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Abstract: At present, silicon nitride is the only nitride ceramic in which latent ion tracks resulting
from swift heavy ion irradiation have been observed. Data related to the effects of SHIs on the
nanocrystalline form of Si3N4 are sparse. The size of grains is known to play a role in the formation
of latent ion tracks and other defects that result from SHI irradiation. In this investigation, the
effects of irradiation with high-energy heavy ions on nanocrystalline silicon nitride is studied, using
transmission electron microscopy techniques. The results suggest that threshold electronic stopping
power, Set, lies within the range 12.3 ± 0.8 keV/nm to 15.2 ± 1.0 keV/nm, based on measurements
of track radii. We compared the results to findings for polycrystalline Si3N4 irradiated under
similar conditions. Our findings suggest that the radiation stability of silicon nitride is independent
of grain size.

Keywords: Si3N4 silicon nitride; swift heavy ions; latent ion tracks; transmission electron microscopy (TEM)

1. Introduction

Nuclear waste storage is one of the main obstacles to the adoption of nuclear energy as
a sustainable source. The most optimal situation would be to have a fuel cycle that is either
partly or fully closed. To facilitate this optimal situation, nuclear waste would need to be
reprocessed or reintegrated into the fuel cycle. One means of achieving this goal is through
the use of inert matrices (IMs) to transmute plutonium and other minor actinides. These
transuranic elements would then be embedded in an IM and placed in an appropriate
reactor to facilitate transmutation [1].

Si3N4 has been identified as a candidate for use as an IM [2]. In order to determine
whether a material is a viable candidate for use as an IM, its radiation tolerance must be
tested. Among the main sources of radiation damage in a reactor core are fission fragments
(FFs) [1,3]. Swift heavy ions (SHIs) have masses and energies that are very similar to those
of FFs; they are an ideal means of simulating this form of irradiation. SHIs (in general
masses > 100 amu and energies > 100 keV/amu) deposit energy, primarily through inelastic
energy transfer mechanisms, to the electronic subsystem of the target material, which in
some materials may lead to the formation of latent ion tracks. These latent tracks may be
completely amorphous or consist of defective crystals; they may even be composed of a
different phase than the unaffected material. In nuclear applications radiation effects limit
the lifetime of reactor materials. Therefore, the modelling and prediction of microstructural
modification resulting from ion irradiation provide considerable benefits [4].
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The study of nanocrystalline materials is an important field of research. Nanocrys-
talline materials often behave differently in comparison with their larger grained counter-
parts, where grains are consistently larger than 100 nm. It has been shown that a decrease
in grain size can result in changes in the general properties of materials—in particular, radi-
ation stability [5–8], which is relevant to this investigation. On the one hand, a high density
of grain boundaries can act as an efficient sink for the annihilation of interstitial defects and
vacancies that are created during irradiation [5–9], which enhances radiation resistance. On
the other hand, some forms of energy deposition promote the accumulation of radiation
damage, due to the localized nature of energy deposition within an area much smaller than
the grain diameter, i.e., on the nanometric scale [9–11]. The radiation damage mechanism
in a nanostructured material is dependent on which of the above processes is dominant.

Silicon nitride is the only known nitride ceramic in which amorphous latent ion tracks
have been observed. Its radiation behavior is therefore of interest. Most of the relevant
literature has been concerned with the study of radiation-induced changes in the properties
of amorphous thin-films [11–17] and polycrystals [12,18–22] of Si3N4 and closely related
silicon nitride-based materials; data on the nano-crystalline state (n-Si3N4) are limited.

The microstructural effects of SHIs are most often studied using RBS, SAXS, AFM, FTIR,
together with chemical etching [5,12–15,22–24]; however, transmission electron microscopy
(TEM) is not often used [5,6,11,18–21]. TEM is the only direct method of analysis that can
reveal the microstructural effects of SHIs. High resolution TEM enables the imaging of track
characteristics, such as continuity/discontinuity and size (diameter), with minimal error.

The direct imaging of latent tracks and related defect structures serves as a tool for
verifying different models that describe the interaction of SHIs with matter and, there-
fore, TEM techniques are well suited to the study of defects in individual crystallites,
such as nanomaterials.

Therefore, the aim of this investigation is to analyze defects in n-Si3N4 that are re-
lated to swift heavy ion irradiation, using electron microscopy techniques to determine
whether the observed microstructural changes in n-Si3N4 are different from those of
polycrystalline Si3N4.

