-sum of its main curvatures

H =
1

2
(k1 + k2). (39)

The Gaussian curvature of a surface is the product of its principal curvatures

K = k1k2, (40)

using the properties of the roots of the quadratic equation, we obtain the following formulas for
the average curvature H and the Gaussian curvature K:

K =
det II

det I
=

LN −M2

EG− F 2
, (41)

H =
1

2

EN +GL− 2FM

EG− F 2
. (42)

5. Conclusion
In this article, we examined the Camassa-Holm equation. For integrability, we have the Lax
pair and investigated a one-dimensional surface. The first and second fundamental forms were
found by the formula of Sym Tafel. We found the surface area, Gaussian and average surface
curvature.
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