2. Materials and Methods

Commercially available nanocrystalline powder Si3N4 (Sigma-Aldrich, 99.9% purity)
placed on TEM grids were used as targets for irradiation. Specimens were irradiated with
714 and 670 MeV Bi, 156 MeV Xe to fluence 5 × 1011 cm−2 at U-400 and IC-100 cyclotrons
in the FLNR of JINR (Dubna, Russia) and 220 MeV Xe to fluence 5 × 1011 cm−2 at DC-60
cyclotron in INP (Nur-Sultan, Kazakhstan). Aluminum foils of different thicknesses were
used to alter the electronic stopping powers. Microstructural analysis was done with a JEOL
JEM 2100 LaB6 or ARM200F TEM, both operated at 200 kV, at the Centre for HRTEM in
Nelson Mandela University (Port Elizabeth, South Africa), and with a Talos™ F200i S/TEM
operated at 200 kV at the FLNR, JINR (Dubna, Russia).

Experimental measurements for track diameters were done from dark field (DF) TEM
images. In general. DF images contain less information related to strain, which yields a
more accurate representation of true track diameter. To obtain a statistically significant
average value for track diameters, between 50 and 100 tracks were measured. The total
number of tracks measured from the DF TEM images were dependent on the number of
tracks per sample, i.e., the ion fluence and the number of tracks that have the most reliable
contrast for measurement purposes and the number of nanoparticles that could be located
on the TEM grids.

Track diameter is measured through a line profile of the contrast across the track. Then,
the track diameter (radius) is taken as the full width at half of the maximum FWHM of
the intensity profile. There is always some uncertainty as to where the exact edge of the
track is located—it does not have an abrupt onset, but rather a gradual slope, in terms
of contrast decrease. Therefore, it is taken as the FWHM to provide some measure of the
uncertainty in the location of the track edge. Each track is measured once across with some
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integration in the width of the intensity profile. The uncertainty in the average track radius
is the standard deviation, σ, of all measurements for a specific sample.

3. Results

A typical bright field (BF) TEM micrograph of nanocrystalline silicon nitride (n-Si3N4)
irradiated with high-energy bismuth ions is shown in Figure 1. The tracks often appear
slightly larger in this imaging mode because of strain contrast, which is not visible in dark
field (DF) TEM.
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Figure 1. BF TEM image of n-Si3N4 irradiated with 670 MeV MeV Bi ions. Figure 1. BF TEM image of n-Si3N4 irradiated with 670 MeV MeV Bi ions.

The dependence of average track radius on electronic stopping powers, Se, calculated
with SRIM-2016, is shown in Figures 2 and 3. To modulate the stopping power, Al, degrader
foils of varying thicknesses were used, except at the highest stopping power, where no foil
was used. The degrader foil introduced a dispersion in the stopping power that increased
with foil thickness. The dispersion for native stopping powers (no foil) was too small to be
visible in Figure 2.
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Figure 2. Electronic stopping powers (Se) vs. average track radius in n-Si3N4.
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Figure 3. DF TEM images of n-Si3N4 irradiated with Bi ions at electronic stopping powers of
(a) 36 keV/nm; (b) 29.4 keV/nm; (c) 20.5 keV/nm; and (d) 11.6 keV/nm.

The highest stopping power where no tracks were observed was 16.5 ± 1.2 keV/nm
(714 MeV Bi with 27.7 µm Al degrader). At a stopping power of 14.5 ± 1.1 keV/nm
(670 MeV Bi with 28.1 µm Al degrader), ion tracks were not continuous–amorphous, as
was the case for all other observed ion tracks, but consisted of defect structures within
the crystal. At a stopping power of 14.7 keV/nm (156 MeV Xe with 8 µm Al degrader),
tracks were only observed in small nanoparticles (diameter < 30 nm) or on the edges of
larger nanoparticles. Table 1 provides a summary of these stopping powers, where tracks
were either not observed or in a different state, or observed only in special cases. Taking
the average value of the highest stopping powers where tracks were observed as either
defectstructures or only on the edges of large particles and small particles or not observed
(i.e., 14.7, 14.5, and 16.5 keV/nm as per the last three values in Table 1), we obtained
an upper bound of 15.2 ± 1.0 keV/nm. Then, we took the lower bound as the lowest
stopping power where tracks were not observed, i.e., 12.3 ± 0.8 keV/nm. This suggests
that the threshold stopping power for track formation lies somewhere within the bounds
of 12.3 ± 0.8 < Set < 15.2 ± 1.0 keV/nm.
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Table 1. Summary of stopping powers where tracks are not formed, not amorphous, or only observed
in special cases.

Ion/Energy
(MeV)

Stopping Power
(keV/nm) State of Ion Tracks

131Xe/156 12.3 ± 0.8 No Tracks
131Xe/156 14.7 ± 0.8 Small particles and boundaries of large particles only
209Bi/670 14.5 ± 1.1 Defect structures
209Bi/714 16.5 ± 1.2 No Tracks

Track sizes were determined in polycrystalline (p-) Si3N4 irradiated under simi-
lar conditions (714 MeV Bi and 220 MeV Xe to fluence of 5 × 1011 cm−2). The mea-
sured radii in p-Si3N4 were 1.7 ± 0.2 nm and 1.0 ± 0.2 nm for bismuth and xenon
ions, respectively [18–21]. Previous results and the data from this investigation for track
radii showed similar values for poly- and nanocrystalline-silicon nitride, within the mar-
gin of error. This suggested that they have comparable radiation stabilities. The es-
timated threshold values for track formation in p-Si3N4 (~9 keV) [20,21] and n-Si3N4
(12.3 ± 0.8 < Set < 15.2 ± 1.0 keV/nm) in the present work differed appreciably, with the
latter slightly lower than that in p-Si3N4, with 3% Al contamination; however, it was quite
similar to the estimated value from Zinkle et al. [19] of ~15 keV/nm.

It should be noted that the polycrystalline samples of Si3N4 in [20,21] were found to
contain low levels of aluminium contamination. The effect on the presence (and absence)
of Al in p-Si3N4 is shown in [25], where one of the grains that had a marked lack of Al
did not suffer amorphization or show evidence of latent ion tracks, as was observed in all
other grains within the range of the implanted ions. The stopping power at the depth of
the unaffected grain was ~9 keV/nm. Accordingly, it is clear that the threshold for track
formation was lowered in these samples, due to the presence of Al impurities. Available
literature also supports the assertion that Si3N4 with very low impurity levels (99.5% to
99.9% purity), as used in this study, should have a higher threshold stopping power for
track formation than impure Si3N4 [20,21,24]. However, the fact that grain size, especially
nano-sized grains (<100 nm), play a role in the microstructural response of materials to
SHIs should also be considered [5–11].

In Table 1, it is noted that at a stopping power of 14.7 ± 0.8 keV/nm, tracks are only
observed in small particles (size < 30 nm) or close to the edges of larger particles. Molecular
dynamics (MD) simulation of 700 MeV Bi ion track formation in nanocrystalline inclusions
in a crystalline Si3N4 matrix [26] revealed that the track diameter inside the nanograin
was systematically smaller, by approximately 15%, than the diameter in the surrounding
material, where its size was close to the value calculated for single-crystal silicon nitride
(1.8 ± 0.2 nm) [21]. This effect was observed for the inclusions with sizes < 30 nm. This
suggests that a grain size of 30 nm to 35 nm is close to the threshold of the heat confinement
effect caused by grain boundaries. Therefore, it appears that this heat confinement effect
may be responsible for the presence of ion tracks in small particles. The presence of ion
tracks on the edges of some larger particles, as mentioned above, may be related to edge
effects. Where the sample was at its thinnest, it could have been easier to form a latent ion
track and/or to allow for the ejection of materials from the top and bottom surfaces of the
particle, resulting in an area with lower density, similar to the process involved in hillock
formation [27]. A track in a thinner area, compared to the interior of the particle, should be
shorter; there, the average decrease in density, as viewed along the track, should appear to
be more significant.

4. Conclusions

Based on experimentally measured track radii induced by 714 and 670 MeV Bi and
156 and 220 MeV Xe in n-Si3N4, the threshold electronic stopping power was found to be
within the following range: 12.3 ± 0.8 < Set < 15.2 ± 1.0 keV/nm. The threshold stopping
powers for pure p- and n-Si3N4 appeared to be quite similar, suggesting that they should
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have similar radiation resistance. MD simulations and the results from this investigation
suggested that the average grain size of n-Si3N4 in this study was above the threshold
where the heat confinement effect may play a role in the evolution of ion track morphology
and track radii, except in the case of a few isolated particles with very small grain size
(<30 nm). The presence of ion tracks near the edges of larger particles in a sample, where
they were otherwise lacking, was ascribed to decreased width at the edges, resulting in a
more significant density (decrease)-to-length ratio. Therefore, the main conclusion based on
the results of this study is that there is no clear difference in the microstructural evolution
of p- and n-Si3N4.
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